
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1898

Resource analyses for parallel and distributed coordination

P. W. Trinder 1,*,†, M. I. Cole 2, K. Hammond 3, H-W. Loidl 1 and G. J. Michaelson 1

1School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, UK
2School of Informatics, The University of Edinburgh, 10 Crichton Street, Edinburgh EH8 9AB, UK

3School of Computer Science, University of St. Andrews, St. Andrews, Fife KY16 9SX, UK

SUMMARY

Predicting the resources that are consumed by a program component is crucial for many parallel or dis-
tributed systems. In this context, the main resources of interest are execution time, space and communica-
tion/synchronisation costs. There has recently been significant progress in resource analysis technology,
notably in type-based analyses and abstract interpretation. At the same time, parallel and distributed
computing are becoming increasingly important.

This paper synthesises progress in both areas to survey the state-of-the-art in resource analysis for
parallel and distributed computing. We articulate a general model of resource analysis and describe
parallel/distributed resource analysis together with the relationship to sequential analysis. We use three
parallel or distributed resource analyses as examples and provide a critical evaluation of the analyses. We
investigate why the chosen analysis is effective for each application and identify general principles governing
why the resource analysis is effective. Copyright © 2011 John Wiley & Sons, Ltd.

Received 8 March 2011; Revised 30 September 2011; Accepted 3 October 2011

KEY WORDS: resource analysis; cost models; parallelism; distributed systems

1. INTRODUCTION

Accurately predicting the resources that will be consumed during program execution is important
to a number of areas, including real-time systems, databases and parallelism. Although resource
usage may be predicted in a black-box way, for example by profiling, this gives little information
about worst-case bounds or untypical cases. It also fails to exploit information that could be derived
by inspecting the program source and provides few, if any, guarantees about future behaviours.
Early work on source-level resource analysis includes that of Cohen and Zuckerman, who trans-
lated Algol-60 programs into a symbolic form that conveyed cost information [1]; Wegbreit, who
applied a similar approach to recursive Lisp programs in his metric system [2]; Ramshaw [3] and
Wegbreit [4], who considered formal verification of cost specifications; and Hickey and Cohen [5],
who focused on the theoretical foundations of a high-performance compiler that was capable of
automatically generating functions describing average-case execution time. Notable early systems
for automated complexity analysis are Complexa [6] and ƒ‡� [7], which built on the metric sys-
tem and extended it to cover average-case complexity analysis of algorithms. Recent theoretical
advances include the development of powerful and flexible type-based approaches (e.g. [8–12])
that are capable of determining execution costs without expensive, data-dependent and possibly
nonterminating symbolic execution.

Resource analysis has recently increased in importance because of the availability of improved
technologies, such as type-and-effect systems [13, 14], combined with increasing real-world

*Correspondence to: P. W. Trinder, School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton,
Edinburgh, UK.

†E-mail: P.W.Trinder@hw.ac.uk

Copyright © 2011 John Wiley & Sons, Ltd.

P. W. TRINDER ET AL.

emphasis on resource-constrained computing in areas such as embedded systems and cloud com-
puting. Practical uses of resource analysis include providing guarantees for safety-critical systems,
ensuring QoS for networks or embedded systems or providing information that can be used to make
sensible decisions about the allocation of resources in for example database systems. Large-scale
uses include the ASTREE system, which has been used to analyse the worst-case execution time
(WCET) of the flight-control software for the Airbus A380 [15], and the use of the SPEED symbolic
complexity analyser to analyse much of the .NET code base [16].

This paper surveys one particularly important application area, namely parallel or distributed
computing. Parallel systems are gaining importance with the expansion of multicore and manycore
machines. Similarly, distributed systems are gaining in importance with the widespread adoption
of internet and cloud technologies. Allocating resources effectively is important to achieving good
performance as the number of cores rises in current and future architectures.

A number of different resources are of interest for parallel and distributed systems, for example
execution time for parallelism or power consumption in a network of low power devices such as
sensors. Moreover, the resource information may be used for a number of purposes; for example,
execution time predictions can be used to optimise the performance of parallel programs or to aid
load management or scheduling within distributed systems. In summary, effective resource analyses
provide information that enables better coordination of parallel and distributed computation.

1.1. Contributions made by the paper

We start by motivating resource prediction for parallel/distributed systems (Section 2). We then
present and illustrate an informal general model of resource analysis (Section 3). The model cod-
ifies folklore, that is ‘what is usually done’. It is, however, general with regard to the resources
analysed and the bounds asserted. That is, the resources of interest may include execution time,
memory usage, file handles or any other limited and quantifiable resource. Similarly, predictions
may, for example, be formally verifiable worst-case bounds, probabilistic measures of worst-case or
average-case behaviours, or simple estimations of resource usage.

The paper then makes the following contributions:

� It articulates the relationship between parallel/distributed analysis and sequential resource anal-
ysis. Section 4 describes how parallel/distributed resource analyses relate to sequential analyses
and illustrates the relationship with simple parallel analyses. We show that parallel resource
analysis is an instance of our general resource analysis model. We show how some paral-
lel/distributed analyses take a two-level approach where the parallel/distributed analysis utilises
the results of a sequential analysis and discuss the benefits of structuring parallel/distributed
analyses in this way.
� It provides a recent survey of resource analyses for parallel and distributed comput-

ing. Sections 6–8 discuss the components of the general resource analysis model for the
parallel/distributed context. Section 6 classifies cost models that underpin parallel/distributed
resource analysis. The cost models are parameterised with execution costs on the target imple-
mentation, and Section 7 discusses how these costs can be obtained. Section 8 discusses the
techniques that can be used to construct resource analyses, for example type inference or
abstract interpretation. The survey is representative rather than exhaustive.
� It gives a critical evaluation of three representative parallel/distributed resource analyses. For

each application in Section 9, we present the key elements of the resource analysis model,
namely the cost model, the implementation model and the analysis. We present results showing
that each analysis is effective, that is that the analysis improves the coordination. The applica-
tions utilise a range of cost models and analyses, and use the resource information for a range
of coordination purposes including resource-safe execution, optimising parallel execution and
enabling mobility.
� It identifies some general principles for effective parallel/distributed resource analysis.

Section 9 investigates why the chosen analysis proves effective for each application, and
Section 10.1 identifies principles governing when a resource analysis is effective.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

The paper extends our previous work [17] by (i) addressing a general audience, (ii) introducing
a general model of resource analysis, (iii) relating parallel/distributed resource analysis to sequen-
tial analysis, and (iv) providing a critical evaluation of three parallel/distributed resource analysis
applications.

2. THE NEED FOR RESOURCE PREDICTIONS

This section motivates why resource predictions are necessary for parallel and distributed systems. A
number of resources are of interest for parallel and distributed systems, for example execution time
for parallelism or memory consumption in a network of embedded devices with limited random
access memory. Of these, execution time is most commonly estimated, although architecture trends
are making power consumption increasingly important. The resource information may be used for
a number of purposes; for example, execution time predictions can be used to optimise the perfor-
mance of parallel programs, to improve load management or scheduling in distributed systems, or
to certify the maximum resources consumption by mobile code. We shall see examples of resource
predictions being used for a variety of such purposes in Section 9.

As a concrete illustration, we consider the use of execution time predictions to optimise the
performance of parallel programs.

2.1. Assessing potential parallelism

Before developing a parallel program, it is wise to assess whether good parallel performance can
be achieved. We know that our ability to reduce the execution time using multiple processors is
fundamentally limited and also that this limitation depends on the execution times of components of
the program. If we suppose that the total sequential time T for the program comprises an inherently
sequential portion S (e.g. to acquire initial data and integrate final results) and a potentially parallel
portion P (e.g. to compute independent components of the final results), then from Amdahl’s Law
[18], the best parallel speedup achievable with N processors is as follows:

T D S CP

speedupD T=.S CP=N/

So speedup is bound by the inherently sequential portion and depends on the near-optimal deploy-
ment of the processors to share the potentially parallel portion. Thus, two important objectives in
parallel programming are to minimise the inherently sequential portion of a program and to ensure
that each of the N processors carries out a very similar proportion of the parallel portion of the
program.

We must also communicate data and results between the processors and coordinate their activities,
and doing so introduces time overheads that must be accounted for. These overheads may be either
inherently sequential (e.g. to distribute initial data and receive final results) or potentially parallel
(e.g. to transmit intermediate information between subsets of processors).

Hence, key issues for assessing potential parallelism are as follows:

� Which portions of a program are inherently sequential and which are potentially parallel?
� What are the sequential execution times of these portions?
� Which communication and coordination construct to introduce to best enable parallelism?
� What additional time overheads do these constructs bear?

2.2. Parallel programming

Despite the existence of mature methodologies for parallel programming (e.g. [19]), combinations
of folklore, code inspection and profiling seem to prevail in common use. The folklore holds, for
example, that

� communication is more costly than processing;
� parallelism is most beneficial where substantial activities may be carried out with minimal

communication;

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

� activities become more substantial and require less communication when they are grouped; and
� repeated activities that can be separated into independent subactivities are good loci of potential

parallelism;

That is, effort focuses on simultaneously maximising task granularity while minimising communica-
tion. Although communication costs are less on shared-memory systems, there is considerable evi-
dence that excessive use of shared memory has a serious impact on performance. A typical approach
to parallelising a sequential program is therefore as follows, and established methodologies have
similar stages.

� Inspect the program and identify the top level computations, often loops.
� Profile the program and identify the most costly components.
� Hope that inspection and profiling coincide in identifying repeated, independent, high-cost

components that can be distributed across multiple processors.

The next stage is to build a parallel version of the program by using appropriate constructs for com-
munication and coordination depending on the target architecture. The parallel program is then pro-
filed on a target platform. Often, the initial performance is disappointing, and a tuning cycle ensues
of regrouping parallel activities to maximise task granularity while minimising communication and
of reprofiling to establish whether acceptable performance has been reached.

2.3. Obtaining execution time predictions

Assessing how much potential parallelism there is in a program assumes that we have good mecha-
nisms for determining how long software components take to execute sequentially. In our discussion
of naïve parallel programming, we have referred to profiling as a way to determine this information,
that is acquiring time measurements from an executing program. However, profiling has a number
of deficiencies:

� It is data dependent – measurements usually cannot be generalised to cover all cases of interest.
� It cannot take account of rarely executed control flows that may have significant impacts on

WCETs.
� It is expensive to obtain a significant body of profiling information, both in terms of

computational time and often in terms of labour.
� The information that is obtained is platform specific and does not easily extrapolate to other

similar systems.
� Profiling requires access to the execution platform and to a range of measurement tools, which

is not always possible in for example embedded or cloud computing systems.

Although profiling can deliver basic information, it therefore has a number of limitations in the
general case. What is needed in many situations is a way of cheaply and automatically obtaining
information about the execution of software components before they are deployed in a specific sit-
uation and to do this in a way that covers all possible program execution paths. That is, we need
a reliable analysis of the time (and other resources) used by the components of the program. This
analysis could be either a static (or compile-time) analysis working automatically on the program
source or a design-time analysis that is carried out manually by a programmer or algorithm designer.

3. AN INTRODUCTION TO RESOURCE ANALYSIS

This section introduces resource analysis, giving a general model of resource analysis, and an exam-
ple sequential analysis. The aim of resource analysis is to take a program component and apply an
analysis that

� will give an accurate picture of what the component costs on some implementation platform,
� takes considerably less time and effort than profiling the component when it is executing on the

platform and
� can be straightforwardly applied to other implementation platforms.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Realisation

Realise

Execute

AnalysisUsesInforms

Abstracts Implementation

Agreement

Produces

Informs

Model

Predicted
Resource

Cost Model

ConsumptionConsumption
Resource
Actual

Input

Program

Input

e.g. Compiler

Implementation
 e.g. hardware

Figure 1. A general model of resource analysis.

3.1. A general model of resource analysis

Figure 1 depicts a general model of resource prediction. The left hand side of the model depicts
classical program realisation: a program in some language is taken as input by some realisation, for
example by a compiler or interpreter. The program is realised for some specific implementation; for
example, a compiler may generate machine code for a specific architecture, or an interpreter may
execute on a specific architecture. When the program realisation is executed on that architecture,
it will exhibit resource consumption. That is, it will consume a certain amount of time, memory,
power and other resources, and these can (usually) be measured.

The remainder of the diagram describes the resource analysis, together with its relationship to the
program realisation components. The analysis has the following components and information flows.

An implementation model specifies the resource consumption of a specific implementation. If
time is the resource of interest, the implementation model might record the time to execute each
instruction supported by the machine. For space, it might be the space consumed by each instruc-
tion. The model may be very accurate (e.g. measuring time as a precise number of machine cycles)
or very abstract (e.g. measuring time as a count of function calls).

Cost models. In model theory, a model for a formal language is an interpretation, that is assign-
ments to variables that make true some property of some set of sentences. A cost model for a
programming language has a strongly related but slightly different sense of characterising some cost
for an arbitrary program for arbitrary data. A good cost model thus abstracts from the full details
of the executable program and operating environment, while capturing enough of their essential
characteristics to enable reliable predictions of observable behaviours.

The cost model is parameterised by the implementation model to reflect resource costs on the
chosen implementation. It may also be informed by aspects of the language realisation, for example
information about the compiler optimisations used.

Resource analysis. It is important to distinguish between a cost model, which is an abstract charac-
terisation of program costs or resource usage, and a resource analysis, which is a concrete procedure
for determining the cost of a specific program by using some cost model. As discussed in Section 8,

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

an analysis may use one of a variety of techniques, including type inference, abstract interpretation
or abstract execution, to build a resource prediction from a cost model.

The output of the analysis is a predicted resource consumption that should agree, under some
quality conditions, with the actual resource consumption of the program realised on the given
implementation. Clearly in a worst-case analysis, it is essential that the actual consumption does
not exceed the predicted consumption, but more commonly the similarity between the predicted and
actual consumption is measured (e.g. the prediction is within 20% for all programs measured).

3.2. Example sequential resource analysis

We illustrate our general resource analysis model by considering a very simple sequential resource
analysis. In Section 4.2, we will show how the model we have built here can be extended to cover
the costs of parallel execution.

At its simplest, a model and analysis involve counting how often particular source-level constructs
occur in a program execution and then multiplying these counts by some measure. For example, con-
sider the toy expression language A with the abstract syntax shown in Figure 2. The denotational
semantics for this language is shown in Figure 3, where s maps variables to values, and value returns
integer values. The implementation of this language uses the simple stack machine whose pseudo-
code instructions are shown in Figure 4. Programs in this language can be realised as stack machine
instructions by following the compilation rules in Figure 5. For example, we have that

compa ŒaD 3�.bC 1/� < a 7! 1Ib 7! 2 >)
PUSHI 3I PUSHM 2I PUSHI 1I ADDI
MULTI POPM 1

We may now devise a cost model that counts how often each distinct machine instruction is gen-
erated, as shown in Figure 6. This cost model is informed by some model of the implementation.
In this case, INSTc is the abstract cost of machine instruction INST on the implementation plat-
form for the resource that we are interested in. In general, the resource might be any monotonically

Figure 2. A simple arithmetic language, A.

Figure 3. Denotational semantics for A.

Figure 4. Implementation of A: Stack machine instructions.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Figure 5. Realisation of A: compilation rules.

Figure 6. A simple arithmetic language, A.

increasing cost such as time, dynamic memory allocation or power consumption.‡ Such abstract
costs may be considered directly to explore the relative resource consumption of program compo-
nents. Alternatively, given the actual costs for each instruction on some implementation platform
(e.g. derived by profiling or from the manufacturer’s specifications), we may calculate a predicted
cost for a program.

For A, the obvious analysis is simple abstract execution of the program by using the cost model,
that is an abstract interpretation [20] or symbolic execution. We note that the analysis is of linear
complexity in the number of nodes in a program’s abstract syntax tree and that it will always termi-
nate because our source language has no iteration or recursion. The cost for our running example
can therefore be calculated as follows:

costa ŒaD 3� ? .bC 1/�)

2�PUSHIc C PUSHMc C ADDc C MULTc C POPMc

This section has shown how to construct a simple source-level analysis for determining the
resource usage of arithmetic expressions. Our example shows how a language’s operational seman-
tics and compiler realisation can guide the construction of a simple abstract interpretation of the
abstract syntax forms for our expression language. However, this analysis deals only with sequential
execution costs.

4. PARALLEL/DISTRIBUTED RESOURCE ANALYSIS

This section introduces parallel/distributed resource analysis, relates it to sequential resource anal-
ysis and gives an example parallel analysis. For parallel/distributed resource analysis, coordination
costs are a key concern, for example the costs of communicating and synchronising between
processes.

We first observe that parallel and distributed resource analyses are instances of the general
resource analysis model in Figure 1. For concreteness, let us consider a parallel resource analysis
as depicted in Figure 7. The information flows in the parallel model are the same as in the general
model; for example, a program is realised on some implementation and consumes resources when
executed.

‡More complex operations, such as stack usage, require different combining operators to the addition we have used here

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

Realisation

Realise

Execute

UsesInforms

Abstracts

Agreement

Produces

Informs

Model

Predicted
Resource
Consumption

Cost Model

Parallel

Parallel Impl.

Consumption
Resource
Actual Parallel Par.

Parallel
Implementation
e.g. Multicore

Resource
Analysis

Parallel
Program

tupnItupnI

e.g. Compiler

Figure 7. A model of parallel resource analysis.

Crucially however, the realisation, implementation, implementation model and cost model all
reflect the parallel coordination aspects. For example, the realisation might compile to multithreaded
code, and the implementation might support 128 cores with shared memory. The implementation
model might reflect both the number of cores and the costs of creating and synchronising threads
on the specific platform.§ The parallel cost model is parameterised with costs for both sequential
program components and for coordination aspects such as communication and synchronisation. In
general, these parameters may be obtained by abstraction, profiling, measurement or by resource
analysis, as detailed in Section 7.

In contrast to the other components of the model, the analysis component of a parallel analysis
typically uses standard techniques to construct the parallel resource consumption prediction. So the
analysis might be constructed by abstract interpretation.

4.1. Structuring parallel resource analyses

For the purposes of exposition, let us develop a parallel resource analysis informed by the sequen-
tial analysis from the previous section. Although we could simply extend A and its semantics, with
parallel constructs, it is generally better to separate the costs of parallel coordination from those for
sequential execution. In such an approach, the parallel/distributed resource analysis is parameterised
by information from a sequential resource analysis as shown in Figure 8: we have two instances
of the resource analysis model in Figure 1. The parallel implementation comprises a number of
sequential components, so the parallel implementation and implementation model are informed by
the sequential implementation and implementation model, respectively. Similarly, the parallel cost
model coordinates a number of sequential components and hence is informed by the sequential cost
model.

The advantages of separating sequential and parallel/distributed analyses is that alternative
sequential cost models and analyses can be used, improving the generality of the models and anal-
yses, as well as allowing the reuse of sequential cost models and analyses. It also makes it possible

§denoted FORKc in the example analysis in the following section.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

parallel cost
model

parallel resource
analysis

parallel implementation
model

Parallel Resource Analysis

computational
cost model

sequential
resource
analysis

implementation
model

Sequential Resource Analysis

sequential
implementation

resource
consumption

parallel
implementation

resource
consumption

Figure 8. A two-level model: a parallel resource analyses informed by a sequential analysis.

to reason independently about the costs of parallelism, leaving the sequential costs to be supplied
through appropriate parameters in the models and analyses.

4.2. Example parallel resource analysis

We define the simple parallel language, P , that is shown in Figure 9. Parallelism is introduced by
the || construct, where p||q executes p in parallel with q. Similarly, sequential execution is intro-
duced by the ; construct, where p;q executes first p and then q sequentially. The two independent
states that result from executing p and q in parallel are merged using the ˚ operator, whose pre-
cise semantics we will leave undefined but which interleave the state changes made by p and q
(Figure 10).

Assignments in our sequential arithmetic language A can be directly embedded in P . We assume
that memory is shared among all the processors but that each processor will have its own stack
pointer and stack, initially empty. We therefore modify each of the stack machine operations to
refer to the current processor p as shown in Figure 11. It is also necessary to introduce instructions
for parallelism. Here, we use one very simple instruction, FORK, which takes two code arguments,

Figure 9. A simple parallel language, P .

Figure 10. Denotational semantics for P .

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

Figure 11. Implementation of P : parallel stack machine instructions.

Figure 12. Implementation of P : fork instruction.

Figure 13. Realisation: compilation rules for P .

Figure 14. Parallel cost model I for P : execution time.

Figure 15. Parallel cost model II for P : processors needed.

task1 and task2, and executes task1 in parallel with task2. As shown in Figure 12, this is imple-
mented using two primitives: the new thread primitive creates a new thread t and executes the code
for that thread on an available processor; the corresponding join primitive waits for a thread t to
terminate. The corresponding compilation rules are shown in Figure 13.

We can now build the parallel cost model shown in Figure 14, which calculates the WCET for
a program in P assuming that there are sufficient processors for all tasks created. As discussed in
Section 4.1, the parallel cost model builds essentially on our sequential cost model for A, costa. In
our fork/join model, and with sufficient processors, the worst-case time for parallel execution is the
maximum time for executing either task; the time for executing a sequential statement is just the
sum of the times for the two substatements. Note that our implementation model now contains an
additional coordination parameter, namely the cost of forking a new task, FORKc . The value of this
parameter might be obtained by measurement, estimation or from a detailed model as discussed in
Section 7.

As for the sequential analysis of A, the obvious analysis for P is abstract interpretation. So for
example parallel execution time can be predicted as follows.

costp ŒaD 3 � .bC 1/ jj cD 5�)

max .2�PUSHIc C PUSHMc C ADDc C MULTc C POPMc ,

PUSHIc C POPMc/C FORKc

It is easy to construct alternative resource analyses. For example, the cost model in Figure 15
calculates the maximum number of processors needed to achieve maximal parallelism in a P
program.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

4.3. Effectiveness of a parallel/distributed resource analysis

As we have seen, for a resource analysis to be effective, it must have some a priori information about
the language realisation. It must also have some a priori information about the target implementation
platform. The latter may be obtained in a black-box way by measurement, profiling, abstract inter-
pretation, and so on of primitive program constructs on the target platform. That is, constructing a
good resource usage model that covers all the issues that may impact performance (whether derived
from hardware, software or the operating system) is crucial to obtaining a good and useful resource
analysis. Obviously, the analysis as a whole will only be effective if this basic information is good
quality.

Let us return to the challenge of constructing an effective parallel program, assuming we have
an effective sequential resource analysis. We can analyse the components of a program to identify
which might be suitable for multiprocessor implementation and apply Amdahl’s Law to costs to
check whether parallel execution might bring worthwhile benefit. However, this is only half the
story. As discussed previously, if we introduce new communication and coordination constructs to
enable multiprocessing, then we must also account for their costs.

The remainder of this paper is centrally concerned with different techniques for assessing paral-
lel/distributed communication and coordination costs, under the assumption that adequate models
and analyses are available for sequential program costs. As we shall see, such techniques depend
strongly on the communication and coordination abstractions used in both programming languages
and runtime systems and vary substantially in the degree of detail that they consider and in the
precision that they offer.

5. CONSTRAINED PARALLEL/DISTRIBUTED PROGRAMMING PARADIGMS

Many parallel/distributed programming paradigms are constrained, typically to simplify program-
ming. This section briefly outlines why and how parallel/distributed programming paradigms are
constrained and surveys some important constrained paradigms that are covered in subsequent
sections.

As we have seen in Section 2, parallel/distributed programming can be difficult because in addi-
tion to solving the challenges of specifying a correct and efficient algorithm, the programmer must
also specify the effective coordination of the program components. A number of programming
paradigms exist that attempt to ease the challenges of parallel/distributed software engineering by
constraining the coordination model but, crucially, not the computation model, so the paradigms
remain Turing complete.

Many of these constrained parallel/distributed programming models simultaneously make the
resource analysis of programs more tractable. For example, the programming models may constrain
the programmer to use specific coordination patterns, such as algorithmic skeletons, or the program-
mer to use a single coordination pattern, such as the bulk synchronous parallel (BSP) model. In both
cases, this guides the choice of specific cost models, as we will see in the following section.

5.1. Bulk synchronous parallel

The BSP model constrains the programmer to a single coordination pattern that formulates compu-
tations as a series of supersteps [21]. A BSP computer comprises a number of parallel processors
connected by a communication network. Each processor has a local memory and may follow its
own thread of computation. Each superstep in the BSP computation comprises three stages:

� Independent concurrent computation on each processor using only local values.
� Communication in which each processor exchanges data with every other processor.
� Barrier synchronisation where all processes wait until all other processes have finished their

communication actions.

We discuss a BSP cost model in Section 6.5.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

5.2. The Bird–Meertens Formalism

The Bird–Meertens Formalism (BMF) [22] constrains the programmer to use a fixed set of higher-
order functions (HOFs). BMF is a calculus for deriving functional programs from specifications,
with an emphasis on the use of bulk operations across collective data structures such as arrays,
lists and trees. Although independent of any explicit reference to parallelism, many of its opera-
tions clearly admit potentially efficient parallel implementation. We discuss BMF cost models in
Section 6.6.

5.3. Parallel and distributed skeletons

Skeletons constrain the programmer to use a fixed set of commonly occurring coordination pat-
terns [23]. The patterns are abstracted as library or language constructs that implement the coordi-
nation. More precisely the skeletons are HOFs¶ that the application programmer instantiates with
sequential code. For example, a parallel map function will apply any sequential function to every
element of a collection in parallel. The programmer’s task is greatly simplified as they do not need
to specify the coordination behaviour required.

The skeleton model has been very influential, appearing in parallel standards such MPI and
OpenMP [24, 25], and distributed skeletons such as Google’s MapReduce [26] are core elements
of cloud computing. We discuss cost models for skeleton-based approaches in Section 6.7.

5.4. Workflow languages

Workflow description languages such as Business Process Execution Language [27] or Pegasus
(planning for execution in grids) [28] constrain the programmer to use a small set of process struc-
turing constructs such as sequencing and parallelism. Whereas the computations coordinated in the
workflow are almost invariably expressed in a Turing complete language, the process structuring
constructs provided by most workflow languages are not Turing complete; for example, they may
lack iteration.

6. PARALLEL AND DISTRIBUTED COST MODELS

Cost models for parallel and distributed execution range from theoretical models that are aimed at
studying algorithmic complexity, such as the parallel random access machine (PRAM) model, down
to highly concrete models that may help with static task mapping or dynamic scheduling decisions.
In this section, we survey a number of well-known and representative cost models that are used in
the analysis methodologies that we will present in Section 8. A more detailed survey of parallel cost
models is given in [29].

As shown in Figure 1, cost models for parallel or distributed execution are generally structured as
two-level models: the implementation model determines execution costs for individual operations;
the high-level model then synthesises the overall system costs from the implementation level costs,
given some parallel execution model for the system as a whole. As we shall see in Section 9, classi-
cal sequential cost models can also be useful here, for example in using the predicted execution time
for tasks to inform scheduling decisions. Clearly, where a high-level model is built on a low-level
one in this way, any inaccuracies in the low-level model will be reflected in, and perhaps magnified
by, the high-level model. It is therefore vitally important that the low-level cost model is sufficiently
accurate to allow good costs to determined by the high-level model and that the high-level model
takes into account any vagaries or deficiencies of the low-level model that could be magnified in the
final combined analysis.

¶That is, functions that take other functions as arguments, or return functions as their result, effectively comprising
templates for generating code.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

6.1. The parallel random access machine model

The PRAM model [30] is a highly abstract model of parallel computation. It is widely used within
the parallel algorithms and complexity research community as a standard theoretical model of a
parallel machine, occupying a status similar to that of the Turing machine. By abstracting over
primitive PRAM operations, it is possible to derive a standard measure of the parallel complexity of
a program. The resulting model is a very general one. In fact, it has even been suggested that PRAM
should form a general model of computation, both sequential and parallel [31].

In its simplest form, the PRAM model enforces stepwise synchronous, but otherwise unrestricted,
access to a shared memory by a set of conventional sequential processors. At each synchronous step,
every processor performs one operation from a simple, conventional instruction set. Each such step
is costed at unit time, whatever the operation, and regardless of which shared-memory locations are
accessed.

For example, given the problem of summing an array of n integers on a p-processor machine, a
simple algorithm A might first sum a distinct subarray of size n=p items on each of the p proces-
sors and then use a single processor to sum all the p partial results from the first phase. An informal
PRAM cost analysis would capture the cost of this algorithm as follows:

TA .n/D‚

�
n

p
C p

�

A more sophisticated algorithm B might instead sum the partial results in a parallel tree-like struc-
ture (usually known as ‘parallel reduction’). An informal PRAM analysis would capture this cost
as follows:

TB .n/D‚

�
n

p
C logp

�

These analyses clearly show that although algorithm B is asymptotically faster than algorithm A, as
intended, this is only true for large p.

Although the basic PRAM model provides a durable and sound basis for at least the initial phases
of parallel algorithm design, it ignores a number of important issues such as contention, the memory
hierarchy, the underlying communication infrastructure and all internal processor issues. Several
variants of the basic PRAM model that aim to address these and other pragmatic cost issues have
been introduced. For example, the exclusive-read-exclusive-write PRAM model disallows steps in
which any shared-memory location is accessed by more than one processor (algorithms A and
B both satisfy this requirement). In contrast, the concurrent-read-concurrent-write PRAM model
removes this restriction, with subvariants defining the required behaviour when clashes occur.

6.2. Parallel random access machine models for multicore machines

The PRAM model described previously has been one of the most influential parallel cost models.
Because it is highly idealised, for example assuming zero-cost memory access, it is a good basis for
a design-time analysis (i.e. a manual complexity analysis that is performed by the parallel algorithm
designer), where it can be used to expose the maximum parallelism in the algorithm. However,
it does not reflect many of the important costs incurred when executing the algorithm on a real
parallel machine. Several refinements of this highly abstract model have been suggested, for exam-
ple the hierarchical PRAM [32], local memory PRAM [33] and block PRAM [34] models.|| These
variants add the concepts of data locality and remote memory, with varying memory access costs,
to the basic PRAM model. Even more detailed are the Parallel Memory Hierarchy (PMH) [35] and
Parallel Hierarchical Memory [36] models, which model the entire memory hierarchy. For PMH,
the memory hierarchy is modelled as a tree, whose nodes represent memory and whose leaves rep-
resent processors. The cost of data transfer in this model is represented as the length of the path

||These are examples of bridging models, so called because they comprise a bridge between the high-level programming
model and the low-level architecture cost model. See [29] for a general framework for models of parallel computation.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

between two nodes in the tree. Parameters that characterise the (memory) nodes are the block size,
the number of blocks and the transfer time (latency) to neighbouring nodes. This design permits
modern, deep memory hierarchies to be accurately modelled.

6.3. Cost models for hierarchical parallel machines

All of these models assume the use of a shared memory, albeit with varying memory access costs. A
different class of models has been developed for dealing with distributed memory systems, as found
in clusters or clouds. In these models, a conceptual distinction is made between accessing memory
locally and transmitting data over a network. The key system characteristics that are commonly
modelled in such models include the following:

Degree of parallelism: the number of processors available.
Latency: the time between sending a message on one processor and receiving it on

another processor. In modern architectures, this usually depends on the
depth of the hierarchy.

Memory access: the cost of reading or writing to a memory location. In modern architec-
tures, this usually depends on the location in the hierarchy.

Synchronisation: the costs of synchronising a group of processors.
Bandwidth: the amount of data that can be sent within a given time interval.

One of the best known models is LogP [37], which models the costs of data transfer across a network
using the following parameters:

� L (‘latency’) – the variable amount of time that is needed for communication between two
processors.
� o (‘overhead’) – the fixed amount of time that is needed to prepare for sending or receiving

messages.
� g (‘gap’) – the minimal interval between sending two messages (this is the inverse of the

bandwidth).
� P (‘processors’) – the number of processors on the machine.

The LogP model has proven to be a good compromise between very abstract, simplifying models
such as PRAM, and very concrete and detailed models of homogeneous networked architectures.
Like the PRAM model, it is mainly used as basis for a design-time analysis. One limitation to
the LogP model is that it assumes a homogeneous architecture, where the costs of communication
are the same between all processors in a system. Although this may be true for a single cluster,
it will generally not be the case for computational grids or cloud computers. An extension of the
LogP model, HLogGP [38], has been developed that uses vectors of the LogP parameters to model
heterogeneous architectures, such as these. This model has been shown to deliver good predictions
on heterogeneous clusters.

We now use the basic LogP model to analyse the costs of our example program of computing the
sum over an array of length n on P processors, using list-structured communication. In the LogP
model, we have to account for the overhead involved in sending a message and the gap between
sending messages. We assume 0 costs for splitting the array into chunks of size dn=P e and a steps
as cost for performing an addition. In the broadcast phase of the algorithm, assuming o < g, the
root processor sends chunks of the array at step o, oCg, oC2g, : : : in the execution. The last chunk
is sent at step o C g .dn=P e � 1/. All P processors do their summations in parallel. The cost of
the summation over one chunk is c D a .dn=P e � 1/. Computation can begin at step oC L after
sending it because L steps are needed for the transmission and o steps for receiving the data. The
result of the computation is sent at step o after finishing the computation. Thus, the processors send
their results at steps 3oCLC c, 3oCLC gC c, : : : back to the root processor. The last message
arrives at 4oC2LCcCg .dn=P e � 1/ steps because it takesL steps to arrive and o steps to process.
Computing the overall sum over P partial sums takes aP steps. Thus, the total time for computing
the result, based on list-structured communication, is 4oC 2LC cC g .dn=P e � 1/C aP .

As can be seen from this example, the costs incurred by communication and coordination are
modelled more accurately compared with the simpler PRAM model. In particular, the explicit

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

parameters for the communication overhead and the gap between sending messages, representing a
limit on the bandwidth, give a more realistic picture of the execution and avoid an algorithm design
that makes excessive use of interprocessor communication.

6.4. System-oriented cost models

The implementation models that are described in Section 7 can be used to provide detailed infor-
mation about the costs of coordination operations on a given hardware. Such models are often used
in hardware design to capture the characteristics of a parallel machine and to compare idealised
performance profiles. They are less attractive as a computational model, however, because they
expose many machine-level details to the program and may therefore make it considerably more
complicated.

The role of system-oriented cost models is to capture the costs imposed by software-level sys-
tem operations, for example the costs of thread creation. In typical bridging models, all such costs
are subsumed into a small set of parameters. This simplifies the manual, design-time analysis of
algorithms. In contrast, capturing system costs in a separate system-oriented cost model provides
additional information that can be used during runtime to control the management of the parallelism.
In particular, for systems that perform automatic load balancing, where tasks are dynamically
moved between processors to equalise the load on each processor, this provides important input
to the decision about where a thread should be executed.

In terms of precision, then, system-oriented cost models form an intermediate step between archi-
tectural cost models and computational cost models. They are mainly used to construct runtime
analyses that can advise a suitably adapted runtime system. For example, they may be used to guide
one of the following dynamic resource policies:

Load distribution: this aims to spread the available parallelism evenly among all processors, with
the objective of achieving optimal utilisation of the parallel machine.

Data locality: this policy aims to keep logically related threads on the same processor to
reduce communication costs.

Scheduling: this policy decides which of the runnable threads to execute next on a given
processor.

The following example illustrates how a simple system-oriented cost model can be used to auto-
matically control the load-balancing policy for a heterogeneous architecture. A good strategy for
load balancing for tightly coupled multicore processors is to send work to a processor with the high-
est relative speed Ri D Si=Wi , where Si is the speed of processor i andWi is its current load. Thus,
work should be transferred from processor j to processor i so that

8m. m 2 f1 : : : ng , j 6Dm)
.Rm 6Ri / ^

�
k �Rj 6Ri

�
A throttling factor k is used to avoid overly aggressive work redistribution.

6.5. The bulk synchronous parallel cost model

The BSP model outlined in Section 5.1 occupies a more concrete position in the cost model spectrum
than the PRAM models described previously. Like the basic PRAM model, BSP uses a synchronous
stepwise model of parallel execution. In contrast to the basic PRAM model, however, the BSP model
recognises that synchronisation is not free, that sharing of data involves communication (whether
explicitly or implicitly) and that the cost of this communication, both in absolute terms and rela-
tive to that of processor-local computation, can be highly machine dependent. It also generalises
the sequential computations to be any required computation rather than a small set of primitive
operations.

By restricting the programming model to a sequence of supersteps (Section 5.1), it is possible to
construct a relatively simple (and accurate) cost model for BSP computations because the cost of a
system can be composed from the cost of each superstep.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

The BSP cost model has two parts: one to estimate the cost of a superstep and another to estimate
the cost of the program as the sum of the costs of the supersteps. The cost of a superstep is the cost
of the longest running local computation, plus the largest cost of communication between the pro-
cesses, plus the cost of the barrier synchronisation. The costs are computed in terms of three abstract
parameters that respectively model the number of processors p, the cost of machine-wide synchro-
nisation L and g, a measure of the communication network’s ability to deliver sets of point-to-point
messages, with the latter two normalised to the speed of simple local computations.

For example, the array summing algorithms, translated for BSP, would have asymptotic run-
times of

TA.n/D‚

�
n

p
C pC pgC 2L

�

where the first two terms are contributed by computation, the third term is contributed by
communication and the fourth term is contributed by the need for two supersteps, and

TB.n/D‚

�
n

p
C logpC 2g logpCL logp

�

where the first term corresponds to local computation, and the other three terms to computation,
communication and synchronisation summed across the logp supersteps of the tree-reduction
phase. This analysis clearly reveals the vulnerability of the algorithm B to architectures with
expensive synchronisation costs, that is a large L.

This constrained model of parallel computation allows BSP implementations to provide a bench-
mark suite that derives the implementation model, that is the machine-specific values for the four
BSP parameters. These can then be inserted into the abstract (architecture independent) cost derived
already for a given program to predict its true performance.

Whereas the BSP model makes no attempt to account for processor internals, the memory hier-
archy (other than indirectly through benchmarking) or, for specific communication patterns,** a
considerable literature testifies to the pragmatic success of the approach [39]. A primary limitation
is that because the cost of a superstep is governed by the worst-case cost of any local computation,
the BSP model is only suitable for computations where each superstep is fairly regular, that is where
the granularity of each local computation in a superstep is broadly the same.

6.6. The Bird–Meertens Formalism cost model

A number of authors have investigated adding parallel cost analyses to the BMF-inspired program-
ming models that were outlined in Section 5.2. Two examples are described in the following.

BMF-PRAM: In [40], Cai and Skillicorn present an informal PRAM-based cost model for BMF
across list-structured data. Each operation is provided with a cost, parameterised by the costs of the
applied operations (e.g. the element-wise cost of an operation to be mapped across all elements of
a list) and data structure sizes, and rules are provided for composing costs across sequential and
concurrent compositions. The paper concludes with a sample program derivation for the maximum
segment sum problem. In conventional BMF program-calculation style, an initially ‘obviously’ cor-
rect but inefficient specification is transformed by the programmer into a much more efficient final
form. For our array summing problem from Section 6.1, algorithm A would be expressed as a map
across the partitioned input list, followed by a sequential second phase (perhaps concealed as a
further degenerate map across a list with only one member, itself the list of partial sums). Analy-
sis would return the result described in Section 6.1, being the sum of the costs of the two phases.
The cost of the first phase would emerge from analysis of the mapped function (summing a sub-
list) and the generic cost of a parallel map, being the product of the cost of one instantiation of the
mapped function (here n=p) and the number of such calls assigned to each processor (here one).

**Indeed, classical BSP implementations rely on randomisation to deliberately obliterate patterns in the interests of
predictability.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Similarly, for algorithm B, the second phase would be expressed as a parallel reduce and thereby
analysed to cost log p times the cost of the reduction operator (here addition, therefore costing unit
PRAM time).

Similarly, in [41], Jay et al. build a formal cost calculus for a small BMF-like language using
the PRAM model as the underlying cost model. For implementation to be aided, the language is
further constrained to be shapely, meaning that the size of intermediate bulk data structures can be
statically inferred from the size of inputs. The approach is demonstrated by automated application
to simple matrix–vector operations. These approaches can be characterised as being of relatively
low accuracy (a property inherited from their PRAM foundation), offering a quite rich, although
structurally constrained source language, being entirely static in nature and with varying degrees of
formality and support.

BMF-BSP: Building on the seminal work described previously, a number of authors have sought
to inject more realism into the costing of BMF-inspired parallel programming frameworks by sub-
stituting the BSP model for the PRAM model [41, 42]. In particular, [42] defines and implements
a BMF-BSP calculus and compares the accuracy of its predictions with the runtime of equivalent
(but hand-translated) BSP programs. With the utilisation of maximum segment as a case study, the
predictions exhibit good accuracy and would lead to the correct decision at each stage of the pro-
gram derivation. For our array summing problem, the analysis would return a concrete prediction,
composed similarly to the discussion in 6.5 but embedding concrete BSP cost values for the chosen
architecture. Meanwhile, in a more informal setting reflecting the approach of [40], Bischof et al.
[43] report on a BSP-based, extended BMF derivation of a program for the solution of tridiagonal
systems of linear equations. Once again, good correlation between (hand-generated) predictions
and real implementation is reported, with no more than 12% error across a range of problem sizes.
These developments can be characterised as offering enhanced accuracy, while retaining similarly
structured models and support. As a by-product of the use of BSP, analyses can now be made spe-
cific to the target architecture once they are instantiated with the standard BSP constants for that
architecture.

6.7. Skeletons

The skeleton-based approach to parallel programming outlined in Section 5.3 advocates that com-
monly occurring patterns of parallel/distributed computation and interaction should be abstracted as
library or language constructs. Several authors have sought to associate cost models to algorithmic
skeletons and to use these either explicitly or implicitly to guide the development and implemen-
tation of parallel programs. Few authors, if any, have considered the more complex issue of cost
models for distributed skeletons.

For example, on the basis of a simple model of message passing costs, Hammond et al. [44] use
metaprogramming to build cost equations for a variety of skeleton implementations into a skele-
ton library for the parallel functional language Eden. This approach allows the most appropriate
parallel implementation to be chosen at compile-time given instantiation of some target machine-
specific parameters. The paper shows how these parameters can be used to discriminate between
four possible parallel variants of a farm skeleton for a Mandelbrot visualisation problem.

Meanwhile, Gava [45] describes an attempt to embed the BSP model directly into the functional
programming language ML. At the level of parallelism, the programming model is thus constrained
to follow the structure of a BSP superstep (a relatively loose skeleton), whereas computation within
a superstep is otherwise unconstrained. Analysis is informal, in the conventional BSP style, but the
language itself has a robust parallel and distributed implementation. A reported implementation of
an n-body solver once again demonstrates close correlation between predicted and actual execution
times.

Finally, the approach proposed by Yaikhom et al. [46] presents the programmer with imperative
skeletons, each with an associated parallel cost model. The models are defined in the performance-
enhanced process algebra [47] and are parameterised by a small number of constants that can be
derived by running benchmark code fragments. As in [44], models of competing implementation

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

strategies are evaluated, and the best is then selected. In a novel extension, designed to cater for sys-
tems in which architectural performance characteristics may vary dynamically, the chosen model
is periodically validated against the actual runtime performance. Where a significant discrepancy is
found, the computation can be halted, re-evaluated and rescheduled.

Consider again the problem of summing an array of n integers on p processors. The idealised
data-parallel skeleton is as follows:

void FARM(int p, int work(int *,int),
int *input,int n,int *output)

where p is the number of processors, work is a worker function taking an integer array argument
to an integer result, input is the input array of integers, n is the size of the input array and
output is the output array of length p. FARM sends a chunk of size n/p from input to each
of the p processors, which apply work to the chunk. Processor j returns an int to FARM, which
stores it in outputs at position j. Given

int sum(int *a,int n)
{ int i,s;

s=0;
for(i=0;i<n;i++)
s=s+a[i];

return s;
}

we might call

int A[N],O[N];
...
FARM(P,sum,A,N,O);
result = sum(O,P);

to sum array A of length N on P processors via array O. Suppose that for some distributed memory
parallel architectures, where every node has the same characteristics,

sendint.n/ is the cost of sending/receiving n ints
from/to farmer to/from worker;

processsum.n/ is the cost of applying sum to n ints.

Then the predicted execution time TA.n/ will be

p � sendint .n/p/C

processsum.n/p/C

p � sendint (1)C

processsum (p)

The coordination terms of such cost expressions must be simplified with care. For example, in the
equation above, message latency almost certainly means that the cost of sending two messages –
sendint .n=p/ C sendint .1/ – is very different from sending one, slightly larger message –
sendint .n=pC 1/.

7. IMPLEMENTATION MODEL

The cost models described in the previous section present an abstract, parameterised view of a paral-
lel/distributed computation. They vary in the level of detail that is being provided, as reflected in the
number of parameters that are provided by the model. As depicted in Figure 1, to use the model to
predict resource costs requires it to be parameterised by an implementation model that characterises
the target platform.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Some implementation parameters of parallel/distributed cost models are readily available as static
characteristics of the target architecture. For example, many parallel cost models are parameterised
by the number of processors available. Other parameters are harder to determine, for example the
communication latency for n units of data.

Some implementation parameters can be determined using techniques that are well established in
the sequential resource analysis community, for example execution time, or memory consumption
predictions. For completeness, we briefly discuss these techniques in the following.

Other implementation parameters are specific to parallel/distributed cost models, for example
communication costs or synchronisation costs, denoted as L and g in the BSP model. The tech-
niques for determining the values of these specialised implementation parameters are, however,
broadly similar to determining the parameters for sequential cost models, namely estimation, pro-
filing/measurement or detailed models. This section outlines these approaches and gives references
to examples of the techniques in practice in Section 9.

7.1. Estimation

One very simple approach, suitable for abstract cost models, is to abstract over most of the details
involved in the parallel execution and to only provide estimated values for the parameters. Although
not providing realistic costs, such a model can be useful in providing relative information, for exam-
ple on the degree of communication involved in an execution. This simplified realisation is used in
early execution time analyses such as [48, 49].

7.2. Measurement-based approaches

A more scientific approach, and one that more accurately determines the cost model parameters, is to
measure the parameter of interest on the target implementation. Commonly, a suite of representative
example applications are either profiled or instrumented to measure the parameter value. For exam-
ple, Section 9.1 shows how profiling is used to predict parallel execution times, and Section 9.2.3
contains examples showing how instrumented programs are used to determine the computation and
communication parameters for a distributed cost model.

For cost model parameters to be determined more easily and more reliably, some libraries pro-
vide ready made instrumentation benchmarks to be run on a new architecture, for example [21, 46].
However, both profiling and instrumented programs can suffer from the problems of accuracy and
generality that are described in Section 2.

One way of overcoming the accuracy and generality issues is described by Bonenfant et al. [50],
who have measured costs of bytecode instructions for an abstract-machine implementation. Because
well-constructed bytecodes will expose all the interesting cost parameters, and all possible execu-
tion paths can be measured for each individual bytecode, this approach allows a relatively small
number of measurements to cover the costs of all possible program executions by combining the
costs of the individual bytecodes to reflect the execution paths for a particular program. Although
issues of cache and pipeline behaviour, and so on can have an impact on the accuracy of the analysis
for more complex processor architectures, the approach is promising for abstract-machine imple-
mentations, giving a cheap yet general and fairly accurate methodology for determining program
execution costs.

7.3. Detailed models

An even more accurate prediction of a parameter value can be obtained by using a detailed model.
Detailed models may be constructed for a range of resources, for example memory or time.

For the purposes of exposition, we consider detailed hardware models that provide precise execu-
tion time predictions for low-level code. Such a model might provide timing information in terms of
machine clock cycles for each machine instruction. Constructing a hardware-level cost model typi-
cally involves examining all of the machine operations that are provided by a processor: taking the
hardware specification as input, a hardware expert defines bounds on the costs of each instruction.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

For accuracy, such models need to account for the complete state of the processor, including, for
example, its caches and pipelines.

Whereas many uses of resource analysis do not need such a precise model, this level of detail
and accuracy is required for industrial-strength WCET analyses. A detailed survey of WCET anal-
yses is given in [51]. Because these analyses are used to guarantee the safety of real-time systems,
such as flight controllers or automotive safety systems, WCET analyses must be safe in the sense
of always producing upper bounds on execution time. A secondary concern is that WCET analyses
should be as precise as possible to avoid over-specifying processor requirements, with consequent
cost implications. One example of a WCET analysis that combines these features is AbsInt’s aiT
tool that produces worst-case timing information for sequential C code fragments for a number of
processor architectures [52]. The use of aiT as part of an analysis giving execution time bounds is
outlined in Section 9.3.2.

7.4. Determining memory usage and other costs

The aforementioned discussion has focused on execution time. Generally, this is the resource
that is of most interest in parallel or distributed programming. It is also one of the most diffi-
cult resources to obtain accurate information about because time usage may be nondiscrete and
nonmonotonic, depending on detailed contextual information, including the dynamic state of the
processor, such as the caches or pipeline states. In the worst case, it may even be nondetermin-
istic! For example, two cores may impact each others execution times by executing threads that
share the same cache. The effect depends on the precise timing of the two threads and the precise
hardware implementation. In contrast, memory usage tends to be deterministic and may often be
monotonic.

Most of the models and techniques described previously can also be used to determine memory
or other resource usage costs with small modifications. For example, Hofmann and Jost originally
applied an amortised cost analysis to determine linear bounds on heap allocations and deallocation
for a first-order functional language, including recursion [10], and this work has subsequently been
extended to cover stack usage [53, 54] and WCET costs [12, 54]. This work has been exploited in
the EmBounded project funded by the European Union to produce formal cost models and analyses
for heap, stack and time usage for the Hume language (http://www.embounded.org). The amor-
tised cost approach that is used in this work aims to even out costs across different operations.
This cost can then be used to assign weights in the types of functions, and so on that reflect the
costs of different cases in the input and result data structures.†† Thus, the cost of a function or
program can be determined in terms of the sizes of its input and result data structures. A com-
plementary type-based approach can be used to infer the sizes of data structures. Chin and Khoo
[55] introduced a type inference algorithm that is capable of computing size information from high-
level program source. Vasconcelos and Hammond use a similar technique to infer sized types for
recursive, polymorphic and higher-order programs [56]. Vasconcelos’ PhD thesis [9] extends these
approaches using abstract interpretation techniques to automatically infer linear approximations of
the sizes of recursive data types and the stack and heap costs of recursive functions. By including
user-defined sizes, it is possible to infer sizes for algorithms on nonlinear data structures, such as
binary trees.

A number of authors have also recently studied analyses for heap usage in an imperative setting.
Albert et al. [57] present a fully automatic, live heap-space analysis for an object-oriented bytecode
language with a scoped-memory manager. This analysis is not restricted to a certain complexity
class but unlike the amortised cost approaches, for example, cannot express data dependencies.
Braberman et al. [58] infer polynomial bounds on the live heap usage for a Java-like language with
automatic memory management but do not cover general recursive methods. Finally, Chin et al. [59]
present a heap and stack analyses for a low-level (assembler) language with explicit (de)allocation,
which is also restricted to linear bounds.

††This is achieved by assigning different weights to each of the constructors of the data structure.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

8. CONSTRUCTING RESOURCE ANALYSES

A resource analysis uses some cost model to synthesise a prediction for the execution costs of the
given program on some implementation platform, as depicted in Figure 1. This section discusses the
techniques used to construct resource analyses in each of the three phases of a program’s lifetime:
design, compilation and execution (runtime).

This section provides only an overview of analysis methods, as they are generic and well estab-
lished. That is, rather than being specific to resource analysis, methods such as abstract interpretation
or constraint system solving are used in many domains for many different purposes. In consequence,
they are covered relatively briefly here, with citations to important papers detailing the analysis
methods.

8.1. Design-time analysis

Abstract cost models such as those based on the PRAM [30] model, and to some extent those based
on the BMF or BSP models, enable the programmer to reason about costs during program design.
Such models often require that the program is expressed using a specific structure, for example as
a sequence of supersteps for BSP analysis, or using only the BMF operators to express parallelism.
Here, the resource analysis is typically not automated, and the relatively simple cost models enable
the programmer to perform the resource analysis using pen and paper. A significant advantage of
design-time analysis is that guided by the predictions produced by the analysis, the programmer can
relatively cheaply transform the program design before committing to a specific implementation.

A commonly used asynchronous, distributed cost model is LogP [37]. It models the costs for data
transfer using the following parameters:L, the latency in sending a message between two machines;
o, the overhead of composing and sending the message; g, the minimal gap between sending two
messages (this corresponds to the inverse of the bandwidth); and P , the number of processors of
the machine. This model has proven to be a good compromise between an abstract, user-friendly
model of representing a homogeneous, flat parallel hardware and a more accurate machine model
that accounts for interprocessor communication costs.

Being used at design time and nonautomated, these models are deliberately simple. However,
for precision to be improved and in particular for more complex parallel hardware to be modelled,
several extensions to these basic models have been developed. Extensions that include a hierarchi-
cal memory structure to the basic machine model include the following: hierarchical PRAM [32],
local memory PRAM [33], PMH [35], LogP [37], HLogGP [38] and LogP-PMH [60]. All of these
models aim to provide more realistic costs of memory access in a hierarchical memory model and
typically view communication as a generalisation of memory access.

Design-time models are also used to improve the coordination of distributed applications. For
example, high-level Petri Nets have been used to describe the workflow and resource consumption
of complex Grid applications [61].

8.2. Compile-time (static) analyses

Several techniques have been developed that are capable of statically inferring information about
runtime resource requirements. The best known of these are a range of compile time analyses
exist, primarily type inference, abstract interpretation and constraint system solving. These tech-
niques may be used either individually or in some combination. Nielson et al. [62] provide detailed
coverage of these techniques.

Type-and-effect systems. Type-and-effect systems are based on the observation that type inference
can be separated into two phases: (i) collecting constraints on type/resource variables and (ii) solving
these constraints [63]. Several type-and-effect analyses have been developed that extend standard
Hindley–Milner type inference to collect constraints on resources, for example [64–67].

Typically, annotations representing the resources are attached to the types in the language. One
example is the concept of sized types [68, 69], where for example a numeric annotation to the list
type implies an upper bound on the list length. The usual type inference machinery can be used to

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

check the unannotated types and while doing so collect constraints on the annotations. For infer-
ring resource bounds, these constraints are typically (in)equalities over integer or rational numbers.
An additional phase then solves the collected constraints to produce resource bounds. This strand
of work has been extended to higher-order sized types [70] and combined with a type-and-effect
system, performing region analysis, to give resource bounds on dynamic memory consumption [71].

A concrete example of a type-based analysis is the resource analysis for the Hume language
presented in Section 9.3 and discussed in detail in [12]. In this case, however, the meaning of the
annotations, which are attached to type constructors, is different from those in sized types. They
encode an (linear) upper bound on the resource consumption, of an expression, but not a bound
on the size of a data structure. The main advantage of this different meaning of the annotations is
improved compositionality of the analysis. Furthermore, it avoids the usage of a max-plus-algebra
as underlying representation for resource bounds (with the max operator representing the cost of a
conditional) and allows the usage of a fairly simple linear program (LP) solver to find a solution
for the collected constraints. Finally, attaching all necessary resource information to a type achieves
good modularity because the resource analysis only has to examine the type, not the source code, to
extract the relevant information from a function possibly defined in a different module.

Abstract interpretation. Abstract interpretation [20] defines an abstract domain of values, which is
typically very small and which is often used to provide purely qualitative information. For example,
in strictness analysis, the interesting distinction is simply whether or not an expression is strict and
therefore safe to be evaluated before passing its result to a function. By using a richer abstract
domain, quantitative information, such as resource consumption, can also be modelled. Functions
are mapped to abstract versions of those functions that operate over the abstract domain. The anal-
ysis then proceeds by executing these abstract functions and in particular finding fixpoints for
recursive functions.

One common problem of abstract-interpretation-based analyses is the need of a finite, and in prac-
tice small, abstract domain to guarantee fast termination of the fixpoint generation. This often leads
to an extremely simple model of resources, which in turn delivers relatively inaccurate information.
This problem of domain size is even more pronounced in the presence of HOFs, which give rise to
an exponential increase in domain size. One of the main advantages of abstract interpretation is the
fact that many practically useful optimisation techniques have been developed for this process. Con-
sequently, well-developed inference engines that can be used for cost analysis exist, for example the
COSTA system [72] and the SPEED system [73]. COSTA is generic with respect to the resources
that can be analysed, produces high-quality bounds that are not restricted to a particular complexity
class and builds on a high-performance inference engine. A combination of this static approach with
a runtime, profiling approach is presented in [74]. AbsInt’s aiT tool [52], which was described pre-
viously, uses abstract interpretation over machine-code fragments derived from C program source,
synthesising hardware-level information to give guaranteed bounds on WCET. For accurate bounds
to be obtained, the analysis uses a detailed implementation model including the cache behaviour
and pipeline structure of the processor.

Section 4.2 gives two very simple examples of parallel resource analyses constructed by abstract
interpretation, as shown in Figures 14 and 15. In the first, the abstract domain is execution time,
and in the second, the abstract domain is number of processors. A more realistic example is the
autonomous mobile program (AMP) analysis outlined in Section 9.2.2 and discussed in detail in
[75]. This analysis uses abstract interpretation on a cost semantics for a subset of the Jocaml mobile
programming language.

Constraint system solving. Constraint-solving approaches are related to the type inference
approaches in that they separate the collection of (general) constraints and the solution of these
constraints into different phases. However, this process is not necessarily tied to type inference
itself. An example of this approach are several variants of control flow analyses [76, 77].

Depending on the nature of the information being extracted by the analysis, different approaches
to finding a solution can be used. In simple cases, ad hoc approaches are sufficient. In most cases,
however, finding the least fixed point over the set of constraints, as the best solution, is desirable. For

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

this iteration phase to be optimised, techniques from abstract interpretation, in exploring the domain
of (abstract) values, can be applied. In fact, most of the tuning of the analysis is happening at this
stage. As a consequence, Shiver’s control-flow analyses [76] can be seen as abstract interpretations
in a wider sense.

8.3. Runtime (dynamic) analysis

An alternative to a static resource analysis is to execute the program with some sample input and
to generate profiling information about the execution, including information on resource consump-
tion (performance profiling). This information is precise because it documents observed behaviour,
but it very much depends on the particular choice of input values. This resource information can
then be directly used in making decisions about the (parallel) execution of the program, in partic-
ular to control the granularity of the parallelism [78, 79]. If the entire process of profiling, tuning
parameters and executing the target application is automated, the approach is called auto-tuning.
This direction of research is attracting considerable attention at the moment [80–83] because it
uses powerful machine learning techniques to tackle the complexity of selecting numerous static
or dynamic parameters for one particular parallel machine. A comprehensive discussion of such
auto-tuning techniques is beyond the scope of this paper.

Purely pre facto, dynamic approaches to extracting resource information are prone to bias on the
basis of the chosen input data. Hence, they are often combined with other compile-time approaches
to provide a better coverage of a programs co-domain. Examples of such hybrid approaches for
automated complexity analysis are the ACE [84] and ACAp [85] systems. Both of these systems
take strict, functional programs as their input and produce closed-form expressions over the size of
the input arguments based on an abstract cost model. The solution to these expressions then gives
upper bounds on the execution time. Other dynamic runtime analyses are often used in conjunction
with a static resource analysis, for example to approximate the sizes of key data structures [66, 74].
In this context, they form ancillary analyses to the main resource analysis.

9. APPLICATIONS OF PARALLEL/DISTRIBUTED RESOURCE ANALYSIS

This section outlines three practical applications of resource analysis techniques in a parallel or dis-
tributed setting. For each application, we present the key elements of the resource analysis model in
Figure 7, namely the cost model, the implementation model and the analysis.

We present results showing that each analysis is effective, that is that the analysis improves
the coordination, typically improving performance. The applications utilise a range of cost mod-
els and analyses and use the resource information for a range of coordination purposes including
resource-safe execution, optimising parallel execution and enabling mobility.

We also critique each analysis, investigating why the chosen analysis proves effective for each
application.

9.1. Informing skeleton selection in PMLS

The UK parallelising ML with skeletons (PMLS) project [86] developed a fully automated par-
allelising compiler from almost full Standard ML (SML) to C with MPI. The compiler analysed
SML programs to identify HOFs that could be used as loci of potential parallelism. These were then
realised by instantiating the corresponding parallel algorithmic skeletons.

9.1.1. PMLS cost model. To determine whether the potential parallelism would deliver useful
speedup, the compiler used semantics-directed prototyping. The assumption was that there would
be a strong and consistent relationship between the language semantics and the implementations.

9.1.2. PMLS analysis. The SML structural operational semantics (SOS) [87] consists of rules of
the form assumptions/conclusions where assumptions and conclusions have the form

environment ` expression) value

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

Here, environment is a set of mappings from variables to values, expression is some SML syntactic
construct and value results from evaluating expression using the variable bindings in environment.

For example, a let expression takes the form

let dec in exp end

where dec introduces new variable/value bindings for use in exp. For example,

let xD 1 in xC 1 end

binds x to 1 and returns xC 1 that is 2.
Then the rule for a let expression is

E ` dec)E 0

E CE 0 ` exp) v

E ` let dec in exp) v end

That is, establishing the new variable/value bindings from dec in the environment E gives a new
environment E 0, evaluating the expression exp in the environment E augmented with the new envi-
ronment E 0 gives value v and then evaluating the overall let expression in the environment E gives
the value v.

For prediction of parallelism to be enabled, a linear model that related composed sequential rule
counts to concrete execution times was developed. For some program Pi

Ri ,1W1CRi ,2W2C : : :Ri ,NWN D Ti

Here, Ti is the predicted time for Pi on some architecture, Ri ,j is the number of times SOS rule j
fires during sequential semantics-based execution of Pi and Wk is a coefficient relating the contri-
bution that rule k makes to the overall time. Thus, summing products of observed sequential counts
and rule weights gives the predicted time.

9.1.3. PMLS implementation model. The ML kit interpreter, which is strongly based on the SML
SOS, was modified to collect counts of how often each rule was invoked during sequential execu-
tion of a program. Equation coefficients were then found for a specific architecture by instrumenting
a large test suite directly on the interpreter and by compiling and timing the test suite on a target
architecture node. Then if P is an r � n matrix of observed counts for r programs, x is a vector of
corresponding observed target times andw is the vector of unknown coefficients; the linear equation

Pw D x

was solved for w.
When processing a HOF call in a new program, the function argument could be instrumented on

the interpreter and the counts plugged into the solved equations to produce a predicted sequential
execution time. This time was then used as an argument to a standard skeleton cost model to predict
the parallel execution time. Once all HOFs had been analysed, the compiler would then try to find
an optimal skeleton configuration for the program as a whole.

The compiler proved highly portable, and a number of realistic programs were parallelised for the
Fujitsu AP3000, Cray T3D, IBM SP2 and Beowulf class architectures.

The main technical challenge was in finding reliable solutions to the linear equations. Two
approaches were explored to address this challenge: (i) single-value decomposition and (ii) genetic
algorithms. Single-value decomposition found solutions very quickly but was highly sensitive to the
test suite. In contrast, the genetic algorithm found highly stable solutions but took an unacceptably
long time to converge. Overall, the conclusion was that instrumenting structured operational seman-
tics gave a poor basis for predicting absolute execution times but was well suited for making relative
comparisons in choosing between candidate skeleton configurations [88].

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Table I. Profiler output.

V Position HOF Tp Dw Dr Tm P1 P2 P4 P8

1 Outer 1 Map 25.1 81 88 18.7 0.0012 0.0029 0.0061 0.0126
Inner 2 Map 8.3 243 196 4.1 0.0019 0.0036 0.0068 0.0133
Inner 3 Fold 9.4 369 351 4.5 0.0106 0.0141 0.0213 0.0355

2 Outer 1 Fold 20.2 128 129 25.5 0.0019 0.0036 0.0068 0.0133
Inner 2 Map 8.3 243 196 4.1 0.0062 0.0097 0.0169 0.0311
Inner 3 Fold 9.4 369 351 4.9 0.0106 0.0141 0.0213 0.0355

3 Outer 1 Map 26.0 81 88 19.1 0.0012 0.0029 0.0061 0.0126
Inner 2 Fold 9.2 287 240 3.9 0.0110 0.0146 0.0217 0.0360
Inner 3 Fold 9.4 369 351 4.4 0.0106 0.0141 0.0213 0.0355

4 Outer 1 Fold 26.5 128 129 19.4 0.0110 0.0146 0.0217 0.0360
Inner 2 Fold 9.2 287 240 3.9 0.0062 0.0097 0.0169 0.0311
Inner 3 Fold 9.4 369 351 4.4 0.0106 0.0141 0.0213 0.0355

5 Outer 1 Map 25.0 81 88 18.7 0.0012 0.0029 0.0061 0.0126
Inner 3 Fold 9.4 369 351 4.6 0.0106 0.0141 0.0213 0.0355

6 Outer 1 Fold 25.4 128 129 19.2 0.0062 0.0097 0.0169 0.0311
Inner 3 Fold 9.4 369 351 4.4 0.0106 0.0141 0.0213 0.0355

7 Outer 1 Map 19.3 81 88 16.0 0.0012 0.0029 0.0061 0.0126
Inner 2 Map 8.3 243 196 3.8 0.0019 0.0036 0.0068 0.0133

8 Outer 1 Fold 19.8 128 129 15.9 0.0019 0.0036 0.0068 0.0133
Inner 2 Map 8.3 243 196 4.0 0.0062 0.0097 0.0169 0.0311

9 Outer 1 Map 20.2 81 88 15.3 0.0012 0.0029 0.0061 0.0126
Inner 2 Fold 9.2 287 240 4.0 0.0110 0.0146 0.0217 0.0360

10 Outer 1 Fold 20.7 128 129 15.5 0.0110 0.0146 0.0217 0.0360
Inner 2 Fold 9.2 287 240 4.0 0.0062 0.0097 0.0169 0.0311

11 Outer 1 Map 19.2 81 88 16.9 0.0012 0.0029 0.0061 0.0126
12 Outer 1 Fold 19.7 128 129 14.7 0.0062 0.0097 0.0169 0.0311

HOF, higher-order function.

Table II. Parallel runtimes for nested implementations.

Version HOFs R2 R4 R8

1 MMF 0.595 15.69 7.954
2 FMF 0.886 11.51 5.759
3 MFF 0.600 8.655 4.602
4 FFF 0.882 8.844 5.108
5 MF 0.578 1.724 0.535
6 FF 0.875 2.336 0.651
7 MM 0.267 1.684 0.738
8 FM 0.840 4.449 2.035
9 MF 0.270 1.389 0.699
10 FF 0.598 1.952 0.799
11 M 0.310 0.127 0.090
12 F 0.590 0.167 0.112

HOFs, higher-order functions.

9.1.4. PMLS results. Michaelson and Scaife [89] report results for 12 different realisations of
matrix multiplication using various combinations of map and fold.

Table I shows the predictions for each version squaring a 3�3matrix. Tp is the sequential instance
function execution time averages in �S . Dw is the total number of bytes generated as arguments to
the instance function. Dr is the total number of bytes generated as results from instance functions.
For comparison, Tm is the measured instance function execution times from the sequential runs.

Table I also shows the predictions (P2, P4, P8) of the runtime in seconds for each HOF in the
synthesised programs at two, four and eight processors. These suggest that the most likely candidate
is Version 11, a single non-nested map.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

The actual parallel runtimes on two, four and eight processors are shown in Table II, for a
50 � 50 matrix. For this application, the single non-nested map from version 11 gives the best
actual performance. These runtimes broadly correspond to the predictions from the profiler.

9.1.5. PMLS resource analysis critique. The distinctive features of the PMLS approach are that

� decisions about exploiting parallelism are governed by cost equations for higher-order con-
structs instantiated with sequential profile information;
� profiling is abstract and based on semantics;
� a simple resource analysis gives useful information about the relative costs of computations;

and
� a high degree of cross platform portability is achieved.

9.2. Autonomous mobile programs

Autonomous mobile programs (AMPs) are mobile programs that periodically use a cost model to
decide where to execute in a network. AMPs have been constructed and measured in mobile Java
variants and in Jocaml, and more complete descriptions of AMP resource analyses and performance
can be found in [75, 90].

9.2.1. Autonomous mobile program cost model. The AMP cost model informs the decision whether
to move to a new location. The key criterion is whether the predicted time to complete execution
on the current location is greater than the predicted time to communicate to the best available loca-
tion and complete execution there. This is captured in inequality (1) in Figure 16, which shows the
relevant elements of the AMP cost model.

9.2.2. Autonomous mobile program analysis. Resource analyses for AMPs have been constructed
in two ways. We have constructed an automatic static analysis that uses abstract interpretation on
a cost semantics for a core subset of Jocaml. The subset includes iterating HOFs such as map.
Rather than predicting the time to evaluate a term, the model predicts the continuation cost of every
subterm within a term. This information is used to estimate the time to complete the program from
the current point in the execution [75].

Figure 16. Core distributed cost model for AMPs.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Figure 17. Naive Jocaml matrix multiplication.

Figure 18. AMP matrix multiplication cost model.

A far simpler design-time analysis is to parameterise the AMP cost model with a sequential cost
model for the AMP algorithm. This is an instance of the two-level approach described in Figure 8
where the sequential analysis is a simple analytical model.

We illustrate the design-time analysis using the naive Jocaml matrix multiplication shown in
Figure 17. The sequential analysis is readily constructed; for example, the total work, Wal l , is n3,
and the work carried out so far is a function of i , j and k, that is .i � 1/n2 C .j � 1/nC k. The
full matrix multiplication cost model is shown in Figure 18. In Equations (12) and (13), Sec is a
constant that converts abstract units of work to elapsed time (seconds) on a given architecture.

9.2.3. Autonomous mobile program implementation model. We use profiling to determine the cost
model parameters for the target architectures. Predicting computation time entails determining the
Sec constant for the target processor. This can be carried out by solving Equation (13) given the
sequential execution time of the program Th for a matrix size n. We can validate the computation
component of the model as follows. At every iteration of the top level matrix multiplication loop,
we use Equation (14) to predict the remaining time and the total time for the program. At the end of
the program, we can get the real execution time and compare the predicted time and the real time.
Table III shows that we achieve accurate predictions of computation times.

To determine the communication costs, we assume that communication time is a function of the
size of the matrix(n2). So we suppose the time for communication has the form

Tcomm D Tsetup C Tunit � n
2 (16)

Here, Tsetup is the set-up time, that is the time to establish a connection, and Tunit is the time to
send a unit of data. From experiments, we find that the set-up time is constant. The communication

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

Table III. AMP execution time validation.

Size Pred (s) Act (s) Standard deviation (%)

500 � 500 5.63 5.72 1.7
600 � 600 9.75 9.86 1.2
700 � 700 15.75 15.57 1.2
800 � 800 23.00 23.30 1.3
900 � 900 32.40 32.97 1.7
1000 � 1000 45.25 45.72 1.0

Table IV. AMP communication time validation.

Data Size Pred (s) Act (s) Standard deviation (%)

20 � 20 0.029 0.028 5.0
50 � 50 0.042 0.047 12.5
100 � 100 0.081 0.079 2.3
200 � 200 0.236 0.259 9.9
300 � 300 0.495 0.510 3.0
400 � 400 0.857 0.840 2.0
500 � 500 1.323 1.276 3.5

time only grows if the matrix is larger than 50. For n > 50, a constant is obtained if the communica-
tion time is divided by n2. So for a 100 Mb/s ethernet, we get the following equation, and Table IV
shows its validation.

Tcomm D 0.029C
�
if n < 50 then 0 else 5.07 � 10�6 � n2

�
.

9.2.4. Autonomous mobile program results. The AMP resource analysis is used dynamically; that
is, Equation (1) is periodically evaluated using the present speed of the current location Sh and the
speed of the fastest available alternative Sn.

Autonomous mobile programs can exploit the cost model to move to a faster location and hence
reduce execution time. Figure 19 shows the execution times of matrix multiplication programs. Our
test environment is based on three locations with CPU speed 534 MHZ, 933 MHZ and 1894 MHZ.
The loads on each locations is almost zero. We start both the static and mobile programs on the first,
slowest location.

Although AMPs act independently to minimise their execution time, collections of AMPs per-
form dynamic load management without a load manager. Figure 20 shows the distribution of 10 Java
Voyager AMPs across four identical locations (y-axis) over time (x-axis). Initially, seven AMPs are
started at a single location, and they quickly spread evenly over the locations in the network. The

Figure 19. Mobile and static matrix multiplication execution time.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Figure 20. Managing 10 AMPs on four homogeneous locations.

Java Voyager implementation places additional overheads on the initiating location; hence, it retains
just one AMP, whereas the other locations have two AMPs each by time period 3. In subsequent
time periods, three AMPs are started at the initiating location, and they distribute themselves over
the network to reach a new balanced state in time period 9.

9.2.5. Autonomous mobile program resource analysis critique. The rather simple abstract costed
operational semantics used by AMPs is effective for a combination of reasons.

� It compares the relative cost of completing at the current location with the cost of completing
at an alternative location.
� It requires only coarse grain execution time estimates. That is, rather than attempting to predict

the execution time of small computational units, it compares the time to complete the entire
program on the current location with the time to complete on an alternative location.
� It incorporates dynamic information into the static model, that is parameterising the model

with current performance.

9.3. Resource-safe execution in Hume

The goal of resource-safe execution is to statically guarantee that available resources are never
exhausted. In this setting, the role of a resource analysis is to provide concrete upper bounds on
resource consumption rather than just predictions. Furthermore, formal guarantees of the validity
for these bounds enhance the confidence in the results and open the possibility of automatic checks.

Resource bounds have a wide range of applications. A classical sequential example is to ensure
that a long running program on an embedded device will never exhaust available resources. Resource
bounds are also valuable in many parallel/distributed contexts, for example to inform task placement
across a range of heterogeneous architectures from multicores to Grids. Another example is to attach
resource bounds to mobile code to certify the resource implications of executing the code.

9.3.1. Hume cost model. The abstract cost model, underlying the Hume resource analysis, is formu-
lated as a resource-annotated operational semantics, where costs are attached to all Hume instruc-
tions. This choice was made to facilitate the formal soundness proof of the resource analysis with
respect to the underlying semantics. The relevant information for resource consumption, as encoded
in the semantics, is extracted into a table of basic costs, each of which corresponds (a part of) a
Hume instruction. This table is then a parameter of the generic resource analysis.

The following judgement of the operational semantics

reads as follows: The expression e evaluates under the configuration †IV , � in a finite number of
steps to a result value stored at location ` in heap �0, provided that there were t time units available

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

before computation. Furthermore, at least t 0 time units are unused after the evaluation is finished.
Again, we will omit to name † explicitly for the sake of brevity because the signature is fixed for
any given program and because we assume a fixed but arbitrary program.

As an example, we give the operational semantics for the conditional construct in Hume in the
following. Note that constants Tiftrue and Tiffalse are used to abstractly model the costs
of conditional branching. Different cost tables are used to model heap space, stack space or execu-
tion time, without changing the structure of the rules. In total, our cost model uses 46 parameters,
resulting in a fine-grained and thus very accurate abstract cost model.

The modelling of resources in this operational semantics is unusual and deserves further expla-
nation. Conceptually, the semantics maintains a counter, which starts with the total number of
available resources and counts down in the rules of the semantics. The costs in the true case are
t � T if t rue � t10, that is the difference in the counters before and after executing the conditional.
The resource variables, attached to the then branch indicate that must be a bound on its consump-
tion. Hence, the total consumption is at least Tiftrue plus the costs for the then branch. Note
that this formula is not made explicit but rather encoded as a side condition in the semantics. This
is crucial for the machinery of the analysis, which collects inequality constraints and then uses an
efficient LP solver (lp_solve [91]) to find a solution. We will see in the example of running the anal-
ysis that only the overall result is then elaborated in a more user-friendly way. Correspondingly, the
annotations in the false case can be interpreted as a bound of TiffalseC Tgoto plus the costs
for the else branch.

9.3.2. Hume implementation model. The implementation model [92] is an accurate hardware
model of the time (in cycles) and space (in bytes) consumption of compiled Hume code. By apply-
ing a separate, machine-code-level WCET analysis on each operation of the underlying abstract
machine, the cost parameters of the operational semantics are instantiated with provable upper
bounds. Thus, it can be characterised as a safe cost model. This results in a concrete cost model,
of about 30 entries. Because the low-level analysis takes into account hardware characteristics such
as cache and pipeline structure, the resulting bounds are very precise.

The following paragraphs elaborate on how the parameters for the cost model, in particular those
for time, have been established and assessed with respect to concrete measurements. This concrete
instance of a cost model is for a Renesas M32C/85 microprocessor.

Structure of the low-level analysis. The aiT tool is a machine-level, abstract-interpretation-based
static analysis that determines the WCET of a program task in the following phases: building a
control-flow graph from an executable binary program, performing a value analysis on instruc-
tions accessing memory, performing a cache analysis to predict cache usage, performing a pipeline
analysis to predict processor behaviour, and finally performing a path and WCET analysis.

The cache analysis phase uses the results of the value analysis phase to predict the behaviour of
the (data) cache on the basis of the range of values that can occur in the program. The results of the
cache analysis are then used within the pipeline analysis to allow prediction of those pipeline stalls
that may be due to cache misses. The combined results of the cache and pipeline analyses are used to
compute the execution times of specific program paths. By separating the WCET determination into
several phases, it becomes possible to use different analysis methods that are tailored to the specific
subtasks. Value analysis, cache analysis and pipeline analysis are all implemented using abstract
interpretation [20]. Integer linear programming is then used for the final path analysis phase.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

Although the analysis works at a level that is more abstract than simple basic blocks, it is not
capable of managing the complex high-level constructs of the Hume language. It can, however, pro-
vide useful and accurate worst-case time information about lower level constructs. This motivates
our design of using the accurate, low-level aiT analysis to determine bounds on the machine code,
corresponding to Hume’s abstract machine, and to then use these values as constants in a cost table
by our type-based, high-level resource analysis for Hume.

Quality of the static analysis using the aiT tool. To assess the quality of the low-level analysis
bounds, we have compared average execution and WCETs, for Hume abstract-machine instruc-
tions compiled using a commercial C compiler (IAR). Each average and worst-case entry has been
obtained from 10 000 individual timings. The worst-case times and average-case times are very
similar for most instructions, indicating that the instruction timings are highly consistent in practice.
Because certain instructions are parameterised on some argument, in these cases we have measured
several points and applied linear interpolation to obtain a cost formula. It is interesting to note that
in these case, the linear factor is identical for both WCET and average times, and the constants are
also very close.

For the instructions we have compared, the bound given by the static analysis is at most 50%
greater than the measured worst case; the mean difference is 22%, with a standard deviation of
16%. We conclude that the static analysis provides an accurate upper bound on execution time.

9.3.3. Hume analysis. The resource analysis for Hume [12,54], together with the infrastructure for
executing Hume code on embedded systems, is an instance of such resource-safe execution. The
source language, Hume, has two layers. The box layer defines a network of boxes that communi-
cate along single-buffer one-to-one wires. The expression layer is a strict, higher-order functional
language. The resource analysis is a static, type-based analysis, building on the concept of amortised
costs [93]. It produces, where possible, linear bounds on the resource consumption. The restric-
tion of this techniques to linear bounds has in the meantime been relaxed to polynomial bounds
[94]. Some supported resources are heap-space and stack-space consumptions and worst-case
execution time.

The central notion in amortised cost analysis is that of a ‘potential’, that is the amount of resources
that is (conceptually) available to the program to spend. Each operation reduces this potential. This
is formally expressed by attaching the potential available before and after the execution to the type
of a program expression (variables t and t0 in the rule that follows). Inferring the overall resource
consumption therefore amounts to performing type inference over this extended type system, find-
ing a solution for the variables encoding the potential at each point in the execution of the program.
Informally, the overall resource consumption is the difference between the potential available at the
beginning and those at the end of the execution. In his PhD thesis, Jost [95] develops the foundations
for this analysis, including a formal soundness proof, discusses implementation aspects and assesses
the quality of the resource bounds.

The type rules for expressions have the form

where � is a context mapping program variables to enriched Hume types,m,m0 are resource expres-
sions, e is the Hume expression, A is an enriched Hume type and is a set of constraints involving
resource variables and constant rational values. More precisely, the meaning of this statement is as
follows: for all valuations � mapping all resource variables to rational values such that the constraint
set �. / is satisfied, the Hume expression e has type �.A/ in the context �.�/. Note that � applied
to an annotated type (or type environment) instantiates the resource variables with concrete, rational
values, leaving the structure of the type unchanged. Furthermore, for all memory configurations con-
sisting of environment V (mapping variables to addresses) and heap � (mapping addresses to values,
fitting the (type) context �), executing the expression e will require at most �.m/Cˆ� .V W �.�//
time units. A time unit is usually defined as a single clock cycle of the processor, but other units such
as nanoseconds are also possible if desired. Intuitively, the function ˆ� .V W �.�// over a heap �, an

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

environment V and a type context � calculates the overall potential encoded by the free variables in
expression e. This overall potential is the sum of the weights of all constructors that are reachable
from these free variables, where the weight of each constructor in the sum is determined by the type
of the variables in the type environment � , instantiated by the valuation �.

Furthermore, if the computation finishes with heap �0 and result value v, then at least �.m0/C
ˆ�0 .v W �.�// time units remain unused after the computation has finished. This notion of unused
time units is required for compositionality.

As an example, we now give the rule for the conditional in Hume.

The rules of the extended type system define the type of the expression, in this case A, and collect
a set of equality constraints over rational variables, in this case � [. The potentials before and
after the conditional are represented by the variables t and t 0. The constant Tiftrue represents
the cost of checking the head of the conditional, which must be a variable in this intermediate for-
mat of the Hume language, in the true case. Thus, this cost is deducted from the potential before
entering the then branch, and the potentials before and after the then branch are t � Tiftrue, t 0

(similarly, for the else branch). The constraints from both branches, represented by � and , are
combined on top level. There is no simplification of the constraint set in this phase because solving
the constraints with a state-of-the-art LP solver is very fast for realisitic examples.

9.3.4. Hume results. In this section, we present several examples of our analysis of simple,
expression-level Hume programs.

Example: sum-over-list. The first example infers the costs for a list-traversing function, computing
the sum over a list of float values.

type _float = float 32;

data flist = Cons _float flist | Nil;

sum11 :: flist -> _float;
sum11 (Nil) = 0.0 ;
sum11 (Cons f fs) = f + (sum11 fs);

expression sum11;

The intermediate code for this example shows how a function with pattern matching is translated
into (possibly nested) case statements. The overloaded multiplication operation on Hume level is
instantiated to a monomorphic �. over floats.

program

type flist = Cons {-2-} float flist | Nil {-0-}

-- type of main
val main :: flist, ->float

-- Functions
{sum11 :: flist, ->float (?arg_11 :: flist) =
case ?arg_11 of

((Nil)) -> 0.0|
(Cons f fs) -> glet ?z_1 = (sum11 <> fs)

in f+.?z_1

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

esac}
-- Boxes
-- Expression:
sum11

Unsurprisingly, the time consumption of the main expression, namely the function sum11, is linear
in the length of the input list, as shown by the following (rich) type:

ARTHUR3 typing for resource "Time":
30, (flist[934;float<0>,#|0]) -476/126-> float<0> ,0

For every Cons node of the list, represented as float<0>,# in the type, 934 cycles are needed to
perform the computation. In total, this gives a worst-case time consumption of 934nC 476 for an
input list of length n.

Red–black trees. As a second example, we analyse heap consumption inserting a node into a red–
black tree, shown in Figure 21. This example is directly taken from Okasaki’s textbook [96] and
discussed in more detail in [97]. A red–black tree is a binary search tree, in which nodes are coloured
red or black. With the help of these colours, invariants can be formulated that guarantee that a tree
is roughly balanced. The invariants are that on each path no red node is followed by another red
node and that the number of black nodes is the same on all paths. These invariants guarantee that
the lengths of any two paths in the tree differs by at most a factor of two. This loose balancing
constraint has the benefit that all balancing operations in the tree can be performed locally. The
balance function only has to look at the local pattern and restructure the tree if a red–red viola-
tion is found. The rbInsert function in Figure 21 performs the usual binary tree search, finally
inserting the node as a red node in the tree (if it does not already exist in the tree) and balancing all
trees in the path down to the inserted node.
The heap bound for the rbInsert function, inferred by our analysis is

ARTHUR3 typing for HumeHeapBoxed:
(int,tree[Leaf|Node<10>:colour[Red|Black<18>],#,int,#]) -(20/0)->

tree[Leaf|Node:colour[Red|Black],#,int,#]

Figure 21. Example rbInsert: insertion into a red–black tree.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

Using the option --speak to elaborate the resource bound, encoded in the aforementioned type
information, we obtain

ARTHUR3 typing for HumeHeapBoxed:
(int,tree[Leaf<20>|Node<18>:colour[Red|Black<10>],#,int,#])
-(0/0)-> tree[Leaf|Node:colour[Red|Black],#,int,#]

Worst-case Heap-units required to call rbInsert in relation to
its input:
20*X1 + 18*X2 + 10*X3

where X1 = number of "Leaf" nodes at 1. position
X2 = number of "Node" nodes at 1. position
X3 = number of "Black" nodes at 1. position

This bound expresses that the total heap consumption of the function is 10nC 18bC 20, where the
n is the number of nodes in the tree, l is the number of leaves and b is the number of black nodes
in the tree. The latter demonstrates how our analysis is able to produce data-dependent bounds by
attaching annotations to constructors of the input structure. This gives a more precise formula com-
pared with one that only refers to the size of the input structure. In this example the 18b part of the
formula reflects the costs of applying the balance function, which restructures a subtree with a
black root in the case of a red–red violation. The analysis assumes a worst case, where every black
node is affected by a balancing operation. Note that because of the aforementioned invariants, this
cannot occur for a well-formed red–black tree: any insertion into the tree will trigger at most two
balancing operations. As expected, these (semantic) constraints are not captured by our analysis: our
analysis must account for the worst case of all well-typed programs. However, the type of red–black
trees does not capture such semantic conditions and includes malformed trees (e.g. a tree with all
nodes being red is still well typed), whose processing must thus be accounted for.

Resource analysis critique. The following characteristics of the resource analysis for Hume [54]
make it an effective tool for delivering guaranteed resource information.

� The analysis is purely static, and thus, resource-safe execution can be guaranteed before
executing the code.
� For such guarantees to be delivered, the type-based analysis builds on strong formal founda-

tions, and the type system is proven sound [12].
� Through its tight integration of resource information into the type system, by using numeric

annotations to types, it is natural to base the static analysis on a type inference engine.
� To guarantee that the analysis delivers bounds, we must start with a precise and safe cost model,

itself representing upper bounds.
� For tight upper bounds to be facilitated, the analysis uses an accurate hardware model.

The key requirement in this application domain is safety, and thus, the emphasis is on the for-
mal aspects of the analysis. Beyond these aspects, the following practical aspects contribute to the
usability of the inferred resource information.

� Through the generic treatment of resources, the analysis can be easily retargeted for other
(quantitative) resources.
� By using a standard LP solver in the constraint-solving stage, we achieve a relatively fast

analysis.

10. CONCLUSIONS

This paper has discussed the value of resource predictions for parallel and distributed systems
(Section 2), presented a general model of resource analysis (Section 3), described parallel/distributed
resource analysis and its relationship to sequential resource analysis (Section 4), surveyed resource
analysis for parallel and distributed computing (Sections 5–8) and provided a critical evaluation of
three representative parallel/distributed resource analyses (Section 9).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

10.1. Characterising effective resource analyses

On the basis of our experience of parallel/distributed resource analysis, including applications in
Section 9, we can identify the following general principles that govern why the chosen combination
of techniques is effective in each case. The principles represent general guidance rather than a recipe
for how to design an analysis for a specific application.

� In general, the analyses are tailored to the requirements of the specific application area. This
involves considering a number of issues, including the following:
ı The analysis must deliver information that is sufficiently accurate. Sometimes, a surprisingly

simple cost model can be effective, for example for AMPs (Section 9.2).
ı The analysis must usually combine both static and dynamic components in a suitable way.

For some applications, purely static information suffices, where others require at least some
dynamic information. For example, AMPs dynamically parameterise a static cost model with
current network loads (Section 9.2.4).

ı In many cases, it is sufficient for the analysis to produce qualitative predictions, for example
whether it is worth creating a thread to evaluate an expression. However, in some scenarios,
such as resource-safe execution, the analysis must produce guaranteed bounds on resource
usage (Section 9.3).

� Highly abstract resource analyses, such as BMF-PRAM, can be informative even at early
phases of parallel algorithm design (Section 6.6).
� More refined, architecture-dependent analyses can be utilised either during the design phase or

during subsequent stages of the parallel program development process (Section 6.6).
� Improving the analysis for reusable coordination abstractions, such as algorithmic skeletons or

parallel libraries, can have a significant impact on the applications that use them (Section 9.1).
� Even partial cost information can prove useful. For example, in a parallel analysis, we may

generate parallelism for computations with predicted execution time above some threshold and
ignore any computations for which we are unable to produce a prediction.
� Frequently, quantitative resource predictions are used in a qualitative way, and hence, imprecise

or relative resource information is sufficient. Examples include where quantitative predictions
are used to chose between alternative PMLS parallelisations (Section 9.1.4) and for AMPS to
chose between execution on alternative locations (Section 9.2.1).
� For resource analysis to be facilitated, modern language design often integrates cost mod-

elling as an essential part of the design process, for example in NESL [98] and Hume [99]
(Section 9.3).

10.2. Future trends in resource analysis

Some important trends that we anticipate in the near future are as follows. There are trends towards
type-based analysis and also towards the enrichment of standard type systems with information on
resource consumption [94, 100]. The machinery that is already used for basic type inference in a
number of programming languages has proved to be very flexible and entirely capable of infer-
ring various kinds of resource usage information in addition to its main use for obtaining type
information.

A very active area of research is the auto-tuning of parallel programs, based on profiling infor-
mation and using machine learning techniques to improve parallel performance [101]. With future
parallel architectures likely to be hierarchical and heterogeneous, analytic models of performance
prediction will be challenged to deliver accurate predictions of performance. By using observ-
able behaviour, on an input set providing sufficiently wide coverage, choosing static parameters
and dynamic control policies based on this behaviour, and iterating this process, learning from the
previously observed behaviour is an attractive alternative.

At the same time, automated theorem proving techniques are becoming increasingly mature. A
number of type-based approaches have been proposed that expose type information in the form of
provable theorems, and these can easily be extended to consider resources in addition to types. This
combination enables the generation of formal certificates of bounded resource usage [102–104].

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

In early work on automated complexity analysis, much attention was paid to the step of solving
recurrence equations as one key part of an automated analysis. Here, the trend goes away from the
usage general-purpose symbolic computation systems to the usage of more specialised solvers that
deliver bounds rather than exact solutions and are tuned for patterns typically occurring in automated
program analyses [105]. Another approach, motivated by the area of implicit complexity analysis,
is to construct an analysis that avoids an explicit solution of recurrence equations but limits the
expressable bounds to certain classes of expression, such as linear [12] or polynomial [94] functions
over the input sizes.

10.3. Resource analyses and parallel/distributed systems

Parallel and distributed systems are becoming increasingly prevalent, and good resource analysis is
becoming increasingly important if parallel/distributed applications are to be developed rapidly and
deployed effectively. We anticipate that future parallel and distributed systems will be able to better
exploit the rapid improvements in the basic resource analysis technologies that are being made and
in the quality of information that they will produce. Indeed, recent advances have already both sub-
stantially widened the range of programs for which static information can be provided. They have
also made obtaining resource information easier, for example as in the COSTA system [72, 106]
that provides an integrated environment combining cost analysis and compilation. We expect this
trend to continue. In the future, we will view the use of resource analysis for parallel and distributed
systems in much the same way as we view the use of type systems for computations today, that is
as an essential and necessary part of our software development process.

ACKNOWLEDGEMENTS

We acknowledge the contributions of Xiao Yan Deng to the AMP resource analysis reported in Section 9.2,
Steffen Jost to the Hume resource analysis reported in Section 9.3 and Norman Scaife to the PMLS resource
analysis reported in Section 9.1. We also acknowledge the anonymous referees whose comments have
significantly improved the paper.

This work has been supported by the European Union grants RII3-CT-2005-026133 ‘SCIEnce: Symbolic
Computing Infrastructure in Europe’, IST-2010-248828 ‘ADVANCE: Asynchronous and Dynamic Virtuali-
sation through performance ANalysis to support Concurrency Engineering’, IST-2011-287510 ‘RELEASE:
A High-Level Paradigm for Reliable Large-scale Server Software’ and IST-2011-288570 ‘ParaPhrase:
Parallel Patterns for Adaptive Heterogeneous Multicore Systems’, and by the UK’s Engineering and Physical
Sciences Research Council grants EP/G055181/1 ‘HPC-GAP: High Performance Computational Algebra
and Discrete Mathematics’ and EP/F 030657/1 ‘Islay: Adaptive Hardware Systems with Novel Algorithmic
Design and Guaranteed Resource Bounds’.

REFERENCES

1. Cohen J, Zuckerman C. Two languages for estimating program efficiency. Communications of the ACM 1974;
17(6):301–308.

2. Wegbreit B. Mechanical program analysis. Communications of the ACM 1975; 18(9):528–539.
3. Ramshaw LH. Formalizing the analysis of algorithms. PhD thesis, Stanford University Department of Computer

Secience, 1979.
4. Wegbreit B. Verifying program performance. Journal of the ACM 1976; 23(4):691–699.
5. Hickey T, Cohen J. Automating program analysis. Journal of the ACM 1988; 35(1):185–220.
6. Zimmermann W. Automatische Komplexitätsanalyse von funktionalen Programmen (Automatic complexity analy-

sis of functional programs) (in German). PhD thesis, University of Karlsruhe, 1990.
7. Flajolet P, Salvy B, Zimmermann P. Automatic average-case analysis of algorithms. Theoretical Computer Science

1991; 79:37–109.
8. Rebón Portillo Á, Hammond K, Loidl H-W, Vasconcelos PB. Cost analysis using automatic size and time inference.

In Proceedings of IFL 2002: Implementation of Functional Languages, Madrid, Spain, Springer LNCS 2670, 2003.
9. Vasconcelos PB. Cost inference and analysis for recursive functional programs. PhD Thesis, University of St

Andrews, February 2008.
10. Hofmann M, Jost S. Static prediction of heap space usage for first-order functional programs. In POPL’03 –

Symposium on Principles of Programming Languages. ACM Press: New Orleans, LA, USA, 2003.
11. Hofmann M, Jost S. Type-based amortised heap-space analysis. ESOP’06: Proceedings of the 2006 European

Symposium on Programming, Vienna, Austria, 2006; 22–37.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

12. Jost S, Hammond K, Loidl H-W, Hofmann M. Static determination of quantitative resource usage for higher-
order programs. POPL ’10 Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Madrid, Spain, 2010; 223–236.

13. Talpin J-P, Jouvelot P. Polymorphic type, region and effect inference. Journal of Functional Programming July
1992; 2(3):245–271.

14. Amtoft T, Nielson F, Nielson H. Type and effect systems: behaviours for concurrency. Imperial College Press:
London, UK, 1999.

15. Souyris J. Industrial experience of abstract interpretation-based static analyzers. In Building the Information Society,
Vol. 156, Jacquart R (ed.), IFIP International Federation for Information Processing. Springer: Boston, 2004;
393–400.

16. Gulwani S, Mehra KK, Chilimbi T. SPEED: precise and efficient static estimation of program computational com-
plexity. In POPL ’09: Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM: New York, NY, USA, 2009; 127–139.

17. Trinder PW, Cole MI, Loidl H-W, Michaelson GJ. Characterising effective resource analyses for parallel and dis-
tributed coordination. In Proc. FOPARA ’09: Intl. Workshop on Foundational and Practical Aspects of Resource
Analysis, Springer LNCS 6324. Springer Verlag: Berlin, Germany, 2009; 67–83.

18. Amdahl GM. Validity of the single processor approach to achieving large scale computing capabilities. AFIPS ’67
(Spring): Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, New York, NY, USA, 1967;
483–485.

19. Foster I. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering.
Addison Wesley: Boston, USA, 1995.

20. Cousot P, Cousot R. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. POPL’77: Proceedings of the 4th ACM Symposium on Principles of Programming
Languages, Los Angeles, California, 1977; 238–252.

21. Hill JMD, McColl DC, et al. BSPlib: the BSP programming library. Parallel Computing 1998; 24(14):1947–1980.
22. Bird R, de Moor O. Algebra of Programming. Prentice Hall: London, UK, 1997.
23. Cole M. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press: Cambridge, USA,

1989.
24. MPI Forum. MPI 2: extensions to the message-passing interface. Technical Report, University of Tennessee,

Knoxville, 1997.
25. Chandra R, Menon R, Dagum L, Kohr D, Maydan D, McDonald J. Parallel Programming in OpenMP. Morgan

Kaufmann Publishers: San Mateo, CA, USA, 2000.
26. Dean J, Ghemawat S. Beautiful Code, chapter Distributed Programming with MapReduce. O’Reilly: Sebastopol,

CA, USA, 2007. ISBN 0596510047.
27. Jordan D, Evdemon J, et al. Web Services Business Process Execution Language Version 2.0, 2007. Available from:

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf [August 2011].
28. Lee K, Paton NW, Sakellariou R, Deelman E, Fernandes AAA, Mehta G. Adaptive workflow processing and

execution in Pegasus. Concurrency and Computation: Practice and Experience 2009; 21(16):1965-1981.
29. Maggs BM, Matheson LR, Tarjan RE. Models of parallel computation: a survey and synthesis. In HICSS’95:

Proceedings of the 28th Hawaii International Conference on System Sciences. IEEE Computer Society:
Washington, DC, USA, 1995; 61–70.

30. Fortune S, Wyllie J. Parallelism in random access machines. In STOC ’78: Proceedings of the 10th Annual ACM
Symposium on Theory of Computing. ACM: San Diego, California, USA, 1978; 114–118.

31. Vishkin U. A case for the PRAM as a standard programmer’s model. In Parallel Architectures and Their Efficient
Use, Meyer F, Monien B, Rosenberg A (eds). Springer Verlag: Berlin, Germany, 1993; 11–19.

32. Heywood TH, Ranka S. A practical hierarchical model of parallel computation I: the model. Journal of Parallel
and Distributed Computing 1992; 16:212–231.

33. Aggarwal A, Chandra AK, Snir M. Communication complexity of PRAMs. Journal Theoretical Computer Science
1990; 71(1):3–28.

34. Aggarwal A, Chandra AK, Snir M. On communication latency in PRAM computations. Symposium on Parallel
Algorithms and Architectures, Santa Fe, New Mexico, USA, 1989; 11–21.

35. Alpern B, Carter L, Ferrante J. Modeling parallel computers as memory hierarchies. In Conference on Program-
ming Models for Massively Parallel Computers. IEEE Computer Society Press: Washington, DC, USA, 1993;
116–123.

36. Vitter JS, Shriver EAM. Algorithms for parallel memory II: hierarchical multilevel memories. Algorithmica 1994;
12:148–169.

37. Culler DE, Karp R, et al. LogP: towards a realistic model of parallel computation. Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, (PPoPP93), San Diego, CA; 1993.

38. Bosque JL, Pastor L. A parallel computational model for heterogeneous clusters. IEEE Transactions on Parallel
and Distributed Systems 2006; 17(12):1390–1400.

39. Bisseling R. Parallel Scientific Computation: A Structured Approach using BSP and MPI. Oxford University Press:
Oxford, UK, 2004.

40. Skillicorn DB, Cai W. A cost calculus for parallel functional programming. Journal of Parallel and Distributed
Computing 1995; 28(1):65–83.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

41. Jay CB, Cole MI, Sekanina M, Steckler P. A monadic calculus for parallel costing of a functional language of arrays.
Euro-Par ’97: Proceedings of the Third International Euro-Par Conference on Parallel Processing, Springer LNCS
1300, Passau, Germany, 1997; 650–661.

42. Hayashi Y, Cole M. Automated cost analysis of a parallel maximum segment sum program derivation. Parallel
Processing Letters 2002; 12(1):95–111.

43. Bischof H, Gorlatch S, Kitzelmann E. Cost optimality and predictability of parallel programming with skeletons.
Proceedings of Euro-Par ’03: European Conference on Parallel Processing, Springer LNCS 2790, 2003; 682–693.

44. Hammond K, Loogen R, Berhold J. Automatic skeletons in Template Haskell. HLPP ’03: Proceedings of the 2003
Workshop on High Level Parallel Programming, Paris, France, 2003.

45. Gava F. BSP functional programming: examples of a cost based methodology. ICCS ’08: Proceedings of the 8th
International Conference on Computational Science, Part I, Springer LNCS, Kraków, Poland, 2008; 375–385.

46. Yaikhom G, Cole M, Gilmore S. Combining measurement and stochastic modelling to enhance scheduling decisions
for a parallel mean value analysis algorithm. In Proc. Intl. Conference on Computational Science (2), 2006;
929–936.

47. Hillston J. A Compositional Approach to Performance Modelling. Cambridge University Press: New York, NY,
USA, 1996.

48. Bjerner B, Holmström S. A compositional approach to time analysis of first order lazy functional programs. In
FPCA’89 – Conference on Functional Programming Languages and Computer Architecture. ACM Press: San
Diego, California, USA, 1989; 157–165.

49. Rosendahl M. Automatic complexity analysis. In Proc. FPCA’89: Intl. Conference on Functional Programming
Languages and Computer Architecture. ACM Press: San Diego, California, USA, 1989; 144–156.

50. Bonenfant A, Ferdinand C, Hammond K, Heckmann R. Worst-case execution times for a purely functional
language. IFL’06 Proceedings of the 18th International Conference on Implementation and Application of
Functional Languages, Spinger LNCS 4449, Budapest, Hungary, September 4–6 2006; 235–252.

51. Wilhelm R, Engblom J, Ermedahl A, Holsti N, Thesing S, Whalley D, Bernat G, Ferdinand C, Heckmann R, Mueller
F, Puaut I, Puschner P, Staschulat J, Stenström P. The worst-case execution-time problem – overview of methods
and survey of tools. ACM TECS: Transactions on Embedded Computer Systems 2008; 7(3):1–53.

52. Ferdinand C, Heckmann R, et al. Reliable and precise WCET determination for a real-life processor. EMSOFT ’01
Proceedings of the First International Workshop on Embedded Software, Springer LNCS 2211, Tahoe City, USA,
October 8–10, 2001; 469–485.

53. Campbell B. Amortised memory analysis using the depth of data structures. In Proceedings of ESOP 2009:
European Symposium on Programming, LNCS 5502. Springer: York, UK, 2009; 190–204.

54. Jost S, Loidl H-W, Hammond K, Scaife N, Hofmann M. “Carbon Credits” for resource-bounded computations
using amortised analysis. FM ’09 Proceedings of the 2nd World Congress on Formal Methods, Springer LNCS
5850, Eindhoven, the Netherlands; 2009.

55. Chin W-N, Khoo S-C. Calculating sized types. Higher-Order and Symbolic Computing 2001; 14(2,3):261–300.
56. Vasconcelos PB, Hammond K. Inferring cost equations for recursive, polymorphic and higher-order functional

programs. In Proc. IFL 2003: Intl. Workshop on Impl. of Functional Languages, LNCS 3145. Springer: Edinburgh,
UK, Sept. 2003; 86–101.

57. Albert E, Genaim S, Gómez-Zamalloa M. Live heap space analysis for languages with garbage collection. ISMM
’09: Proceedings of the 2009 international symposium on Memory management, Dublin, Ireland, June 19–20, 2009.

58. Braberman V, Fernández F, Garbervetsky D, Yovine S. Parametric prediction of heap memory requirements. ISMM
’08: Proceedings of the 7th International Symposium on Memory Management, New York, NY, USA, 2008.

59. Chin W-N, Nguyen HH, Popeea C, Qin S. Analysing memory resource bounds for low-level programs. ISMM ’08
Proceedings of the 7th International Symposium on Memory Management, New York, NY, USA; 2008.

60. Li Z, Mills PH, Reif JH. Models and resource metrics for parallel and distributed computation. In HICSS’95: Pro-
ceedings of the 28th Hawaii International Conference on System Sciences. IEEE Computer Society: Washington,
DC, USA, 1995; 133–143.

61. Alt M, Dumitrescu C, Gorlatch S, Kertesz A, Sipos G, Epema DHJ. Towards user-transparent performance predic-
tion for workflows of higher-order components. Proceedings of the CoreGRID Integration Workshop, CYFRONET
Poland, 2006; 345–356.

62. Nielson F, Nielson HR, Hankin C. Principles of Program Analysis. Springer: Berlin, Germany, 2005.
63. Kuo T-M, Mishra P. Strictness analysis: a new perspective based on type inference. In Proc. FPCA ’89: Intl.

Conference on Functional Programming Languages and Computer Architecture. ACM Press: Imperial College,
London, UK, September 11–13, 1989; 260–272.

64. Dornic V, Jouvelot P, Gifford DK. Polymorphic time systems for estimating program complexity. ACM Letters on
Programming Languages and Systems (LOPLAS) 1992; 1(1):33–45.

65. Reistad B, Gifford DK. Static dependent costs for estimating execution time. In Proc. LFP ’94: 1994 ACM
Conference on LISP and Functional Programming. ACM: New York, NY, USA, 1994; 65–78.

66. Huelsbergen L, Larus JR, Aiken A. Using the run-time sizes of data structures to guide parallel-thread creation. In
LFP’94: Proceedings of the 1994 ACM Conference on LISP and Functional Programming. ACM: New York, NY,
USA, 1994; 79–90.

67. Loidl H-W. Granularity in large-scale parallel functional programming. PhD Thesis, Department of Computing
Science, University of Glasgow, March 1998.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

RESOURCE ANALYSES FOR PARALLEL AND DISTRIBUTED COORDINATION

68. Hughes RJM, Pareto L, Sabry A. Proving the correctness of reactive systems using sized types. In POPL’96:
Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM: St.
Petersburg Beach, Florida, 1996.

69. Hughes RJM, Pareto L. Recursion and dynamic data structures in bounded space: towards embedded ML program-
ming. In ICFP’99: Proceedings of the 4th ACM SIGPLAN International Conference on Functional Programming.
ACM: Paris, France, 1999; 70–81.

70. Abel A. A polymorphic lambda-calculus with sized higher-order types. PhD thesis, Ludwig-Maximilians-
Universität München, 2006.

71. Montenegro M, Pena R, Segur C. A space consumption analysis by abstract interpretation. In Proc. FOPARA ’09:
Intl. Workshop on Foundational and Practical Aspects of Resource Analysis, Springer LNCS 6324. Springer Verlag:
Berlin, Germany, 2009; 34–50.

72. Albert E, Arenas P, Genaim S, Puebla G, Zanardini D. COSTA: design and implementation of a cost and termina-
tion analyzer for Java bytecode. In Proceedings of the International Symposium on Formal Methods for Components
and Objects (FMCO 2007), LNCS 5382. Springer: Amsterdam, The Netherlands, October 24–26, 2007; 113–132.

73. Gulwani S, Mehra KK, Chilimbi TM. SPEED: precise and efficient static estimation of program computational
complexity. In POPL ’09: Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM: Savannah, USA, 2009; 127–139.

74. Mera E, López-García P, Puebla G, Carro M, Hermenegildo M. Combining static analysis and profiling for estimat-
ing execution times. In Proc PADL ’07: Intl. Symp. on Practical Aspects of Declarative Languages, LNCS 4354.
Springer: Berlin, Germany, January 2007; 140–154.

75. Deng XY, Trinder PW, Michaelson GJ. Cost-driven autonomous mobility. Computer Languages, Systems and
Structures 2010; 36(1):34–51.

76. Shivers O. Control-flow analysis of higher-order languages. PhD Thesis, School of Computer Science, Carnegie
Mellon University, May 1991.

77. Midtgaard J. Control-flow analysis of functional programs. ACM Computing Surveys 2012.
78. Sargeant J. Improving compilation of implicit parallel programs by using runtime information. In Workshop on the

Compilation of Symbolic Languages for Parallel Computers. Argonne National Laboratory, July 1993; 129–148.
79. Sodan AC, Bock H. Extracting characteristics from functional programs for mapping to massively parallel

machines. HPFC’95 – High Performance Functional Computing, Denver, Colorado, April 10–12, 1995; 134–148.
80. Tournavitis G, Wang Z, Franke B, O’Boyle MFP. Towards a holistic approach to auto-parallelization: integrat-

ing profile-driven parallelism detection and machine-learning based mapping. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’09. ACM: New York, NY,
USA, 2009; 177–187.

81. Li J, Ma X, Singh K, Schulz M, de Supinski BR, McKee SA. Machine learning based online performance prediction
for runtime parallelization and task scheduling. International Symposium on Performance Analysis of Systems and
Software (ISPASS 2009), Boston, MA, April 2009; 89–100.

82. Lee BC, Brooks DM, de Supinski BR, Schulz M, Singh K, McKee SA. Methods of inference and learning for
performance modeling of parallel applications. In PPOPP, Yelick KA, Mellor-Crummey JM (eds). ACM: San
Diego, California, USA, 2007; 249–258.

83. Ipek E, de Supinski BR, Schulz M, McKee SA. An approach to performance prediction for parallel applications. In
Euro-Par, Vol. 3648, Cunha JC, Medeiros PD (eds), Lecture Notes in Computer Science. Springer: Berlin, Germany,
2005; 196–205.

84. Le Métayer D. Mechanical analysis of program complexity. In SIGPLAN ’85 Symposium, Vol. 20(7), SIGPLAN
Notices. ACM Press: New York, 1985; 69–73.

85. Benzinger R. Automated complexity analysis of Nuprl extracted programs. Journal of Functional Programming
2001; 11(1):3–31.

86. Scaife N, Horiguchi S, Michaelson G, Bristow P. A parallel SML compiler based on algorithmic skeletons. Journal
of Functional Programming July 2005; 15(4).

87. Milner R, Tofte M, harper R, MacQueen D. The Definition of Standard ML (Revised). MIT: Cambridge, 1997.
88. Scaife N, Michaelson G, Horiguchi S. Empirical parallel performance prediction from semantics-based profiling.

Scaleable Computing: Practice and Experience September 2006; 7(3):1–8.
89. Michaelson G, Scaife N. Functional Prototyping for Parallel Skeleton based Implementation. Springer-Verlag:

Berlin, Germany, 2002. 129–153.
90. Deng XY, Trinder PW, Michaelson GJ. Autonomous mobile programs. Proceedings of IAT ’06: IEEE/WIC/ACM

Intelligent Agent Technology, Hong Kong, 2006; 177–186.
91. Berkelaar M, Eikland K, Notebaert P. lp_solve: Open source (mixed-integer) linear programming system. GNU

LGPL (Lesser General Public Licence). Available from: http://lpsolve.sourceforge.net/5.5 [June 2011].
92. Jost S, Loidl H-W, Hammond K. Report on WCET analysis. EmBounded Project Deliverable, February 2007.

Deliverable D14.
93. Tarjan RE. Amortized computational complexity. SIAM Journal on Algebraic and Discrete Methods April 1985;

6(2):306–318.
94. Hoffmann J, Hofmann M. Amortized resource analysis with polynomial potential – a static inference of polynomial

bounds for functional programs. In Proceedings of the 19th European Symposium on Programming (ESOP’10),
Vol. 6012, Lecture Notes in Computer Science. Springer: Berlin, Germany, 2010; 287–306.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

P. W. TRINDER ET AL.

95. Jost S. Automated amortised analysis. PhD Thesis, Faculty of Mathematics, Computer Science and Statistics, LMU
Munich, Germany, 2010.

96. Okasaki C. Purely Functional Data Structures. Cambridge University Press: Cambridge, UK, 1998. ISBN
0521663504.

97. Loidl H-W, Jost S. Improvements to a resource analysis for Hume. In FOPARA ’09: Intl. Workshop on Foundational
and Practical Aspects of Resource Analysis, LNCS 6324. Springer: Eindhoven, the Netherlands, November 2009.

98. Blelloch GE. Programming parallel algorithms. Communications of the ACM 1996; 39(3):85–97.
99. Hammond K, Michaelson GJ. Hume: a domain-specific language for real-time embedded systems. GPCE ’03

Proceedings of the 2nd International Conference on Generative Programming and Component Engineering ,
Springer LNCS 2830, Erfurt, Germany, 2003; 37–56.

100. Danielsson NA. Lightweight semiformal time complexity analysis for purely functional data structures. POPL
’08: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Francisco, USA, 2008; 133–144.

101. Tournavitis G, Wang Z, Franke B, O’Boyle MFP. Towards a holistic approach to auto-parallelization: integrating
profile-driven parallelism detection and machine-learning based mapping. SIGPLAN Not. June 2009; 44:177–187.

102. Necula G. Proof-carrying-code. In Proc. POPL ’97: ACM Symposium on Principles of Programming Languages.
ACM: San Diego, CA, USA, January 15–17 1997; 106–116.

103. Crary K, Weirich S. Resource bound certification. In POPL ’00: Proceedings of the 27th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM: Boston, USA, 2000; 184–198.

104. Beringer L, Hofmann M, Momigliano A, Shkaravska O. Automatic certification of heap consumption. Logic
for Programming, Artificial Intelligence, and Reasoning, 11th International Conference, (LPAR04), Montevideo,
Uruguay, 2004; 347–362.

105. Albert E, Arenas P, Genaim S, Puebla G. Automatic inference of upper bounds for recurrence relations in
cost analysis. Proceedings of the International Symposium on Static Analysis (SAS 2008), Springer LNCS 5079,
Valencia, Spain, July 15–17, 2008; 221–237.

106. Navas J, Mera E, López-García P, Hermenegildo M. User-definable resource bounds analysis for logic programs.
In Logic Programming, Dahl V, Niemelä I (eds), LNCS 4670. Springer: Berlin, Germany, 2010; 348–363.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

