Distributed and Parallel Technology
C Reuvision (Part 1)

Hans-Wolfgang Loidl
http://www.macs.hw.ac.uk/~hwloidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

HERIOT
PIWATT

UNIVERSITY

HERIOT
0 GWATT
No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 1/25
Source Code in Red Hat 7.1
Source code in Red Hat Linux 7.1%:
Language Source lines of Code SLOC (in %)
C 21461450 (71.18%)
C++ 4575907 (15.18%)
Shell (Bourne-like) 793238 (2.63%)
Lisp 722430 (2.40%)
Assembly 565536 (1.88%)
Perl 562900 (1.87%)
Fortran 493297 (1.64%)
Python 285050 (0.95%)
Tel 213014 (0.71%)
Java 147285 (0.49%)
"From an article on slashdot %’5\1&?}

(http://www.dwheeler.com/sloc/redhat71-vl/redhat7lsloc.html)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 —2016/2017 C Revision (Part I) 3/25

Introduction

@ C is a strict, strongly typed, imperative system programming
language
@ combines high-level constructs with low level access to type
representations and memory
@ origins in BCPL & Fortran
@ system programming language for Unix
@ much wider use: Unix descendants e.g. Linux; Apple e.g. OS X
@ evolution
» C++: Object-oriented extension
» C#: Advance programming language concepts; built on top of
Microsoft .Net
@ Reference: B. Kernighan & D. Ritchie, The C Programming
Language (2nd Ed), Prentice-Hall, 1988
@At
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Partl) 2/25
Basic C Usage
@ Put program text in namel.c
% gcc -0 name2 namel.c J

@ this compiles name1 . ¢ using the GNU C compiler and puts the

executable in name?

% ./name2)

@ run compiled program in name?2

% ./name2 arg1 ...argN]

@ run name2 with command line arguments argl ... argN

% gcc -p -0 name2 name1i.c |
@ display profile information after running name2 %E&I\gl)_;};
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 —2016/2017 C Revision (Part I) 4/25

http://www.macs.hw.ac.uk/~hwloidl
http://www.dwheeler.com/sloc/redhat71-v1/redhat71sloc.html

Compiling with Optimisation
%gcc...-O... |

@ this generates optimised code

% gcc -c namefi.c ...nameN.c J

@ this generates object files namel .0 ...nameN.o from namel .c
...nameN. c but not executables

% gcc -0 name name1.o ...nameN.o J

@ link object files namel .0 ...nameN. o and put executable in name

% man gcc J

@ displays Unix manual entry for GNU C compiler
@ Aside: can use cc instead of gcc, as proprietary C compiler forHERI

oT
host OS WWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 5/25

Program Layout

. #include ...

. #define ...

. extern ...

. declarations

function declarations

. main(int argc,char xx argv)

}

~ O U1 D W DN

@ (textually) import files:
» #include “...” from current directory
» #include <...> from system directory
» eg. #include <stdio.h>

© macro and constant definitions

© names/types of variables/functions used in this file but declared in
linked files

© declare all variables, used later on

@ declare all functions, used later on

© main function with optional command line argument count and £

al'rd
4113
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part I) 7125

Compiling for Debugging

%gcc...g... |

@ this generates code with debugging information

% gdb name2 J

@ this starts the GNU debugger on this program

% run argt ...argN]

@ this excutes the program within the debugger

% man gdb)

@ check the man pages for commands, such as setting breakpoints,
in the debugger

@ Aside: the 1 page gdb cheat sheet is a very useful summary %%1\9;};

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 6/25

Basic C Types

@ The following variable declaration allocates space for the variable
identifier of type type on the stack

type identifier;
@ the variable remains in existence within the current {. ..} block

@ To read the memory address for the start of a variable (“lvalue”)
use

&identifier;

@ To read the contents of a variable, whose address is denoted by
expression (“rvalue”) use

*expression;

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part I) 8/25

Sizes of Data Structures Structured Types

@ To get the size of a data structure (in byte) use this function ® Array declaration:

)) type identifier [int];
int sizeof (type);)
@ this allocates the array on the stack

® NB:the result may depend on OS & CPU & compiler @ NB:identifier is an alias for the address, not a variable in the

@ basic types and their sizes usual sense, eg.
int 4 bytes | char 1 byte int al[3];
short 2 bytes | float 4 bytes printf("a: %x; &a: %x",a,&a);
long 4 bytes | double 8 bytes

==> a: 80497fc; &a: 80497fc

@ NB:intis stored from most significant to least significant byte, e.g. . . ,
9 9 y 9 @ Aside: %x means, print as hexadecimal
int aj;
Z o n arr lemen
I to access an array element use
] identifier[exp]
isstoredas 67 45 23 01

@ same as: * (identifi + * si for t
@ NB: the size of a pointer depends on architecture (32-bit means 4 trdentifier oEp size for type)

@ i.e. read the contents of offset for exp elements of type from

byte pointers HERIOT HERIOT
yep) gwall address of 1st byte EIWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 9/25 Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 10/25
Multi-dimensional Arrays Structures

To allocate a structure, use

@ To allocate a multi-dimensional array, use
struct {typel idl; ... typeN 1dN;} identifier;

type identifier[intl] [int2];]]
allocate size of t ypel + ...+ size for t ypeN on stack

identifier is name of variable made up of all these bytes
¢identifier is address of 1st byte in sequence

stucture fields are allocated in the given order

To define only the structure type, use

@ this allocates space for int1 arrays of int2 = size for type
@ to read the value of an array element use

identifier[expl] [exp2]

@ this is the same as:
* (identifier + (intl*expl + exp2) * size for
type)

@ i.e. skip expl rows of length int 1 and then skip exp2 columns

struct identifierl { typel idl; ... typeN idN }
@ the name of the type is st ruct identifierl
@ does not allocate space!

HERIOT HERIOT
YWATT YWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part 1) 11/25 Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part 1) 12/25

Structures

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Both forms can be combined, eg

struct identifierl identifier2;

this associates identifier2 with 1st byte of new sequence of
type struct identifierl

to access a field in a structure, use identifier.idi;
same as x (&identifier + size for typel

for typeilI-1)

i.e. read the contents of offset of preceding fields from start of
structure

NB: for struct { } identifier;, we have
identifier != &identifier, €g

+ size

[)

printf ("m: %x; &m: %x", m, &m);

==> m: 64636261; &m: 8049808
61 == ASCII ‘a’ in hex; 62 == ASCII ‘b’ in hex ...

NB: struct fields held left to right but printing struct as hex coerggs,
to int and accesses bytes right to left as most to least significant!/*! !

F21DP2 — 2016/2017 C Revision (Part I) 13/25

Pointers

. HERIOT
(empty pointer: NUTLT) PwaLt
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part 1) 15/25

To declare a pointer, use

type *identifier;

identifier holds address for byte sequence for t ype
allocates space for address but does not create instance
struct node { int wval; node =*next; }

node needs space for int and space for pointer to node
To declare a variable 11ist as a pointer to node, use
struct node xlist;

must use malloc to allocate space for node

for structure field access via pointers, use
identifier->idI

same as: x (identifier + size for typel
for typel-1)

i.e. read contents of offset of preceding elements from byte
sequence that identifier points at

+ size

Recursive Structures

@ NB: we cannot directly define recursive structs

struct node { int wval; node next; }
struct node list;
@ list is allocated space for a struct node

» space for an int

» space for a struct node
* space foran int
* space fora struct node

@ solution: use indirect recursion via pointers

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I)

Dynamic Space Allocation
@ To dynamically allocate memory in the heap, use

malloc (int)

allocates int bytes on heap

returns address of 1st byte

like new in C#/Java

returns char »*; use coercion to convert type
to de-allocate memory, use an explicit free

free(void =)

returns space to heap

space must have been allocated by malloc
NB: does not recursively return space
Example:

list = (node *)malloc(sizeof (node));

this allocates space for int and space for pointer to node
list->val = 0;
list->next = NULL;

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part 1)

HERIOT
GWATT

14/25

HERIOT
SWATT

16/25

Example: Generating a list

/* types x/
typedef struct _node

{ int value; struct _node =*next;

/* generate a list from an array =/

node *mkList (int len,
int 1i;

int *arr) {

node *curr, =last, =*root;

if (len>0) {
last = (nodex) malloc(lxsizeof (node));
last->value = arr[0];
root = last;

} else {

return NULL;
}

for (i=0; i<len-1;

i+4+) {

curr = (nodex) malloc (lxsizeof (node));
curr->value = arr[i+1];
last—->next = curr;

last = curr;
}
last->next = NULL;
return root;
Hans-Wolfgang Loidl (Heriot-Watt Univ)

F21DP2 - 2016/2017

Array data layout

int a[5][5]

a[0][0]

a[4][0]

a[0][4]

a[4][4]

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F21DP2 —2016/2017

} node;
HERIOT
BWALT
C Revision (Part I) 17/25
HERIOT
PWALT
C Revision (Part I) 19/25

Pointers vs Arrays

@ For the difference between arrays and pointers, consider
type identifier[intl] [int2]

@ this allocates int1 * int2 array of type
@ 2nd dimension all length int2
@ actually allocated as int1 * int2 continuous locations for type
@ BUT:
type * identifier[int]
@ allocates array of int pointers to type
@ must use malloc to allocate 2nd dimension
@ arrays in 2nd dimension can be any sizes
@ AND:
type ** identifier
@ allocates pointer to pointer to type
@ must use malloc to allocate 1st and 2nd dimension
@ 1st and 2nd dimension can be any size
@ inall cases, use identifier[expl] [exp2] to access an %ggs?:}:
element
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 18/25
Array data layout
int *al[5]
0][0 0][4
a0} a[0][0] a[0][4]
alll—=1 a[110] a[1][4]
a[2]
a2
a[3] a[2][4]
a[4]\
\ a[3][0] a[3][4]
a[4][0] a[4][4]
HERIOT
PwaLT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 —2016/2017 C Revision (Part 1) 20/25

Pointer Arithmetic
@ For pointer arithmetic, consider:
type xidentifier
@ arithmetic on identifier is in units of the size for type
identifiertexp ==
identifier = identifier + exp » size for type
@ i.e. pointer has moved on exp elements in sequence
identifier-exp ==
identifier = identifier - exp » size for type
@ i.e. pointer has moved back exp elements in sequence
identifier++ ==

identifier = identifier + size for type

@ i.e. pointer has moved on one element

identifier—- ==
identifier = identifier - size for type
. . HERIOT
@ i.e. pointer has moved back one element GWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 21/25

Type Coercions

@ To coerce an expression to a type, use
(type)expression;

@ this evaluates expression to value

@ then treats value as if of type type

@ does not physically transform expression

@ as if overlaid template for type on value

HERIOT
YWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part 1) 23/25

Example: memcpy

A typical example of such pointer arithmetic is this function to copy a
block of memory from the location pointed to by p1 to the location
pointed to by p2.

void memcpy (int xpl, int xp2, int n) {
int *p = pl;
int xg = p2;
for (int i = 0; i<n; i++) {
*g+t+ = xp++;

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 22/25

Example for Type Coercions

int x; char * c;

0x01234567

c = (char) (&x);

printf ("$x %$x %$x %$x",
cl[0],cll]l,cl2],cl3]);

X

==> 67 45 23 01

x iS4 hex bytes 01 23 45 67

stored from most significant to least significant

&x returns address of 1st byte of int

(char «) coerces address of 1st byte of int to address of 1st
byte of array of char

c[0] is 1st byte of x, c [1] is 2nd byte of x etc

coercions very important for inter-process communication

if space for data allocated continuously then can:

» coerce arbitrary type to sequence of char for transmission coerce
i HERIOT
back to type on reception . BEWALT
» coerce back to type on reception '
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 - 2016/2017 C Revision (Part 1) 24/25

Exercises

@ Write a function node xappend (node xx, node =y) that
appends the elements of the the second list v to the end of the
first list x (i.e. append ([1,2], [3,4]) ==> [1,2,3,4]).

@ How does this affect the list x?
@ Write a second version that does not modify the input lists.
@ Under which condition is it safe to use the first version?

@ Write a function node xreverse (node xx) that reverses the
elements in the list (i.e. reverse ([1,2,31) ==> [3,2,1])

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 — 2016/2017 C Revision (Part I) 25/25

	Introduction
	Basic C Usage
	Program Layout
	Basic C Types
	Arrays
	Structures
	Pointers
	Type Coercions
	Exercises

