
Distributed and Parallel Technology
Introduction to Distributed and Parallel Programming

Hans-Wolfgang Loidl
http://www.macs.hw.ac.uk/~hwloidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

0No proprietary software has been used in producing these slides
0Based on earlier versions by Greg Michaelson and Patrick Maier

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 1 / 24

Computers are always too slow!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 2 / 24

The Free Lunch is over!

Don’t expect your sequential program to run faster on new
processors (Moore’s law: CPU/memory speed doubles every 18
months)
Still, processor technology advances
BUT the focus now is on multiple cores per chip
Today’s desktops typically have 8 cores.
Today’s servers often have 64 or more cores.
Latest experimental multi-core chips have up to 1,000 cores1.
Additionally, there is specialised hardware such as multi-byte
vector processors (e.g. Intel MMX - 128 bit) or high-end graphics
cards (GPGPUs)
Together, this is a heterogeneous, high-performance architecture.

1See “World’s First 1,000-Processor Chip” , University of California, Davis, June
2016

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 3 / 24

Clock Rates and Performance

1From: Herb Sutter, “The Free Lunch Is Over”, Dr. Dobb’s Journal, 30(3), March
2005.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 4 / 24

http://www.macs.hw.ac.uk/~hwloidl
https://www.ucdavis.edu/news/worlds-first-1000-processor-chip/


Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 5 / 24

Supercomputers

The Hector supercomputer at the Edinburgh Parallel Computing
Center (2011):

total of 464 compute blades;
each blade contains four compute nodes,
each with two 12-core AMD Opteron 2.1GHz Magny Cours
processors.
Total: 44,544 cores
Upgraded in 2011 to 24-core chips with a total of 90,112 cores

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 6 / 24

Supercomputers
Hector is out-dated and was turned off in March 2014. The new
supercomputer at EPCC is Archer:

Cray XC30 architecture
uses Intel Xeon Ivy Bridge processors
total of 3008 compute nodes
each node comprises two 12-core 2.7 GHz Ivy Bridge multi-core
processors,
Total: 72,192 cores
Peak performance: 1.56 Petaflops
each node has at least 64 GB of DDR3-1833 MHz main memory,
scratch disk storage: Cray Sonexion Scalable Storage Units
(4.4PB at 100GB/s)
all compute nodes are interconnected via an Aries Network
Interface Card.

1For details on Archer see: https:
//www.epcc.ed.ac.uk/media/publications/newsletters/epcc-news-74
and www.archer.ac.uk

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 7 / 24

Application Areas of High-performance Computing

Ever increasing demand for compute power:
“big data” analysis and data mining: seeking statistically
significant connections in large, disparate data sets
weather forecasting: calculating interactions between
temperature/pressure readings through the atmosphere across
the planet
genome analysis: matching long protein sequences against each
other
3D graphics: rendering rapidly changing, rich object models in real
time
engineering simulation: calculating interactions under stress of all
components of a complex device
VLSI development: fully testing VLSI designs in software before
committing to production

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 8 / 24

https://www.epcc.ed.ac.uk/media/publications/newsletters/epcc-news-74
https://www.epcc.ed.ac.uk/media/publications/newsletters/epcc-news-74
www.archer.ac.uk


Parallel Architectures & Clusters

The major distinction is between:
I Single Instruction Multiple Data (SIMD);
I Multiple Instruction Multiple Data (MIMD)

SIMD typically involves specialised CPU & communications
I Control CPU + multiple ALUs e.g. CDC 6600
I Today’s graphics processors (GPGPUs)

MIMD typically involves specialised communications
I Point to point on channels e.g. Meiko Computing Surface
I Communication hierarchy e.g. nCube, BBN Butterfly

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 9 / 24

Parallel Architectures & Clusters
The demise of specialised hardware:

Few firms now still make specialised parallel systems in hardware
(IBM, NEC, Sun, Cray)
Specialised parallel systems are very expensive
Standard von Neumann CPU price/performance always outstrips
specialised systems (e.g. Beowulf clusters)
In late 20th century, military was most significant customer
e.g. nuclear weapon simulation; early warning systems; ICBM
guidance; Star Wars
End of Cold War led to reduced defence spending
Until recently, most machines in today’s TOP500 list of fastest
supercomputers use standard hardware:
http://www.top500.org/list/2016/11/

Today, the fastest supercomputers use graphics processors
(Tesla) or many integrated core (MIC) architectures (Xeon Phi).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 10 / 24

Parallel Architectures & Clusters

Parallel hardware is increasingly heterogeneous:
Often SIMD components complement von Neumann CPUs in
standard microprocessors

I digital signal processing (DSP) on vectors of bits
I mainly for graphics and animation

e.g. NVidias Tesla cards or Intel MMX instructions

poor support in compilers: the programmer must drop into
assembly language
no generic libraries: compiler specific

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 11 / 24

Classes of Architectures

Shared memory: CPUs access common memory across
high-speed bus

CPU CPU CPU

Memory Memory Memory

Bus

Symmetric Multi-Processing (SMP), e.g. Sun SMP
I advantage: very fast communication between processors
I disadvantage: bus contention limits number of CPUs

hierarchical SMP, e.g. IBM ASCI White, 1.512 * 16 PowerPC SMP

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 12 / 24

http://www.top500.org/list/2016/11/


Classes of Architectures

Distributed memory: CPUs communicate by message passing on
dedicated high-speed network (e.g. IBM SP2, Cray T3E)

CPU CPU CPU

Memory Memory Memory

Network

I advantage: highly scalable
I disadvantage: explicit data communication is relatively slow

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 13 / 24

Today’s Main High-performance Architectures

most contemporary MIMD systems are based on clusters of
commodity workstations linked via high-speed switch & dedicated
fast LAN, e.g. Beowulf
first developed at NASA in 1994
usually built from PCs but also Sun workstations, Apple etc
no graphics, sound, display, keyboard, mouse
fast network card
fast hard disk
lots of memory
Linux + C + MPI

I advantage: very cheap, good scalability
I disadvantage: slower than specialised architectures

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 14 / 24

Parallel Programming: implicit parallelism
Implicit parallelism:

compiler/run time system exploits parallelism latent in program
e.g. High Performance Fortran
avoids need for programmer expertise in
architecture/communication
identifying parallelism in programs is hard and undecidable in
general
requires complex usage analysis to ensure independence of
potentially parallel components
typically look for parallelism in loops
check that each iteration is independent of next
advantages

I no programmer effort
disadvantages

I parallelising compilers very complex
I beyond common patterns of parallelism, often human can do better

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 15 / 24

Example Code

A good example:

for (i=0; i<n; i++)
a[i] = b[i]*c[i]

no dependency between stages
could execute a[i] = b[i]*c[i] on separate processors

A bad example:

for (i=1; i<n; i++)
a[i] = a[i-1]*b[i]

each stage depends on previous stage so no parallelism

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 16 / 24



Parallel Programming: explicit parallelism

Explicit parallelism:
programmer nominates program components for parallel
execution
three approaches

I extend existing language
I design new language
I libraries

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 17 / 24

Parallel Programming: extend existing languages

Extend existing languages
add primitives for parallelism to an existing language
advantage:

I can build on current suite of language support e.g. compilers, IDEs
etc

I user doesn’t have to learn whole new language
I can migrate existing code

disadvantage
I no principled way to add new constructs
I tends to be ad-hoc,
I i.e. the parallelism is language dependent

e.g. many parallel Cs in 1990s
none have become standard, yet
an emerging standard is Unified Parallel C (UPC)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 18 / 24

Parallel Programming: language independent
extensions

Use language independent extensions
Example: OpenMP
for shared memory programming, e.g. on multi-core
Host language can be Fortran, C or C++
programmer marks code as

I parallel: execute code block as multiple parallel threads
I for: for loop with independent iterations
I critical: critical section with single access

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 19 / 24

Parallel Programming: compiler directives

Compiler directives
advantage

I directives are transparent so can run program in normal sequential
environment

I concepts cross languages

disadvantage
I up to implementor to decide how to realise constructs
I no guarantee of cross-language consistency
I i.e. the parallelism is platform dependent

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 20 / 24



Parallel Programming: Develop new languages

Develop new languages
advantage:

I clean slate

disadvantage
I huge start up costs (define/implement language)
I hard to persuade people to change from mature language

Case study: sad tale of INMOS occam (late 1980’s)
I developed for transputer RISC CPU with CSP formal model
I explicit channels + wiring for point to point CPU communication
I multi-process and multi-processor
I great British design: unified CPU, language & formal methodology
I great British failure
I INMOS never licensed/developed occam for CPUs other than

transputer
I T9000 transputers delivered late & expensive compared with other

CPUs libraries

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 21 / 24

Parallel Programming: Language independent
libraries

Language independent libraries:
most successful approach so far

I language independent
I platform independent

Examples:
I Posix thread library for multi-core
I Parallel Virtual Machines (PVM) for multi-processor
I Message Passing Interface (MPI) for multi-processor

widely available for different languages under different operating
systems on different CPUs
e.g. MPICH-G: MPI for GRID enabled systems with Globus
we will use C with MPI on Beowulf

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 22 / 24

Reading List
Parallel Programming (introduction and low-level programming):

“Designing and Building Parallel Programs – Concepts and Tools
for Parallel Software Engineering”, Ian T. Foster, Addison Wesley,
Reading, MA, 1995. ISBN: 9780201575941.
http://www.mcs.anl.gov/dbpp
(a good but dated introductory on-line textbook on parallel programming;
focus on Part I, covering concepts and parallel program design)
“Parallel Programming in C with MPI and OpenMP”, Quinn,
Michael J., 2004, McGraw Hill, ISBN: 0072822562.
(standard textbook on parallel programming; mainly numerical
algorithms and message passing but also a little bit OpenMP
(shared-memory))
“Parallel Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers”, Barry
Wilkinson, Michael Allen. Second edition, Pearson, May 2004.
ISBN: 0131918656.
(another recommended textbook)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 23 / 24

Reading List (cont’d)

Parallel Patterns (high-level programming):
“Structured Parallel Programming”, Michael McCool, James
Reinders, Arch Robison. Morgan Kaufmann Publishers, Jul 2012.
ISBN10: 0124159931 (paperback)
(a book on parallel patterns, aimed at practitioners in parallel
programming, using Cilk and TBB as frameworks)

“Patterns for Parallel Programming”, Timothy G. Mattson, Beverly
A. Sanders, Berna L. Massingill. Addison Wesley, 1st edition,
2004 (hardback) / 2013 (paperback). ISBN-10: 0321940784.
ISBN-13: 978-0321940780 (the main reference on parallel patterns;
stronger on concepts compared to McCool et al; highly influential)

See the on-line reading list for the course: http://www.macs.hw.
ac.uk/~hwloidl/Courses/F21DP/index.html#reading

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Introduction 24 / 24

http://www.mcs.anl.gov/dbpp
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/index.html#reading
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21DP/index.html#reading

	Motivation
	Parallel Architectures & Clusters
	A Classification of Parallel Hardware
	Parallel Programming
	Reading List

