
Preserving Coordination Properties when Transforming
Concurrent System Components∗

Gudmund Grov, Robert Pointon, Greg Michaelson and Andrew Ireland
School of Mathematical and Computer Sciences, Heriot-Watt University,Riccarton,Scotland,EH14 4AS

{gudmund,rpointon,greg,air}@macs.hw.ac.uk

ABSTRACT
Complexity in concurrent or distributed systems can be man-
aged by dividing component into smaller components. For
example, suppose component D is replaced by an assembly
of sub components D1 to D4:

?
=

While the new assembly may have the same functional cor-
rectness properties as the original component, the coordi-
nation properties of the whole system may have changed
radically, as the additional processes must now be sched-
uled with attendant impact on the scheduling of the orig-
inal processes. If the original system is non-deterministic
or time dependent, then the system’s functional properties
may also change. A well known solution for managing large
systems is to structure the components into sub-parts, an
approach that was first taken by Harel [2] for finite state au-
tomata (FSA). By illustrating with the Hume programming
language, we will argue for a similar approach for program
transformation, where the overall structure is preserved by
nesting new components inside a super-component.

Hume[1] explicitly separates coordination and computa-
tion concerns. It is based on autonomous boxes linked by
wires, which are defined in the finite state coordination lan-
guage. Transitions within a box is defined in the expression
language by a list of matches, each of the form

pattern → expression

where each pattern is matched against the box input and the
associated expression generates output by associated recur-
sive actions. Hume targets safety-critical resource bounded

∗This work has been supported by EU FP6 EmBounded
and a James Watt Scholarship. A full version of the paper
is available at http://www.macs.hw.ac.uk/techreps/.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

systems – thus Hume programs are deterministic. This is
achieved by an execution model which is based on a cyclical
two phase execution: in the first phase each box is run once
and attempts to consume input and generate output; and
in the second phase the output changes are resolved in a
unitary super-step.

Wires are single-buffered and partial matching is allowed,
thus a box may fail on matching inputs and block when
attempting to write to a full wire. In the first case the
box enters a Matchfail state, while the latter induces a
Blocked state. If not, the box is Runnable. Hume uses
lock-step scheduling which proceeds as follows:

for ever
for each Runnable or Matchfail box

execute (box)
super step (each Runnable or Blocked box)

At the heart of Hume is the ability to statically cost time
and space usage [1]. However, not all properties are costable,
and thus Hume program development involves the key con-
cept of program transformation, to reduce constructs into
a more decidable representation. This often involves trans-
forming from the expression to the coordination layer. For
example, the well-known linear recursion to iteration trans-
formation [4], is in Hume represented as recursion expression
(mult1) to box iteration (mult2):

mult r _ 0 = r;

mult r x y = mult (r+x) x (y-1);

square x = mult 0 x x;

?
=

where the symbol ‘*’ denotes ignore input or no output, ‘ ’
requires that input is present. Functional correctness is pre-
served in mult2 so that with the same input (i) the same
result is produced at the output (o). However, coordina-
tion properties are altered: mult1 produces the result in 1
scheduling step, while mult2 requires N + 1 steps for a re-
cursive call of depth N . A consequence of the ‘*’ pattern is
that Hume programs are time-dependent. Thus, replacing

mult1 by mult2 in an arbitrary program, may induce differ-
ent matches in connected boxes, and so change the overall
(functional and coordinational) behaviour of the program.

A solution is to structure boxes by allowing boxes to nest
inside a box. We call this extension Hierarchical Hume. This
allows us to split and merge boxes both vertically and hor-
izontally, without changing the overall program structure.
A box remains an input-output relation, without any state
(side effects). Hence, when a nesting box (parent) termi-
nates, all dangling state will be reset before the next cycle.
Further, we need to know when a nesting box should start
executing and when it should stop, and this must be spec-
ified by the programmer. For example, we can create a
hierarchical box, by nesting the shaded area encapsulating
mult2 and the feedback wire (iter’→iter). We call this
box mult3. This requires the i and o wires to split into the
ones (externally) connecting mult3 and those (internally)
connecting mult3 and mult2. Finally, we want mult3 to
start executing, i.e. schedule it’s children, when there is an
input present (on external i) and terminate when there is a
value on the internal o wire. This is achieved by a () ->

() match in match. To achieve this scheduling, a Termi-
nated state is separated from Runnable. This means that
the box (in the execute phase) has terminated. Moreover,
the scheduler is now nested and scheduling can be defined
inductively. However, this requires two additional poten-
tial box states: Execute denotes that the children boxes
(of the box) are in the execute phase; and Super denoting
that the children are in the super-step phase. The inductive
scheduler is then defined as:

schedule (boxes ,condition) ,
until condition

for each Runnable or Matchfail box in boxes
if box is nesting
then schedule

`
children(box),termination condition(box)

´
else execute(box)

super step (each Terminated or Blocked box in boxes)

where schedule(all top-level boxes,False) is the top-level sched-
uler. Here, the termination condition is False since a Hume
program never terminates. We have proven that this exten-
sion is conservative (see full paper) and updated the Hume
interpreter with a prototype implementation of this schedul-
ing. Experiments there has provided empirical evidence for
the discussion above, and that hierarchies overcome these
problems. It has also shown some efficiency gain due to
reduced unnecessary scheduling.

We can also formally prove that the behaviour is preserved
in a transformation, and we have found TLA [3] suitable for
such proofs. Here, both program and properties are given
in the same logic. mult3 preserves the behaviour of mult1 if
it implements it, which is represented as logical implication.
We will now outline this proof (It has also been verified with
the TLC model checker). Let X be the input value of the
component, i and o the internal input (i) and output (o)
wires of mult3, and f the feedback loop (iter’→iter) of
mult2. Firstly, the same wires must always be consumed,
which is trivial since there are only one input, and both
boxes match iff input is available. Secondly, on termination
the internal output wire (o) of mult3 must hold the same
value, as produced by mult1. A box terminates when o has
a value, i.e. is not empty, which is written o 6= ⊥. By
unfolding square this is written as:

I , 2
`
o 6= ⊥ ⇒ o = mult 0 X X

´

The proof of I requires the following invariants:

I1 , 2
`
o = ⊥ ⇒ i 6= ⊥ ⇒ i = X

´
I2 , 2

`
o = ⊥ ⇒ f 6= ⊥ ⇒ mult 0 X X = mult f [1] f [2] f [3]

∧ f [2] = X
´

f [n] accesses the nth element of tuple f , and I2 assumes
I1. Invariant proofs follow an induction principle where the
invariant must initially hold (base case), and must be pre-
served in a transition (step case). Initially, I,I1 and I2 holds
since i = o = f = ⊥. The majority of the step cases will not
change the values of i, o or f . Hence, we will only discuss
the non-trivial steps that alter the values. i, and thus I1, is
by definition, only updated when mult3 matches the input,
and is then set to the input value X. Hence, I1 holds.

I2 is the “loop invariant” of the “iteration”, and depends
on f . There are two cases where mult2 updates f : firstly,
when i 6= ⊥, then wire f is set to (0, i, i). This is the
“entry step” of the “loop”. Since i = X by I1, we have
f = (0, X, X) thus I2 holds since

(mult 0 X X = mult 0 X X ∧X = X)

Secondly, in the “iteration step” of the “loop” we assume
(IH): mult 0 X X = mult f [1] f [2] f [3] ∧ f [2] = X. The
values are then updated such that we must prove

mult 0 X X = mult (f [1] + f [2]) f [2] (f [3]− 1) ∧ f [2] = X

By rewriting the definition of mult from right to left we have

mult 0 X X = mult f [1] f [2] f [3] ∧ f [2] = X.

which can be unified with the assumption (IH). Hence I2

holds.
I is verified using I2. o is only written to at the “exit

step” of the loop. Pattern matching in mult2 ensures that
f [3] = 0 in this case. o is then given the value of f [1]. Thus,
by I2, we have:

square X = mult 0 X X = mult f [1] f [2] 0| {z }
f [1] by def. of mult

= f [1] = o

which shows that I holds. This value is copied to the output
wire in the super-step phase, thus the behaviour is also pre-
served in this phase, which completes the proofs. Note that
this is a general approach, which enables proof automation.

The main difference between this work and statecharts [2],
is that we are introducing hierarchies of transitions rather
than hierarchies of transitions. However, due the FSM model
the work is comparable, creating an AND super-step.

1. REFERENCES
[1] K. Hammond and G. Michaelson. Hume: A Domain

Specific Language for Real-Time Embedded Systems.
In Proceedings of GPCE’03: Generative Programming
and Component Engineering, Erfurt, Germany.
Springer, LNCS, September 2003.

[2] D. Harel. Statecharts: A visual formalism for complex
systems. Science of Computer Programming,
8(3):231–274, 1987.

[3] L. Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems,
16(3):872–923, 1994.

[4] Z. Manna. Mathematical Theory of Computing.
McGraw-Hill, 1974.

