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Abstract. The use of the Hume box calculus to systematically trans-
form a single box into an equivalent multi-box program offering balanced
parallel implementation is discussed. The approach is illustrated through
the development of a multicore matrix multiplication program.
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1 Introduction

Hume[20] is a contemporary language in the functional tradition, based on ab-
stractions over concurrent finite-state automata, and oriented to domains re-
quiring strong static guarantees that resource bounds are satisfied. Hume is a
multi-level language, with different combinations of types and control expressions
enabling a principled tradeoff between expressive power and property decidabil-
ity. Thus, at one extreme full Hume is turing complete, highly expressive and of
undecidable resource bounds; at the other, HW-Hume'! has minimal expressivity
but decidable bounds.

Hume is based on strong formal foundations, with stable static and dynamic
semantics informing implementations and analyses. At the heart of Hume’s con-
ception is the Hume Abstract Machine (HAM), providing a unifying basis for a
common tool set, in particular for closely coupled native machine code genera-
tion and resource analyses. This greatly facilitates the accurate instantiation of
generic analyses for specific hardware platforms.

Hume programs are composed of bozes linked by wires, where box transitions
are structured by pattern matching over input wires to identify expressions to
generate values for output wires. A Hume box, like a finite state automata, is
non-terminating, repeatedly cycling to match inputs and generate outputs. It is
important to note that boxes have transient local state which is lost at the end
of each execution cycle, with persistent state residing solely on wires.

The Hume semantics specifies that program execution is in two stages. First
of all, each box attempts to match inputs and, if successful, generates outputs.
At the end of this stage, no inputs are consumed or outputs asserted. In the
second super-step stage, matched inputs are consumed and generated outputs
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are asserted, with boxes blocking until the next cycle if any previous outputs
remain unconsumed.

Note that, in the first stage, box execution has no impact on wires, so boxes
cannot interact and their execution may be in arbitrary order. Furthermore, a
common Hume form is that of an iterating box which repeatedly consumes only
outputs it generates itself. Such self-output boxes may in principle execute both
stages continuously and independently of other boxes. Thus, the Hume execution
model offers excellent opportunities for concurrent box execution.

Recently, we have developed a prototype shared memory, parallel implemen-
tation of the standard HAM interpreter[1] which uses OpenMP to associate
each boxes with an individual thread for first stage execution on multiple cores.
Initial experiments suggest that this simple approach offers excellent speedup
provided all boxes have similar execution time characteristics. However, an arbi-
trary Hume program composed of arbitrary boxes is unlikely to offer the required
degree of regularity. Thus, performance of our naive one box/one thread imple-
mentation is always limited by the time to execute the slowest box.

Our long term goal is to use box execution time analysis to enable load
balancing, where multiple boxes may be assigned to a single thread. However,
optimal strategies for using such analyses are still not clear. In particular, Hume
resource analysis has focused on worst case as resource bound critical systems
must necessarily be conservative in estimates. However, boxes are essentially
assemblies of alternative matches, and in general there will be no consistency
of individual match cost. In any case, match choice at run-time will depend
on unknown properties of input data. Perhaps average case or probabalistic
techniques might be used to better constrain box cost characterisation but these
remain longer term research goals.

We have been exploring an alternative approach based on program transfor-
mation to systematically construct a multi-box program with the desired char-
acteristics from an original functional expression. Transformation is driven by
our Hume box calculus.

In the following sections we introduce the box calculus, explain the general
principle for applying it to an expression to produce a well formed multi-box
program, apply the technique to a matrix multiplication example, evaluate the
technique on a multicore system, and reflect on contributions and limitations.

2 Hume Box Calculus

The Hume box calculus [18] is a set of rules for manipulating programs.
The main classes of rules are:

— introduction: wire, id box, transition;
elimination: wire, id box, transition;
split: box horizontally /vertically, wire, transition;
— join: horizontal /vertical boxes, wires, transitions.

There are also composite rules, which may be derived from the basic rules, for
example to convert:



— recursive expression to/from iterative box;
— nested expression to/from vertical boxes;
— tuple expression to/from horizontal boxes.

Hume is unusual in distinguishing explicitly between the coordination layer,
concerned with interactions amongst boxes and with the wider environment, and
the expression layer, concerned with pattern/control transitions within boxes.
It is important to note that transformations to one layer will almost invariably
involve changes to the other. For example, introducing/eliminating a wire, nec-
essarily between boxes, also requires the introduction/elimination of a pattern
element for an input wire or a control element for an output wire, in every tran-
sition of both boxes. Thus, the box calculus integrates techniques from both the
functional (i.e. expression) and the process (i.e. coordination) traditions.

While many rules are not correctness preserving they have well defined effects
on program characteristics. Furthermore, rules which are correctness preserving
may nonetheless have profound, if predictable, effects on program pragmatics,
for example modifying time or space requirements, or scheduling behaviour. For
the correctness of the calculus, see [17,18].

The calculus was original proposed for the hierarchical extension of Hume,
called Hierarchical Hume [19]. Whilst preservings functional correctness, changes
of the coordination layer may change global properties, thus changing the overall
behaviour. The advantage of Hierarchical Hume is that nesting mitigates the
requirement of global analysis. However, the example in this paper is irrelevant
because we do not use the ‘*’ (ignore) pattern, and do not wire the transformed
boxes to boxes where this pattern is applied.

3 Transforming Hume for Parallelism

We now describe the two key transformations for constructing a multi-box pro-
gram from an original single box. Both will be familiar as Hume variants of
standard skeletonising transformations for higher order functions (HOFs). Note
that we present informal explanations followed by sketch proofs of correctness.

To simplify the presentation, we will consider transformations on a box with
one input, one output and one transition, of the form:

box general

in (input :: typey)

out (output :: typen)
match pattern -> expression;

shown diagramatically in Figure 1.
First of all, if the match expression has the form of composed functions

var => fa( f1(var))

where:
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Input expression

— output

Fig. 1. General box.

box first box second

in (input::typei) in (input::types)

out (output::types) out (output::typesz)

match var -> fi(var); match var -> fa(var);

wire first(...)(second.input) wire second(first.output)(...)

Fig. 2. Pipeline form.

f1:: typer — types; fa :: types — types

then the box may be transformed to a pipeline of two boxes, one for each function
shown in Figure 2 and illustrated in 3(a).

The pipeline box transformation is achieved directly with the vertical com-
position elimination rule:

VCompkE(general, first, [output], second, [input])

This rule assumes that box general has one match with expression of the form
f - g (which is the case for this example with f — fy and g — f1). It then
vertically decomposes general, into two boxes first followed by second — with
the output wire of first named output and input wire of second labelled
input. Note that the input first has the same label as general, and so does
the output wire of second.

Secondly, if the match effects a divide and conquer:

x -> let (1,r) = divide x in conquer (fi (1), f2(x))

where:

divide :: typer — types * types
f1 1 types — typey

Ja2 : types — types

conquer :: typey * types — typeg

then the box may be transformed to a divide and conquer form shown in Figure
4, and graphically illustrated in Figure 3(b).
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Fig. 3. Box transformed forms: (a) pipeline; (b) divide and conquer.

This transformation is more involved then the previous, and we will show it
step-by-step. Figure 5 shows the effect each step has on the coordination layer.In
the text we have references each transformation step in the figure — and omitted
steps where this layer is unchanged.

First we apply some simple re-factoring of the expression of the original box
general. We assume that:

divide x = (first x, second x)

Thus,

let (1,r) = divide x in ...
is rewritten into

let 1 = first ¢ in let r = second x in ...
We then unfold the let expressions, creating the following match

x => conquer(fi1(first x), fo(second x))
2) We next apply the vertical composition elimination rule:

VCompkE(general, first, [left,right|, conquer, [Left,right])

This will create two boxes: first with the match

x => (fi(first x), fo(second x))



box divide box left

in (input::typei) in (input::types)

out (left::types,right::types) out (output::types)

match var -> divide var; match var -> fi(var);

box right box conquer

in (input::types) in (left::types,right::types)

out (output::types out (input::types)

match var -> fa(var); match (left,right) -> conquer(left,right);
wire divide wire left

(...) (left.input,right.inout); (divide.left) (conquer.left);

wire right wire conquer

(divide.right) (conquer.right);  (left.output,right.output) (...);

Fig. 4. Divide and conquer form.

followed by a box conquer, with the match
(left,right) -> conquer (left,right)

The conquer box will not be transformed further.
3) We then introduce an identity box id before the first box, by applying
the identity introduction rule:

IdI(first, input, id)

This introduces a box called id before the wire input of box first with the
trivial match

xr =>x

The input/output wires of id becomes v/v’ on default. We then duplicate this
introduced wire, achieved by the duplicate wire introduction rule:

Dupl(id,v’,v’’, first, input,y)
The match of id now becomes:
z -> (z,x)
while the match of first becomes:
(x,y) => (fi(first x), fo(second x))

4) z and y will always be identical (since they come from the id box which
simply fan-out the same value). z may thus be replaced by y in any expression.
Hence, in the second element of the expression pair of input we replace x by y
by a simple re-factoring, thus creating the match:



(x,y) => (fi(first x), fa(second y))

The match now consists of two input and two output pairs, where the first
output only uses the first input, and the second output only uses the second
input. This enables the horizontal composition elimination rule, which splits
this box into two parallel boxes:

HCompkE(first, [input].[left],left, right)

This creates two parallel boxes named left and right, where the input/output
of box left is input/left (and y/right for the box right). The left and
right boxes will have the following matches respectively:

x => fi(first x) and y -> fa(second y)

5) Both matches have the approipriate structure for the vertical composition
elimination rule which we apply to both boxes:

VCompkE(left, firstl,[left], left, [x])
VCompkE(right, first2, [right|, right, [y])

The new boxes firstl and (followed by) left will then have the following
respective matches

x => first x and x -> fi x
Similarly, the matches of first2 and right become
y => second y and y -> foy

6) We can now apply the horizontal composition introduction rule to first1 and
first2, creating the divide box:

HCompl(firstl, first2,divide).
which contains following match:
(z,y) —> (first x,second y)

Both inputs of this box comes from the id box, and are both duplicates of each
other. Thus y can be rewritten to x in the expression:

(x,y) -> (first x,second x)
We can then apply the duplicate wire elimination rule on the input on y:
DupE(divide, input, y)
creating the match:

x -> (first x,second x)
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Fig. 5. Divide and conquer transformation steps.

7) We eliminate the identity box id with the identity box elimination rule, and
applies some simple renaming of the inputs and outputs wires of the left and
right boxes. This concludes the transformations required on the coordination
layer:

IdE(id); VRename(left,x,input); VRename(left,left,output); VRe-
name(right,y,input); VRename(right,right,output)

In the final step we apply the opposite re-factoring of the expression layer of

divide as we did in the first step. Firstly, we introduce the let expressions,
thus creating the match:
x -=> let 1 = first x in let r = second x in (1,r)

At the end, we rewrite this to the divide function, using the equality defined
above:

z -> let (1,r) = divide x in (1,r)



4 Example: matrix multiplication

Consider the usual pure functional matrix multiplication based on a list repre-
sentation of matrices in row major order, requiring transposition of the second
matrix::

dist [1 _ = [1;
dist (h1:t1) (h2:t2) = (hl:h2):dist tl t2;
dist (hi:t1) [ = [h1]:dist t1 [];

transpose [1 = [1;
transpose (row:rows) = dist row (transpose rows);

dotprod (h1l:t1) (h2:t2) = hil*h2+dotprod tl t2;
dotprod _ _ = 0;

rowmult r (c:t) = dotprod r c:rowmult r t;
rowmult _ [] = [];

rowsmult (r:t) ¢ = rowmult r c:rowsmult t c;
rowsmult [1 _ = [];

matmult ml m2 = rowsmult ml (transpose m2);

Assuming we have appropriate boxes to handle matrix input from file and matrix
display, and ignoring the attendant wiring, then our initial one box program is:

type integer = int 64;
type intmat = [[integer]];
box matrixmult
in (m1,m2::intmat)
out (m3::intmat)
match
(m1,m2) -> rowsmult ml (transpose m2);

which will repeatedly input and multiply matrices from wires m1 and m2.

Observing that the transition has the form f(g(var)), we apply the first
transformation above to pipeline the transposition phase into the multiplica-
tion phase, as shown in Figure 6. Next, noting that given:

take _ [1 = [1;
take 0 _ = [];
take n (h:t) = h:take (n-1) t;

drop _ [1 = [I;
drop ;
drom n

(@]
~ -
I
~

= drop (n-1) t;



box matrixmultl box matrixmult2

in (ml::intmat,m2::intmat) in (input::(intmat,intmat))
out (output::intmat) out (output:intmat)
match match (m1,m2) -> rowsmult m1 m2;

(m1,m2) -> (ml,transpose m2);

wire matrixmult1 wire matrixmult2
(...) (matrixmult2.input); (matrixmultl.output) (...);

Fig. 6. Pipelined matrix multiplication.

map £ []1 = [];
map £ (h:t) = f h:map f t;

then for list [ the following identities hold:

l = take n [++drop n
map f | = (map f (take n [))++(map f (drop n [))

so rowsmult may be recast as an append of maps:

onerow m2 r = rowmult r m2;

rowsmult m1 m2 = map (onerow m2) ml &

map (onerow m2) (take N ml)++map (onerow m2) (drop N ml) &
rowsmult (take N ml) m2++rowsmult (drop N ml) m2

Now the second box’s transition has the required divide and conquer form, and
the second transformation applies, as shown in Figure 7 The final program has
the form shown in Figure 8.

Note that we can apply the second transformation repeatedly to new boxes
of the correct form and then apply the box calculus to remove redundant in-
termediate boxes. For exampling, transforming both rowsmult boxes in Figure
8 gives Figure 9(a), with intermediate trees of divide and conquer boxes. By
application of horizontal box merge, wire merge and vertical box merge, this can
be simplified to Figure 9(b).

5 Evaluation

We timed various versions of the matrix multiplication program on an Intel
Xeon (R) 2.3 GHz processor with eight cores and 6144 KB cache. Tests involved
multiplying 20x16 matrices.

Table 1 shows the run-time and speed up by number of boxes and number of
cores. While times seem slow, it should be remembered that we are measuring
the HAM interpreter, not native code. Speed up is very decent overall, with a
best improvement of 6.8 for 8 boxes on 8 cores.

Figure 10 shows analysis of core behaviour. The third column records the
number of core cycles while the core is not in a halt state. The fourth col-
umn counts the number of instructions that retire execution. For instructions



box matrixmult2 box mml

in (input::(intmat,intmat)) in (input::(intmat,intmat))

out (left,right::(intmat,intmat)) out (output:intmat)

match match (m1,m2) -> rowsmult m1 m2;
(m1,m2) ->

let N = length m1 div 2
in ((take N m1,m2),(drop N m1,m2));

box mm?2 box conquer

in (input::(intmat,intmat)) in (left,right::intmat)

out (output:intmat) out (output::intmat)

match (m1,m2) -> rowsmult m1 m2; match (ml,m2) -> ml4++m?2;

wire matrixmult2

(matrixmultl.output) (mml.input,mm?2.input);
wire mm1 (matrixmult2.left)) (conquer.left);
wire mm2 (matrixmult2.right)) (conquer.right);
wire conquer (mml.output,mma2.output) (...);

Fig. 7. Divide and conquer matrix multiplication.
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Table 1. matrix-multiplication

that consist of multiple micro-ops, this event counts the retirement of the last
micro-op of the instruction. In the fifth column high clocks per instructions
retired (CPI) indicates that instructions require more cycles to execute than
they should. CPI can get as low as 0.25 cycles per instructions. This shows
excellent consistency of core behaviour.

The complementary Figure 11 shows the thread call graph. After the initial
startup, cores remain highly active and well balanced.

6 Related work

6.1 Multi-core

The recent trend towards multicore architectures has sparked a significant new
work aimed at exploring novel programming models and runtime systems. Ap-
proaches include:

— Parallel libraries, such as Pthreads [24] and provide the ability to express par-
allelism directly. More advanced libraries, such as Cilk [16] or OpenMP [11],
provide higher level primitives, including, for example, support for nested
parallelism [13]. However, according to Bridges [7], library approaches pro-
vide little support to help achieve correct or effective parallelism.
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Fig. 8. Transformed matrix multiplication.

— Message-passing approaches, such as the GUM implementation of Haskell
for multicore machines [5], or Erlang [2,14]. The Haskell approach uses al-
gorithmic skeletons to introduce parallelism mapped to multicore threads
executing sequential components. The Erlang approach is based on explicit
threads which are mapped directly to operating system threads. In GUM,
like the multicore HUME implementation , all communication and thread
synchronisation is implicit, whereas Erlang requires explicit use of message-
passing primitives. Unlike GUM, Hume makes direct use of shared memory
mechanisms. Moreover treating Hume boxes as units of execution makes it
straightforward to derive parallelism that can easily be mapped to multiple
cores.

— Explicit memory transactions [9,21] attempt to reduce locking by exposing
parallel operations as transactions. Some approaches require an explicit step
to make locations or objects part of a transaction, while others make the
memory operation behaviour implicit, requiring compiler or hardware sup-
port. While such approaches appear promising on paper, they have so far
generally failed to deliver good performance. For example, Harris et al [21]
report poor and highly variable parallel performance, using memory trans-
action techniques on shared-memory machines.

— Data-parallel approaches where parallelism is exposed by evaluating elements
of bulk data structures in parallel. For example, Data-Parallel Haskell [10]
provides parallel arrays and operations. Good results are reported for typi-
cal data-parallel problems. A similar approach is taken by Fluet et al. [15]
who embed nested data-parallel constructs into an explicitly parallel Con-
current ML setting. These approaches can deliver good performance but are
best suited to static, regular, data-driven parallelism, rather than the more
dynamic, irregular forms that can be programmed using Hume boxes.
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Fig. 10. Analysis

6.2 Box calculus

In contrast to most of the approaches described above, we focus on exploit-
ing parallelism in multicore architecture by introducing boxes as the right-size
construct for mapping to cores, complemented by the box calculus.

The box calculus [18] was preceded by informally applying the horizontal box
integration rule to establish that Finite State Machine (FSM-)Hume actually is
finite state[27]. The current paper is the first application of the box calculus to a
substantive problem. As in e.g. refinement calculus[3], which influenced notations
like Z, B and Event-B, the box calculus identifies that a transformations consists
of several small steps and a bigger step is achieved by combining them into
strategies. We expect that this will greatly assist automatation of the proof of a
rule application within a theorem prover.

Due to the strong interplay and dependencies between the Hume expres-
sion and coordination layer, a single rule application will often have impact
on both layers, which is distinctive compared with synthesis techniques, like
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Bird-Meertens Formalism [6] and calculational programming [22]. Just as Hume
integrates a finite state coordination language with a functional transition con-
trol language, the work presented here draws on the twin traditions of process
network and functional program transformation. The coordination aspects of the
rules have many similarities with those found in the box calculus for Petri nets
[12] as well as process calculi[4]. The control aspects resemble classic functional
programming techniques including curry/uncurry, fold/unfold[8] and functional
refactoring[25]. However, with respect to functional program transformations,
we expect to be able to use these rules directly for the purely expression layer
refactorings (like unfolding/folding let expression above), while process calculi,
like CCS or CSP, can be used to embed the box calculus.

However, an underlying state based representation, like TLA[23], as used
n [17], seems very promising. Experiments have been conducted in integrating
this TLA-based coordination layer representation with a deep embedding of the
Hume expression layer within the Isabelle theorem prover [26]. We believe this
representation will be ideal for representing the full box calculus.

7 Conclusion

We have shown that it is possible to achieve good multicore parallelisation of
Hume programs through systematic transformation guided closely by the box
calculus. The underlying implementation offers seamless parallelism without fur-
ther programmer intervention.

A major objective is to ensure that all boxes have roughly the same pro-
cessing cost. In our example, this was straightforward as we applied a uniform,
data directed, horizontal partition to a regular linear algorithm. For general al-
gorithms, ensuring box balance is likely to require considerably more ingenuity.



However, given the presence of robust models and analyses for space and
WCET, Hume is well placed to support transformation by cost where applying
a rule to a construct has a known effect on the construct’s, and hence the whole
program’s, resource requirements. In the longer term, we would like to explore
how the box calculus may be augmented with cost judgements, to underpin the
integration of Hume cost technology into a computer assisted program transfor-
mation IDE.
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