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Part I: Parallel Program Design

We follow
Ian Foster. Designing & Building Parallel Programs: Concepts &
Tools for Parallel Software Engineering, Addison-Wesley, 1995

I DBPP Online: http://www.mcs.anl.gov/~itf/dbpp/
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Parallel Programming Model

M
em

ory

Model: tasks connected by channels
well-suited for distributed memory architectures (and MPI)
see DBPP Online, Part I, Chapter 1.3
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Parallel Programming Model — Tasks

Parallel computation = set of concurrently executing tasks
Task = sequential program + local memory + inports + outports
Tasks can

I compute (in local memory),
I send messages to outports or receive messages from inports,

F Sending is non-blocking but receiving is blocking.
I create new tasks or terminate.

F #Tasks can vary dynamically during program execution.

Multiple tasks can be mapped to physical processors.
I Mapping does not affect the program semantics.
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Parallel Programming Model — Channels

Channel = outport (task T1) + message queue + inport (task T2)
I Channels are uni-directional (from T1 to T2)
I Messages are ordered (FIFO order)

Communication topology can vary dynamically.
I Channels can be created and deleted.
I References to channels (ports) can be sent in messages, i.e.

channels are first class objects.
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Designing Parallel Algorithms

PROBLEM

partition communication

mapping

agglomeration

Methodology
see DBPP Online, Part I, Chapter 2
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Designing Parallel Algorithms — Partition
Goal: Identify parallel tasks — the more the better .

Methods:
Domain decomposition: divide data

I E.g. matrix decomposition
Functional decomposition: divide computation

I E.g. pipeline

Good Design checklist:
Does #tasks scale with problem size?

I Or else algorithm will not scale.
Tasks of comparable size?

I Or else load balancing will be hard.
Does partition avoid redundant computation/storage?

I Or else algorithm may not scale.
#tasks > 10 ∗ #processors?

I Or else there will not be much left to design in later stages.
Are there alternative partitions?
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Designing Parallel Algorithms — Communication
Goal: Identify channels — the less the better .

Guidelines:
Prefer local over global communication.

I Distribute global comm via divide-and-conquer (e.g. merge sort)
Compute and communicate concurrently (latency hiding).

I Re-order computation and communication.
I Consider asynchronous (request/response) communication.

Good Design checklist:
All tasks perform about the same number of comm operations?

I If not try to distribute comm operations more equitably.
Each task communicates only with few neighbours?

I If not try to distribute global communication.
Are communication operations able to proceed concurrently?

I If not try to parallelise using divide-and-conquer.
Are tasks able to compute concurrently?

I If not try reordering communication and computation, or try a
different algorithm.
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Designing Parallel Algorithms — Agglomeration

Goal: Combine tasks — to improve performance or reduce devel cost.

Guidelines:
Maintain scalability while

Increasing locality
I By grouping senders and receivers of data together.
I By replicating data/computation.

Decreasing granularity
I By changing domain decomposition.

Re-using sequential code

Note: Agglomeration will in general yield more tasks than processors.
If #tasks = #processors skip Mapping step.
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Designing Parallel Algorithms — Agglomeration

Good Design checklist:
Is communication cost reduced and locality increased?
Does benefit of replicated computation outweigh cost?
Does replicated data compromise scalability?

I E.g. not scalable if replicated data grows linearly in #processors.

Are tasks similar in computation and comm costs?
Does #tasks still scale with problem size?
Is there still sufficient parallelism?

I Beware: Ultimate goal is efficiency, not maximum parallelism!
Could tasks be agglomerated further?

I Other things being equal, coarser granularity increases efficiency.

Development cost of modifying existing sequential code?
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Designing Parallel Algorithms — Mapping

Goal: Assign tasks to procs — maximise utilisation & minimise comm

Methods:
Static task allocation:

I 1 task/proc is optimal for regular computation cost
F E.g. parallelisation by domain decomposition

Dynamic task allocation (aka. scheduling):
I For programs with irregular computation cost, irregular

communication irregular, or dynamically variable #tasks.
F Requires order of magnitude more tasks than processors.

I Centralised allocation:
F Master sends tasks to fixed pool of workers.
F Note: Good locality but master can become bottleneck.

I Distributed allocation:
F Each processor may pull tasks from or push tasks to neighbours.
F Strategy (who to push to/pull from) may be probabilistic.
F Note: Good scalability but hard to maintain locality.
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Designing Parallel Algorithms — Mapping

Good Design checklist:
Is there a rationale for picking static or dynamic allocation?
Is the centralised scheduler likely to become a bottleneck?
Is there a rationale for picking the chosen distributed scheduling
strategy?
Is #tasks large enough to guarantee balanced loads?

I Particularly important for probabilistic strategies.
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Part II: Parallel Programming
Design Patterns

We follow
T. Mattson, B. Sanders, B. Massingill. Patterns for Parallel
Programming, Addison-Wesley, 2005

I Complement’s Foster’s approach
C. Campbell, R. Johnson, A. Miller, S. Toub. Parallel Programming
with Microsoft .NET — Design Patterns for Decomposition and
Coordination on Multicore Architectures, Microsoft Press. August
2010.

I Implements parallel patterns in C#
I Available online as http:
//msdn.microsoft.com/en-us/library/ff963553.aspx
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Design Stages

4 stages:
1 Finding Concurrency
2 Algorithm Structure
3 Supporting Structures
4 Implementation Mechanisms

We will focus on (1) and (2).
(3,4) recommended reading for design/implementation details.
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Finding Concurrency

3 classes of patterns:
1 Decomposition Patterns

I Task decomposition: decomp problem into concurrent tasks
I Data decomposition: decomp data into independent units

2 Dependency Analysis Patterns
I identify task dependencies (emphasis on data sharing)
I group/order tasks

3 Design Evaluation
I not a pattern
I similar to Foster’s good design checklists
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Algorithm Structure

3 classes of patterns:
1 Organise by Task Decomposition

I Linear: Task Parallelism
I Recursive: Divide & Conquer

2 Organise by Data Decomposition
I Linear: Geometric Decomposition

F E.g. lists, vectors, matrices
I Recursive: Recursive Data

F E.g. trees

3 Organise by Data Flow
I Regular: Pipeline or task DAG

F static communication structure
I Irregular: Event-based co-ordination

F dynamic (often unpredictable) communication structure
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Part III: Algorithmic Skeletons

Resources:
Murray I. Cole. Algorithmic Skeletons: Structured Management of
Parallel Computation, MIT Press, 1989

I Cole’s PhD thesis, first characterisation of skeletons.
I http://homepages.inf.ed.ac.uk/mic/Pubs/
skeletonbook.ps.gz

Skeletal Parallelism homepage
I http://homepages.inf.ed.ac.uk/mic/Skeletons/
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Algorithmic Skeletons — What?

A skeleton is
a useful pattern of parallel computation and interaction,
packaged as a framework/second order/template construct (i.e.
parametrised by other pieces of code).
Slogan: Skeletons have structure (coordination) but lack detail
(computation).

Each skeleton has
one interface (e.g. generic type), and
one or more (architecture-specific) implementations.

I Each implementations comes with its own cost model .

A skeleton instance is
the code for computation together with
an implementation of the skeleton.

I The implementation may be shared across several instances.

Note: Skeletons are more than design patterns.
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Algorithmic Skeletons 18 / 37

Algorithmic Skeletons — How and Why?

Programming methodology:
1 Write sequential code, identifying where to introduce parallelism

through skeletons.
2 Estimate/measure sequential processing cost of potentially

parallel components.
3 Estimate/measure communication costs.
4 Evaluate cost model (using estimates/measurements).
5 Replace sequential code at sites of useful parallelism with

appropriate skeleton instances.

Pros/Cons of skeletal parallelism:
+ simpler to program than unstructured parallelism
+ code re-use (of skeleton implementations)
+ structure may enable optimisations
- not universal
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Common Skeletons — Pipeline

stage 1 stage 2 ... stage N

proc 1 proc 2 proc N

Data flow skeleton
I Data items pass from stage to stage.
I All stages compute in parallel.
I Ideally, pipeline processes many data items (e.g. sits inside loop).
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Pipeline — Load Balancing

Typical problems:
1 Ratio communication/computation too high.
2 Computation cost not uniform over stages.

Ad (1) Pass chunks instead of single items

stage 1 stage 2 ... stage N

proc 1 proc 2 proc N

Ad (1,2) Merge adjacent stages

stage 1

proc 1

stage 2; stage 3

proc 2

... stage N

proc N−1
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Common Skeletons — Parallel Tasks

task 1 task 2 task N
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...

proc Nproc 2

split

merge

proc 1

proc N+1

proc N+2

Data flow skeleton
I Input split on to fixed set of (different) tasks.
I Tasks compute in parallel.
I Output gathered and merged together.

F Split and merge often trivial; often executed on proc 1.

Dual (in a sense) to pipeline skeleton.
Beware: Skeleton name non-standard.
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Common Skeletons — Task Farm

...worker 1 worker 2 worker N

farmer

proc Nproc 1 proc 2

proc N+1

Data parallel skeleton (e.g. parallel sort scatter phase)
I Farmer distributes input to a pool of N identical workers.
I Workers compute in parallel.
I Farmer gathers and merges output.

Static vs. dynamic task farm:
I Static: Farmer splits input once into N chunks.

F Farmer may be executed on proc 1.
I Dynamic: Farmer continually assigns input to free workers.
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Task Farm — Load Balancing

Typical problems:
1 Irregular computation cost (worker).

I Use dynamic rather than static task farm.
I Decrease chunk size: Balance granularity vs. comm overhead.

2 Farmer is bottleneck.
I Use self-balancing chain gang dynamic task farm.

F Workers organised in linear chain.
F Farmer keeps track of # free workers, sends input to first in chain.
F If worker busy, sends data to next in chain.

...worker 1 worker 2 worker N

farmer

proc Nproc 1 proc 2

proc N+1
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Common Skeletons — Divide & Conquer

parent

child

parent/
child

child child

parent/
child

child child

parent/
child

parent/
child

child

proc 1

proc 2 proc 3

proc 5 proc 6

proc 4 proc 7

proc  8 proc 9 proc 10 proc 11

Recursive algorithm skeleton (e.g. parallel sort merge phase)
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Common Skeletons — Divide & Conquer II

Recursive algorithm skeleton
I Recursive call tree structure

F Parent nodes divide input and pass parts to children.
F All leaves compute the same sequential algorithm.
F Parents gather output from children and conquer , i.e. combine and

post-process output.

To achieve good load balance:
1 Balance call tree.
2 Process data in parent nodes as well as at leaves.
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Skeletons in the Real World
Skeletal Programming

can be done in many programming languages,
I skeleton libraries for C/C++
I skeletons for functional languages (GpH, OCaml, ...)
I skeletons for embedded systems

is still not mainstream,
I Murray Cole. Bringing Skeletons out of the Closet, Parallel

Computing 30(3) pages 389–406, 2004.
I González-Vélez, Horacio and Leyton, Mario. A survey of

algorithmic skeleton frameworks: high-level structured parallel
programming enablers, Software: Practice and Experience 40(12)
pages 1135–1160, 2010.

but an active area of research.
I > 30 groups/projects listed on skeleton homepage

and it is slowly becoming mainstream
I TPL library of Parallel Patterns in C# (blessed by Microsoft)
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Part IV: Implementing Skeletons
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Skeletons Are Parallel Higher-Order Functions

Observations:
A skeleton (or any other template) is essentially a higher-order
function (HOF), ie. a function taking functions as arguments.

I Sequential code parameters are functional arguments.

Skeleton implementation is parallelisation of HOF.
Many well-known HOFs have parallel implementations.

I Thinking in terms of higher-order functions (rather than explicit
recursion) helps in discovering parallelism.

Consequences:
Skeletons can be combined (by function composition).
Skeletons can be nested (by passing skeletons as arguments).
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Skeletons Are PHOFs — Pipeline

g fx f (g x)

Code (parallel implementation in red)

pipe2 :: (b -> c) -> (a -> b) -> a -> c
pipe2 f g x = let y = g x in

y ‘par‘ f y

Notes:
pipe2 is also known as function composition.
In Haskell, sequential function composition is written as . (read
“dot”).
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Skeletons Are PHOFs — Parallel Tasks

merge

split

f g

x

f y g z

merge (f y, g z)

zy

Code (parallel implementation in red)

task2 :: (a -> (b,c)) -> (d -> e -> f) -> (b -> d) -> (c -> e) -> a -> f
task2 split merge f g x = let (y,z) = split x

fy = f y
gz = g z in

fy ‘par‘ gz ‘pseq‘ merge fy gz
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Skeletons Are PHOFs — Task Farm

...x2 −> f x2 xN −> f xN

map f

x1 −> f x1

[x1, x2, ..., xN] [f x1, f x2, ..., f xN]

Code (parallel implementation in red)
farm :: (a -> b) -> [a] -> [b]
farm f [] = []
farm f (x:xs) = let fx = f x in

fx ‘par‘ fx : (farm f xs)

Notes:
farm is also known as parallel map.

I Map functions exist for many data types (not just lists).
Missing in implementation: strategy to force eval of lazy list.
Strategies also useful to increase granularity (by chunking).
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Skeletons Are PHOFs — Divide & Conquer

divide

conquer

Code (parallel implementation in red)
dnc :: (a -> (a,a)) -> (b -> b -> b) -> (a -> Bool) -> (a -> b) -> a -> b
dnc div conq atomic f x | atomic x = f x

| otherwise = let (l0,r0) = div x
l = dnc div conq atomic f l0
r = dnc div conq atomic f r0 in

l ‘par‘ r ‘pseq‘ conq l r
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Skeletons Are PHOFs — Divide & Conquer
Notes:

Divide & Conquer is a generalised parallel fold .
I Folds exist for many data types (not just lists).

Missing in impl: strategies to force eval and improve granularity.

Aside: folding/reducing lists
fold :: (a -> a -> a) -> a -> [a] -> a
-- fold f e [x1,x2,...,xn] == e ‘f‘ x1 ‘f‘ x2 ... ‘f‘ xn, provided that
-- (1) f is associative, and
-- (2) e is an identity for f.

-- Tail-recursive sequential implementation:
fold f e [] = e
fold f e (x:xs) = fold f (e ‘f‘ x) xs

-- Parallel implementation as instance of divide & conquer:
fold f e = dnc split f atomic evalAtom where

split xs = splitAt (length xs ‘div‘ 2) xs
atomic [] = True
atomic [_] = True
atomic _ = False
evalAtom [] = e
evalAtom [x] = x
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Program Transformations
Observation:

HOFs can be transformed into other HOFs with provably
equivalent (sequential) semantics.

Example: Pipeline of farms vs. farm of pipelines
map g . map f == map (g . f)

farmer

farmer

f

g

farmer

f

g

use map g . map f (pipe of farms) if ratio comp/comm high
use map (g . f) (farm of pipes) if ratio comp/comm low
More transformations in

I G. Michaelson, N. Scaife. Skeleton Realisations from Functional
Prototypes, Chap. 5 in S. Gorlatch and F. Rabhi (Eds), Patterns and
Skeletons for Parallel and Distributed Computing, Springer, 2002
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Program Development with Functional Skeletons

Programming Methodology:
1 Write seq code using HOFs with known equivalent skeleton.
2 Measure sequential processing cost of functions passed to HOFs.
3 Evaluate skeleton cost model.
4 If no useful parallelism, transform program and go back to 3.
5 Replace HOFs that display useful parallelism with their skeletons.

Tool support:
Compilers can automate some steps (see Michaelson/Scaife)

I Only for small, pre-selected set of skeletons
Example: PMLS (developed by Greg Michaelson et al.)

I Skeletons: map/fold (arbitrarily nested)
I Automates steps 2-5.

F Step 2: automatic profiling
F Step 4: rule-driven program transformation + synthesis of HOFs
F Step 5: map/fold skeletons implemented in C+MPI
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Further Reading

Ian Foster. “Designing & Building Parallel Programs: Concepts &
Tools for Parallel Software Engineering”, Addison-Wesley, 1995
Online: http://www.mcs.anl.gov/~itf/dbpp/
J. Dean, S. Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. Commun. ACM 51(1):107–113, 2008.
Online: http://dx.doi.org/10.1145/1327452.1327492
G. Michaelson, N. Scaife. “Skeleton Realisations from Functional
Prototypes”, Chap. 5 in S. Gorlatch and F. Rabhi (Eds), Patterns
and Skeletons for Parallel and Distributed Computing, Springer,
2002
Michael McCool, James Reinders, Arch Robison. “Structured
Parallel Programming”. Morgan Kaufmann Publishers, Jul 2012.
ISBN10: 0124159931 (paperback)
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