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Motivation

Downloading software over the network is nowadays common-place.

But who says that the software does what it promises to do?

Who protects the consumer from malicious software or other
undesirable side-effects?

=⇒ Mechanisms for ensuring that a program is “well-behaved”
are needed.
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Authentication for Mobile Code

The main mechanisms used nowadays are based on authentication.
Java:

Originally a sandbox model where all code is untrusted and
executed in a secure environment (sandbox)
In newer versions security policies can be defined to have more
fine-grained control over the level of security defined. Managed
through cryptographic signatures on the code.
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Authentication for Mobile Code

Windows:
Microsoft’s Authenticode attaches cryptographic signatures to the
code.
User can distinguish code from different providers.
Very widely used — more or less compulsory in Windows XP for
device drivers.

But, all these mechanisms say nothing about the code, only
about the supplier of the code!
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Whom do you trust completely?
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Maybe that’s not such a good idea!
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Proof-Carrying-Code (PCC): The idea

Goal: Safe execution of untrusted code.
PCC is a software mechanism that allows a host system to
determine with certainty that it is safe to execute a program
supplied by an untrusted source.

Method: Together with the code, a certificate describing its behaviour
is sent.

This certificate is a condensed form of a formal proof of this behaviour.

Before execution, the consumer can check the behaviour, by running
the proof against the program.
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A PCC architecture
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Program Verification Techniques

Many techniques for PCC come from the area of program
verification. Main differences:
General program verification

is trying to verify good behaviour (correctness).
is usually interactive
requires at least programmer annotations as invariants to the
program

PCC
is trying to falsify bad behaviour
must be automatic
may be based on inferred information from the high-level

Observation: Checking a proof is much simpler than creating one
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PCC: Selling Points

Advantages of PCC over present-day mechanisms:
General mechanism for many different safety policies
Behaviour can be checked before execution
Certificates are tamper-proof
Proofs may be hard to generate (producer) but are easy to check
(consumer)
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What does “well-behaved” mean?

PCC is a general framework and can be instantiated to many different
safety policies.

A safety policy defines the meaning of “well-behaved”.

Examples:
(functional) correctness
type correctness ([1])
array bounds and memory access (CCured)
resource-consumption (MRG)
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Further Reading

George Necula, Proof-carrying code in POPL’97 — Symposium on
Principles of Programming Languages, Paris, France, 1997.
http://raw.cs.berkeley.edu/Papers/pcc_popl97.ps

George Necula, Proof-Carrying Code: Design and Implementation
in Proof and System Reliability, Springer-Verlag, 2002.
http://raw.cs.berkeley.edu/Papers/marktoberdorf.pdf

CCured Demo,
http://manju.cs.berkeley.edu/ccured/web/index.html
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Main Challenges of PCC

PCC is a very powerful mechanism. Coming up with an efficient
implementation of such a mechanism is a challenging task.

The main problems are
Certificate size
Size of the trusted code base (TCB)
Performance of validation
Certificate generation
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Certificate Size

A certificate is a formal proof, and can be encoded as e.g. LF Term.

BUT: such proof terms include a lot of repetition
=⇒ huge certificates

Approaches to reduce certificate size:
Compress the general proof term and do reconstruction on the
consumer side
Transmit only hints in the certificate (oracle strings)
Embed the proving infrastructure into a theorem prover and use its
tactic language
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Size of the Trusted Code Base (TCB)

The PCC architecture relies on the correctness of components such as
VC-generation and validation.

But these components are complex and implementation is error-prone.

Approaches for reducing size of TCB:
Use proven/established software
Build everything up from basics foundational PCC (Appel)
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Performance

Even though validation is fast compared to proof generation, it is on
the critical path of using remote code
=⇒ performance of the validation is crucial for the acceptance of PCC.

Approaches:
Write your own specialised proof-checker (for a specific domain)
Use hooks of a general proof-checker, but replace components
with more efficient routines, e.g. arithmetic
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LF Terms

The Logical Framework (LF) is a generic description of logics.

Entities on three levels: objects, families of types, and kinds.
Signatures: mappings of constants to types and kinds
Contexts: mappings of variables to types
Judgements:

Γ `Σ A : K

meaning A has kind K in context Γ and signature Σ.

Γ `Σ M : A

meaning M has type A in context Γ and signature Σ.
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Styles of Program Logics
Two styles of program logics have been proposed.

Hoare-style logics: {P}e{Q}
Assertions are parameterised over the “current” state.
Example: Specification of an exponential function

{0 ≤ y ∧ x = X ∧ y = Y} exp(x , y) {r = X Y}

Note: X ,Y are auxiliary variables and must not appear in e
VDM-style logics: e : P
Assertions are parameterised over pre- and post-state.
Because we have both pre- and post-state in the post-condition
we do not need a separate pre-condition.
Example: Specification of an exponential function

{0 ≤ y} exp(x , y) {r = x̀ ỳ}
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A Simple while-language

Language:
e ::= skip

| x := t
| e1;e2
| if b then e1 else e2
| while b do e
| call

A judgement has this form (for now!)

` {P} e {Q}

A judgement is valid if the following holds

∀z s t . s e
 t ⇒ P z s ⇒ Q z t
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A Simple Hoare-style Logic

` {P} skip {P}
(SKIP)

` {λz s. P z s[t/x ]} x := t {P}
(ASSIGN)

` {P} e1 {R} {R} e2 {Q}
` {P} e1;e2 {Q}

(COMP)

` {λz s. P z s ∧ b s} e1 {Q} ` {λz s. P z s ∧ ¬(b s)} e2 {Q}
` {P} if b then e1 else e2{Q}

(IF)

` {λz s. P z s ∧ b s} e {P}
` {P} while b do e{λz s. P z s ∧ ¬(b s)}

(WHILE)

` {P} body {Q}
` {P} CALL {Q}

(CALL)
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A Simple Hoare-style Logic (structural rules)

The consequence rule allows us to weaken the pre-condition and to
strengthen the post-condition:

∀s t . (∀z. P ′ z s ⇒ P z s) ` {P ′} e {Q′} ∀s t . (∀z. Q z s ⇒ Q′ z s)

` {P} e {Q}
(CONSEQ)
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Recursive Functions

In order to deal with recursive functions, we need to collect the
knowledge about the behaviour of the functions.

We extend the judgement with a context Γ, mapping expressions to
Hoare-Triples:

Γ ` {P} e {Q}

where Γ has the form {. . . , (P ′,e′,Q′), . . .}.
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Recursive Functions

Now, the call rule for recursive, parameter-less functions looks like this:

Γ ∪ {(P,CALL,Q)} ` {P} body {Q}
Γ ` {P} CALL {Q}

(CALL)

We collect the knowledge about the (one) function in the context, and
prove the body.

Note: This is a rule for partial correctness: for total correctness we
need some form of measure.
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Recursive Functions

To extract information out of the context we need and axiom rule

(P,e,Q) ∈ Γ

Γ ` {P} e {Q}
(AX)

Note that we now use a Gentzen-style logic (one with contexts) rather
than a Hilbert-style logic.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2011/12 25 / 78

More Troubles with Recursive Functions

Assume we have this simple recursive program:

if i=0 then skip else i := i-1 ; call ; i := i+1

The proof of {i = N} call {i = N} proceeds as follows

{(i = N,CALL, i = N)} ` {i = N − 1} CALL {i = N − 1}
{(i = N,CALL, i = N)} ` {i = N} i := i− 1;CALL;i := i + 1 {i = N}

` {i = N} CALL {i = N}

But how can we prove {i = N − 1}CALL{i = N − 1} from
{i = N}CALL{i = N}?
We need to instantiate N with N − 1!
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Recursive functions

To be able to instantiate auxiliary variables we need a more powerful
consequence rule:

Γ ` {P ′} e {Q′} ∀s t . (∀z. P ′ z s ⇒ Q′ z t) ⇒ (∀z. P z s ⇒ Q z t)

Γ ` {P} e {Q}
(CONSEQ)

Now we are allowed to proof P ⇒ Q under the knowledge that we can
choose z freely as long as P ′ ⇒ Q′ is true.
This complex rule for adaptation is one of the main disadvantages of
Hoare-style logics.
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Extending the Logic with Termination

The Call and While rules need to use a well-founded ordering < and a
side condition saying that the body is smaller w.r.t. this ordering:

wf <
∀s′. {(λz s.P z s ∧ s < s′,CALL,Q)}
`T {λz s.P z s ∧ s = s′}body {Q}

`T {P} CALL{Q}

Note the explicit quantification over the state s’. Read it like this

The pre-state s must be smaller than a state s′, which is the
post-state.
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Extending the Logic with Mutual Recursion

To cover mutual recursion a different derivation system `M is defined.
Judgements in `M are extended to sets of Hoare triples, informally:

Γ `M {(P1,e1,Q1), . . . , (Pn,en,Qn)}

The Call rule is generalised as follows⋃
p. {(P p,CALL p,Q p)} `M

⋃
p.{(P p,body p,Q p)}

∅ `M
⋃

p. {(P p,CALL p,Q p)}
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Further Reading

Thomas Kleymann, Hoare Logic and VDM: Machine-Checked
Soundness and Completeness Proofs, Lab. for Foundations of
Computer
Science, Univ of Edinburgh, LFCS report ECS-LFCS-98-392, 1999.
http://www.lfcs.informatics.ed.ac.uk/reports/98/ECS-LFCS-98-392/ECS-LFCS-98-392.pdf

Tobias Nipkow, Hoare Logics for Recursive Procedures and
Unbounded Nondeterminism, in CSL 2002 — Computer Science
Logic, LNCS 2471, pp. 103–119, Springer, 2002.
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Challenge: Minimising the TCB

This aspect is the emphasis of the Foundational PCC approach.

An infrastructure developed by the group of Andrew Appel at
Princeton [1].

Motivation: With complex logics and VCGs, there is a big danger of
introducing bugs in software that needs to be trusted.
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Validator

What exactly is proven?

The safety policy is typically encoded as a pre-post-condition pair
(P/Q) for a program e, and a logic describing how to reason.

Running the verification condition generator VCG over e and Q,
generates a set of conditions, that need to be fulfilled in order for the
program to be safe.

The condition that needs to be proven is:

P =⇒ VC(e,Q)

.
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Structure of the VCG
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The Philosophy of Foundational PCC

Define safety policy directly on the operational semantics of the code.

Certificates are proofs over the operational semantics.

It minimises the TCB because no trusted verification condition
generator is needed.

Pros and cons:
©..̂ more flexible: not restricted to a particular type system as the

language in which the proofs are phrased;
©..̂ more secure: no reliance on VCG.
©.._ larger proofs
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Conventional vs Foundational PCC

Re-examine the logic for memory safety, eg.

m ` e : τ list e 6= 0
m ` e : addr ∧ m ` e + 4 : addr ∧
m ` sel(m,e) : τ ∧ m ` sel(m,e + 4) : τ list

(LISTELIM)

The rule has built-in knowledge about the type-system, in this case
representing the data layout of the compiler (“Type specialised PCC”)
=⇒ dangerous if soundness of the logic is not checked mechanically!
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Logic rules in Foundational PCC

In foundational PCC the rules work on the operational semantics:

m |= e : τ list e 6= 0
m |= e : addr ∧ m |= e + 4 : addr ∧
m |= sel(m,e) : τ ∧ m |= sel(m,e + 4) : τ list

(LISTELIM)

This looks similar to the previous rule but has a very different meaning:
|= is a predicate over the formal model of the computation, and the
above rule can be proven as a lemma, ` is an encoding of a
type-system on top of the operational semantics and thus needs a
soundness proof.
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Components of a foundational PCC infrastructure

Operational semantics and safety properties are directly encoded in a
higher-order logic.

As language for the certificates, the LF metalogic framework is used.

For development and for proof-checking the Twelf theorem proofer is
used.
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Specifying safety

To specify safety, the operational semantics is written in such a way,
that it gets stuck whenever the safety condition is violated.

Example: operational semantics on assembler code.
Safety policy: “only readable addresses are loaded”.
Define a predicate: readable(x) ≡ 0 ≤ x ≤ 1000
The semantics of a load operation LD ri,c(rj) is now written as
follows:

load(i , j , c) ≡ λ r m r ′ m′.
r ′(i) = m(r(j) + c) ∧ readable(r(j) + c) ∧
(∀x 6= i . r ′(x) = r(x)) ∧ m′ = m

Note: the clause for nothing else changes, quickly becomes awkward
when doing these proofs
=⇒ Separation Logic (Reynolds’02) tackles this problem.
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Further Reading

Andrew Appel, Foundational Proof-Carrying Code in LICS’01 —
Symposium on Logic in Computer Science, 2001.
http://www.cs.princeton.edu/˜appel/papers/fpcc.pdf
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PCC for Resources: Motivation

Resource-bounded computation is one specific instance of PCC.

Safety policy: resource consumption is lower than a given bound.

Resources can be (heap) space, time, or size of parameters to system
calls.

Strong demand for such guarantees for example in embedded
systems.
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Mobile Resource Guarantees

Objective:
Development of an infrastructure to endow mobile code with
independently verifiable certificates describing resource behaviour.

Approach:
Proof-carrying code for resource-related properties, where proofs
are generated from typing derivations in a resource-aware type
system.
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Motivation

Restrict the execution of mobile code to those adhering to a certain
resource policy.

Application Scenarios:
A user of a handheld device might want to know that a
downloaded application will definitely run within the limited amount
of memory available.
A provider of computational power in a Grid infrastructure may
only be willing to offer this service upon receiving dependable
guarantees about the required resource consumption.
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Proof-Carrying-Code with High-Level-Logics

Our approach to PCC: Combine high-level type-systems with
program logics and build a hierarchy of logics to construct a logic
tailored to reason about resources.

Everything is formalised in a theorem prover.

Classic vs Foundational PCC: best of both worlds
Simple reasoning, using specialised logics;
Strong foundations, by encoding the logics in a theorem prover
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Proof-Carrying-Code with High-Level-Logics

Specialised Logic
Termination Logic

Program Logic

Operational Semantics E ` h,e ⇓ (h′, v ,p)

Γ B e : A
`T {P} e ↓
B ptq : D(G, τ)

High-Level Type System G `H t : τ

��

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2011/12 44 / 78



Motivating Example of this Hierarchical Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h is
the start of a (high-level) data-type t .

Prove: f :: τ list→ τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.
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Motivating Example of this Hierarchical Approach
Instead, define a higher-level logic `H that abstracts over the details of
datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v . h |=list E〈x〉 ∧ h |=list E〈y〉 −→

h′ |=list E〈x〉 ∧ h′ |=list E〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the high-level
language:

Bpt1q : D(Γ, τ) B pt2q : D(Γ, τ list)
Bpcons(t1, t2)q : D(Γ, τ list)
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A Proof-Carrying-Code Infrastructure for MRG
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Camelot

Strict, first-order functional language with CAML-like syntax and
object-oriented extensions
Compiled to subset of JVM (Java Virtual Machine) bytecode
(Grail)
Memory model: 2 level heap
Security: Static analyses to prevent deallocation of live cells in
Level-1 Heap: linear typing (folklore + Hofmann), readonly typing
(Aspinall, Hofmann, Konencny), layered sharing analysis
(Konencny).
Resource bounds: Static analysis to infer linear upper bounds on
heap consumption (Hofmann, Jost).
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Example: Insertion Sort

Camelot program:

let ins a l = match l with
Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil
| Cons(a,t)@_ -> ins a (sort t)
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In-place Operations via a Diamond Type

Using operators, such as Cons, amounts to heap allocation.

Additionally, Camelot provides extensions to do in-place operations
over arbitrary data structures via a so called diamond type � with d
∈ �:

match l with Nil@d => e1
| Cons (h,t)@d => ... Cons (x,t)@d ...

The memory occupied by the cons cell can be re-used via the
diamond d.
Note:

� is an abstract data-type
structured use of diamonds in branches of pattern matches
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How does this fit with referential transparency?

Using a diamond type, we can introduce side effects:

type ilist = Nil | Cons of int*ilist
let insert1 x l =

match l with Nil -> Cons (x, l)
| Cons(h,t)@d ->

if x <= h then Cons(x, Cons(h,t)@d)
else Cons(h, insert1 x t)@d

let sort l = match l with Nil -> Nil
| Cons(h,t) -> insert1 h (sort t)

Now, what’s the result of

let start args = let l = [4,5,6,7] in
let l1 = insert1 6 l in
print_list l
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Linearity saves the day

We can characterise the class of programs for which referential
transparency is retained.

Theorem
A linearly typed Camelot program computes the function specified by
its purely functional semantics (Hofmann, 2000).
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Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types with
layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot yourself in
the foot. We need a powerful type system to prevent this, and want a
static analysis to predict resource consumption.
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Space Inference
Goal: Infer a linear upper bound on heap consumption.

Given Camelot program containing a function

start : string list -> unit

find linear function s such that start(l) will not call new() (only
make()) when evaluated in a heap h where

the freelist has length not less than s(n)

l points in h to a linear list of some length n
the freelist which forms a part of h is well-formed
the freelist does not overlap with l

Composing start with runtime environment that binds input to, e.g.,
stdin yields a standalone program that runs within predictable heap
space.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21CN — 2011/12 54 / 78

Extended (LFD) Types

Idea: Weights are attached to constructors in an extended
type-system.

ins : 1, int -> list(...<0>) -> list(...<0>), 0

says that the call ins x xs requires 1 heap-cell plus 0 heap cells for
each Cons cell of the list xs.

sort : 0, list(...<0>) -> list(...<0>), 0

sort does not consume any heap space.

start : 0, list(...<1>) -> unit, 0;

gives rise to the desired linear bounding function s(n) = n.
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High-level Type System: Function Call

A,B,C are types, k , k ′,n,n′ ∈ Q+, f is a Camelot function and
x1, . . . ,xp are variables, Σ is a table mapping function names to types.

Σ(f) = (A1, . . . ,Ap, k) −→ (C, k ′)
n ≥ k n − k + k ′ ≥ n′

Γ,x1 : A1, . . . ,xp : Ap,n ` f(x1, . . . ,xp) : C,n′ (FUN)
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Grail

Grail is an abstraction over virtual machine languages such as the
JVM.

e ∈ expr ::= null | int i | var x | prim p x x | new c [t1 := x1, . . . , tn := xn] |
x .t | x .t:=x | c � t | c � t:=x | let x = e in e | e ; e |
if x then e else e | call f | x ·m(a) | c �m(a)

a ∈ args ::= var x | null | i
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Example: Insertion sort

Grail code:

method static public List ins (int a, List l) = ...Make(..,..,..)...
method static public List sort (List l) =
let fun f(List l) =
if l = null then null

else let val h = l.HD
val t = l.TL
val () = D.free (l)
val l = List.sort (t)

in List.ins (h, l) end
in f(l) end

This is a 1-to-1 translation of JVM code
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Judgement of the Operational Semantics

Modelling resources: Resources are an extra component in
operational and axiomatic semantics (“resource record”).

p ∈ RRec = Lclock : nat, callcount : nat, invokedepth : nat,maxstack : natM

A judgement in the functional operational semantics

E ` h, e ⇓n (h′, v , p)

is to be read as “starting with a heap h and a variable enviroment E ,
the Grail code e evaluates in n steps to the value v , yielding the heap
h′ as result and consuming p resources.”
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Operational Semantics: Let- and Call-rules

E ` h, e1 ⇓n (h1,w , p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓m (h2, v , q)

E ` h,let x = e1 in e2 ⇓max(n,m)+1 (h2, v ,p1 ^ p2)
(LET)

E ` h, bodyf ⇓n (h1, v , p)

E ` h,call f ⇓n+1 (h1, v , 〈1 1 0 0〉 ⊕ p1)
(CALL)
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A Program Logic for Grail

VDM-style logic with judgements of the form Γ B e : A, meaning

“in context Γ expression e fulfills the assertion A”

Type of assertions (shallow embedding):

A ≡ E → H → H → V → R→ B

No syntactic separation into pre- and postconditions.

Semantic validity |= e : A means

“whenever E ` h,e ⇓ (h′, v ,p) then A E h h′ v p holds”

Note: Covers partial correctness; termination orthogonal.
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A Program Logic for Grail

Simplified rule for parameterless function call:

Γ, (Call f : A) B e : A+

Γ B Call f : A
(CALLREC)

where e is the body of the function f and

A+ ≡ λE h h′ v p.A(E ,h,h′, v ,p+)

where p+ is the updated cost component.
Note:

Context Γ: collects hypothetical judgements for recursion
Meta-logical guarantees: soundness, relative completeness
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Program Logic Rules

ΓB e1 : P ΓB e2 : Q
ΓB let x = e1 in e2 : λE h h′ v p.∃ p1 p2 h1 w . P E h h1 w p1 ∧ w 6= ⊥ ∧

Q (E〈x := w〉) h1 h′ v p2) ∧
p = p1 ^ p2

(VLET)

Γ ∪ {(call f ,P)}B bodyf : λE h h′ v p.P E h h′ v 〈1 1 0 0〉 ⊕ p1,

ΓB call f : A
(VCALL)
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Specific Features of the Program Logic

Unusual rules for mutually recursive methods and for
parameter adaptation in method invocations

(Γ,e : A) goodContext
B e : A

(MUTREC)

(Γ, c �m(a) : MS c m a) goodContext

Bc �m(b) : MS c m b
(ADAPT)

Proof via admissible Cut rule, no extra derivation system
Global specification table MS, goodContext relates entries in MS
to the method bodies
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Example: Insertion sort

Specification:

insSpec ≡ MS List ins [a1, a2] =

λ E h h′ v p .∀ i r n X .

(E〈a1〉 = i ∧ E〈a2〉 = Ref r ∧ h, r |=X n
−→ |dom (h)|+ 1 = |dom (h′)| ∧

p ≤ . . .)
sortSpec ≡ MS List sort [a] =

λ E h h′ v p .∀ i r n X .

( E〈a〉 = Ref r ∧ h, r |=X n −→ |dom (h)| = |dom (h′)| ∧ p ≤ . . .)

Lemma: insSpec ∧ sortSpec −→ B List � sort([xs]) : MS List sort [xs]
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Discussion of the Program Logic

Expressive logic for correctness and resource consumption
Logic proven sound and complete
Termination built on top of a logic for partial correctness
Less suited for immediate program verification: not fully automatic
(case-splits, ∃-instantiations,. . . ), verification conditions large and
complex
Continue abstraction: loop unfolding in op. semantics→ invariants
in general program logics→ specific logic for interesting
(resource-)properties
Aim: exploit structure of Camelot compilation (freelist) and
program analysis

List.ins : 1, I× L(0)→ L(0), 0

List.sort : 0,L(0)→ L(0), 0
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Heap Space Logic (LFD-assertions)

Translation of Hofmann-Jost type system to Grail, types
interpreted as relating initial to final freelist
Fixed assertion format JU,n, [∆] I T ,mK

List.ins : J{a, l},1, [a 7→ I, l 7→ L(0)] I L(0),0K
List.sort : J{l},0, [l 7→ L(0)] I L(0),0K

LFD types express space requirements for datatype constructors,
numbers n, m refer to the freelist length
Semantic definition by expansion into core bytecode logic, derived
proof rules using linear affine context management
Dramatic reduction of VC complexity!
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Semantic interpretation of JU, n, [∆] I T , mK

JU, n, [∆] I T ,mK ≡
λ E h h′ v p.
∀ F N. (regionsExist(U,∆, h,E) ∧ regionsDistinct(U,∆, h,E) ∧

freelist(h,F ,N) ∧ distinctFrom(U,∆, h,E ,F ))
−→
(∃ R S M G. v , h′ |=T R,S ∧ freelist(h′,G,M) ∧ R ∩G = ∅ ∧

Bounded((R ∪G),F ,U,∆, h,E) ∧modified(F ,U,∆, h,E , h′) ∧
sizeRestricted(n,N,m,S,M,U,∆, h,E) ∧ dom h = dom h′)

• Formulae defined by BC expansion:

regionsDistinct(U, ∆, h, E) ≡
∀ x y Rx Ry Sx Sy .

({x, y} ⊆ U ∩ dom ∆ ∧ x 6= y ∧ E〈x〉, h |=∆(x) Rx , Sx ∧ E〈y〉, h |=∆(y) Ry , Sy )

−→ Rx ∩ Ry = ∅
sizeRestricted(n, N, m, S, M, U, ∆, h, E) ≡
∀ q C. Size(E, h, U, ∆, C) ∧ n + C + q ≤ N −→ m + S + q ≤ M

• You don’t want to read this — and you don’t need to!
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Proof System

Proof system with linear inequalities and linear affine type system
(U,∆) that guarantees benign sharing;

∆(x) = T n ≤ m
ΓB var x : J{x},m, [∆] I T , nK

(VAR)

ΓB e1 : JU1, n, [∆] I T1,mK ΓB e2 : JU2,m, [∆, x 7→ T1] I T2, kK
U1 ∩ (U2 \ {x}) = ∅ T1 = L(_)

ΓB let x = e1 in e2 : JU1 ∪ (U2 \ {x}), n, [∆] I T2, kK
(LET)

∆(x) = L(k) l = n + k ΓB e : JU, l, [∆, t 7→ L(k)] I T ,mK x /∈ U \ {t}
ΓB let t = x .TL in e : J(U \ {t}) ∪ {x}, n, [∆] I T ,mK

(LETTL)
Note: Linearity relaxed in rules for compiled match-expressions
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Discussion of the Heap Space Logic

©..̂ Exploit program structure and compiler analysis: most effort done
once (in soundness proofs), application straight-forward

©..̂ “Classic PCC”: independence of derived logic from Isabelle (no
higher-order predicates, certifying constraint logic programming)

©..̂ “Foundational PCC”: can unfold back to core logic and operational
semantics if desired

©.._ Generalisation to all Camelot datatypes needed
©.._ Soundness proofs non-trivial, and challenging to generalise to

more liberal sharing disciplines
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Certificate Generation

Goal: Automatically generate proofs from high-level types and inferred
heap consumption.

Approach: Use inferred space bounds as invariants. Use powerful
Isabelle tactics to automatically prove a statement on heap
consumption in the heap logic.

Example certificate (for list append):

ΓB snd (methtable Append append) : SPEC append
by (Wp append_pdefs)

BAppend.append([RNarg x0, RNarg x1]) : sMST Append append [RNarg x0, RNarg x1]
by (fastsimp intro: Context_good GCInvs simp: ctxt_def)
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Summary

MRG works towards resource-safe global computing:
check resource consumption before executing downloaded
code;
automatically generate certificate out of a Camelot type.

Components of the picture
Proof-Carrying-Code infrastructure
Inference for space consumption in Camelot
Specialised derived assertions on top of a general program logic
for Grail
Certificate = proof of a derived assertion
Certificate generation from high-level types
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Further Reading

K. Crary and S. Weirich, Resource Bound Certification in POPL’00
— Symposium on Principles of Programming Languages, Boston,
USA, 2000.
http://www-2.cs.cmu.edu/ crary/papers/1999/res/res.ps.gz
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Summary

PCC is a powerful, general mechanism for providing safety guarantees
for mobile code.

It provides these guarantees without resorting to a trust relationship.

It uses techniques from the areas of type-systems, program verification
and logics.

It is a very active research area at the moment.
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Current Trends

Using formal methods to check specific program properties.

Program logics as the basic language for doing these checks
attract renewed interest in PCC.
A lot of work on program logics for low-level languages.
Immediate applications for smart cards and embedded systems.
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Future Directions

Embedded Systems as a domain for formal methods.
Some of these systems have strong security requirements.
Formal methods are used to check these requirements.
Model checking is a very active area for automatically checking
properties.
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Links to other areas

Checking program properties is closely related to inferring quantitative
information.

Static analyses deal with extracting quantitative information (e.g.
resource consumption)
A lot of research has gone into making these techniques efficient.
Model checking can deal with a larger class of problems (e.g.
specifying safety conditions in a system)
Just recently these have become efficient enough to be used for
main stream programming.

Reading List:
http://www.tcs.ifi.lmu.de/˜hwloidl/PCC/reading.html
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