Distributed and Parallel Technology

Introduction to Distributed and Parallel Programming

Hans-Wolfgang Loidl
http://www.macs.hw.ac.uk/~hwloidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

SWATT
R UNIVERSITY
%No proprietary software has been used in producing these slides %“{&?{

9Based on earlier versions by Greg Michaelson and Patrick Maier
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 1/24

The Free Lunch is over!

@ Don’t expect your sequential program to run faster on new
processors (Moore’s law: CPU/memory speed doubles every 18
months)

@ Still, processor technology advances

@ BUT the focus now is on multiple cores per chip

@ Today’s desktops typically have 8 cores.

@ Today’s servers often have 64 or more cores.

@ Latest experimental multi-core chips have up to 1,000 cores'.

@ Additionally, there is specialised hardware such as multi-byte
vector processors (e.g. Intel MMX - 128 bit) or high-end graphics
cards (GPGPUs)

@ Together, this is a heterogeneous, high-performance architecture.

'See “World's First 1,000-Processor Chip”, University of California, Davis, Jun%’i\%&?ﬁ{i

2016
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction 3/24

Computers are always too slow!

HERIOT
GwArT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 2/24
10,000,000
Dual-Core Itanium 2 . /
1,000,000 =
"
Intel CPU Trends /_‘
(sources: Intel, Wikipedia, K. Olukotun}) 7
100,000
/
[]
10,000
1,000 nme s
L]
E -
A
L) —
100 R
am ° 4
/ 7‘(() af
10 a4
AT - A -
T Sy °
- / ‘/{ iotors (000
s) |
! o | / [l @ Clock Speed (MHz)
bl L4 APower (W)
oo
: oren/uocr(lm HERI Ol
0 %WAI r
1970 1975 1980 1985 1990 1995 2000 2005 2010 R
Hans-Wolfgang Loidl (Introduction 4/24

CUT U ity DU\ v ot

2005.

http://www.macs.hw.ac.uk/~hwloidl
https://www.ucdavis.edu/news/worlds-first-1000-processor-chip/

Supercomputers

The Hector supercomputer at the Edinburgh Parallel Computing
Center (2011):

@ total of 464 compute blades;
@ each blade contains four compute nodes,

@ each with two 12-core AMD Opteron 2.1GHz Magny Cours
processors.

@ Total: 44,544 cores
@ Upgraded in 2011 to 24-core chips with a total of 90,712 cores

HERIOT HERIOT
BWALT GWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 5/24 Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 6/24

Supercomputers
Hector is out-dated and was turned off in March 2014. The new
supercomputer at EPCC is Archer:

Application Areas of High-performance Computing

Ever increasing demand for compute power:

@ Cray XC30 architecture

@ uses Intel Xeon Ivy Bridge processors

@ total of 3008 compute nodes

@ each node comprises two 12-core 2.7 GHz Ivy Bridge multi-core
processors,

Total: 72,192 cores

Peak performance: 1.56 Petaflops

each node has at least 64 GB of DDR3-1833 MHz main memory,
scratch disk storage: Cray Sonexion Scalable Storage Units
(4.4PB at 100GB/s)

@ all compute nodes are interconnected via an Aries Network
Interface Card

'For details on Archer see: https:

@ “big data” analysis and data mining: seeking statistically
significant connections in large, disparate data sets
@ weather forecasting: calculating interactions between

temperature/pressure readings through the atmosphere across
the planet

@ genome analysis: matching long protein sequences against each
other

@ 3D graphics: rendering rapidly changing, rich object models in real
time

@ engineering simulation: calculating interactions under stress of all
components of a complex device

@ VLSI development: fully testing VLSI designs in software before
committing to production

//www.epcc.ed.ac.uk/media/publications/newsletters/epcc-newssi, (I){ %E‘l&(l)}
and www.archer.ac.uk
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 —2016/2017 Introduction 7124 Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction 8/24

https://www.epcc.ed.ac.uk/media/publications/newsletters/epcc-news-74
https://www.epcc.ed.ac.uk/media/publications/newsletters/epcc-news-74
www.archer.ac.uk

Parallel Architectures & Clusters

@ The major distinction is between:

» Single Instruction Multiple Data (S/MD);
» Multiple Instruction Multiple Data (MI/MD)

@ SIMD typically involves specialised CPU & communications

» Control CPU + multiple ALUs e.g. CDC 6600
» Today’s graphics processors (GPGPUs)

@ MIMD typically involves specialised communications

» Point to point on channels e.g. Meiko Computing Surface
» Communication hierarchy e.g. nCube, BBN Butterfly

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction

Parallel Architectures & Clusters

Parallel hardware is increasingly heterogeneous:
@ Often SIMD components complement von Neumann CPUs in
standard microprocessors
» digital signal processing (DSP) on vectors of bits
» mainly for graphics and animation
e.g. NVidias Tesla cards or Intel MMX instructions
@ poor support in compilers: the programmer must drop into
assembly language

@ no generic libraries: compiler specific

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction

HERIOT
BWATT

9/24

11/24

HERIOT
gwaLr

Parallel Architectures & Clusters
The demise of specialised hardware:

Few firms now still make specialised parallel systems in hardware
(IBM, NEC, Sun, Cray)

Specialised parallel systems are very expensive

Standard von Neumann CPU price/performance always outstrips
specialised systems (e.g. Beowulf clusters)

In late 20th century, military was most significant customer

e.g. nuclear weapon simulation; early warning systems; ICBM
guidance; Star Wars

End of Cold War led to reduced defence spending

Until recently, most machines in today’s TOP500 list of fastest
supercomputers use standard hardware:
http://www.top500.0rg/list/2016/11/

@ Today, the fastest supercomputers use graphics processors

Hans-Wolfgang Loidl (Heriot-Watt Univ)

(Tesla) or many integrated core (MIC) architectures (Xeon Phi)girT

&/

F21DP2 - 2016/2017 Introduction 10/24

Classes of Architectures

@ Shared memory: CPUs access common memory across

high-speed bus

CPU CPU CPU
‘ Bus ‘
Memory Memory Memory

@ Symmetric Multi-Processing (SMP), e.g. Sun SMP

» advantage: very fast communication between processors
» disadvantage: bus contention limits number of CPUs

@ hierarchical SMP, e.g. IBM ASCI White, 1.512 * 16 PowerPC SMP

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
YLt

F21DP2 - 2016/2017 Introduction 12/24

http://www.top500.org/list/2016/11/

Classes of Architectures

@ Distributed memory: CPUs communicate by message passing on
dedicated high-speed network (e.g. IBM SP2, Cray T3E)

Memory Memory Memory
CPU CPU CPU
‘ Network ‘

@ » advantage: highly scalable
» disadvantage: explicit data communication is relatively slow

HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 13/24

Parallel Programming: implicit parallelism
Implicit parallelism:
@ compiler/run time system exploits parallelism latent in program
e.g. High Performance Fortran
@ avoids need for programmer expertise in
architecture/communication

@ identifying parallelism in programs is hard and undecidable in
general

@ requires complex usage analysis to ensure independence of
potentially parallel components
@ typically look for parallelism in loops
@ check that each iteration is independent of next
@ advantages
» no programmer effort

@ disadvantages
» parallelising compilers very complex

» beyond common patterns of parallelism, often human can do biﬁéﬁl T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction 15/24

Today’s Main High-performance Architectures

@ most contemporary MIMD systems are based on clusters of
commodity workstations linked via high-speed switch & dedicated
fast LAN, e.g. Beowulf

o first developed at NASA in 1994

@ usually built from PCs but also Sun workstations, Apple etc
@ no graphics, sound, display, keyboard, mouse

@ fast network card

@ fast hard disk

@ lots of memory

@ Linux + C + MPI

» advantage: very cheap, good scalability
» disadvantage: slower than specialised architectures

HERIOT
GWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 14/24
Example Code
A good example:
for (i=0; i<n; i++)
ali]l = bl[il*c[i]
@ no dependency between stages
@ could execute a[i] = b[i]*c[i] on separate processors
A bad example:
for (i=1; i<n; i++)
ali] = al[i-1]1*b[i]
@ each stage depends on previous stage so no parallelism
HERIOT
GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction 16/24

Parallel Programming: explicit parallelism Parallel Programming: extend existing languages

Extend existing languages

@ add primitives for parallelism to an existing language
@ advantage:

Explicit parallelism: » can build on current suite of language support e.g. compilers, IDEs
@ programmer nominates program components for parallel etc
execution » user doesn’t have to learn whole new language

» can migrate existing code
@ disadvantage

» no principled way to add new constructs
L » tends to be ad-hoc,
> libraries » i.e. the parallelism is language dependent

@ e.g. many parallel Cs in 1990s
@ none have become standard, yet
@ an emerging standard is Unified Parallel C (UPC)

@ three approaches

» extend existing language
» design new language

HERIOT HERIOT
GWATT GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 17 /24 Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 18/24

Parallel Programming: language independent Parallel Programming: compiler directives

extensions
Compiler directives
Use language independent extensions @ advantage
@ Example: OpenMP » directives are transparent so can run program in normal sequential
@ for shared memory programming, e.g. on multi-core environment

@ Host language can be Fortran, C or C++
@ programmer marks code as

» parallel: execute code block as multiple parallel threads
» for: for loop with independent iterations
» critical: critical section with single access

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction 19/24

» concepts cross languages

@ disadvantage
» up to implementor to decide how to realise constructs
» no guarantee of cross-language consistency
» i.e. the parallelism is platform dependent

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 —2016/2017 Introduction 20/24

Parallel Programming: Develop new languages

Develop new languages
@ advantage:
» clean slate

@ disadvantage

» huge start up costs (define/implement language)

» hard to persuade people to change from mature language
@ Case study: sad tale of INMOS occam (late 1980’s)
developed for transputer RISC CPU with CSP formal model
explicit channels + wiring for point to point CPU communication
multi-process and multi-processor
great British design: unified CPU, language & formal methodology
great British failure
INMOS never licensed/developed occam for CPUs other than
transputer
» T9000 transputers delivered late & expensive compared with other

CPUs libraries HERIOT
GWATT

vV Yy VY VY VY

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 21/24

Reading List
Parallel Programming (introduction and low-level programming):

@ “Designing and Building Parallel Programs — Concepts and Tools
for Parallel Software Engineering”, lan T. Foster, Addison Wesley,
Reading, MA, 1995. ISBN: 9780201575941.
http://www.mcs.anl.gov/dbpp
(a good but dated introductory on-line textbook on parallel programming;
focus on Part I, covering concepts and parallel program design)

@ “Parallel Programming in C with MPIl and OpenMP”, Quinn,
Michael J., 2004, McGraw Hill, ISBN: 0072822562.

(standard textbook on parallel programming; mainly numerical
algorithms and message passing but also a little bit OpenMP
(shared-memory))

@ “Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers”, Barry
Wilkinson, Michael Allen. Second edition, Pearson, May 2004.

ISBN: 0131918656. HERIOT

(another recommended textbook) PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction 23/24

Parallel Programming: Language independent
libraries

Language independent libraries:
@ most successful approach so far
» language independent
» platform independent
@ Examples:
» Posix thread library for multi-core
» Parallel Virtual Machines (PVM) for multi-processor
» Message Passing Interface (MPI) for multi-processor
@ widely available for different languages under different operating
systems on different CPUs
e.g. MPICH-G: MPI for GRID enabled systems with Globus
@ we will use C with MPI on Beowulf
HERIOT
GwArT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 Introduction 22/24

Reading List (cont’d)

Parallel Patterns (high-level programming):

@ “Structured Parallel Programming”, Michael McCool, James
Reinders, Arch Robison. Morgan Kaufmann Publishers, Jul 2012.
ISBN10: 0124159931 (paperback)

(a book on parallel patterns, aimed at practitioners in parallel
programming, using Cilk and TBB as frameworks)

@ “Patterns for Parallel Programming”, Timothy G. Mattson, Beverly
A. Sanders, Berna L. Massingill. Addison Wesley, 1st edition,
2004 (hardback) / 2013 (paperback). ISBN-10: 0321940784.
ISBN-13: 978-0321940780 (the main reference on parallel patterns;
stronger on concepts compared to McCool et al; highly influential)

See the on-line reading list for the course: http://www.macs.hw.
ac.uk/~hwloidl/Courses/F21DP/index.html#reading

HERIOT
YWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 Introduction 24 /24

http://www.mcs.anl.gov/dbpp
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/index.html#reading
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/index.html#reading

	Motivation
	Parallel Architectures & Clusters
	A Classification of Parallel Hardware
	Parallel Programming
	Reading List

