
Distributed and Parallel Technology
Datacenter, Warehouse and Cloud Computing

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

Semester 2 — 2016/17

0Based on earlier versions by Greg Michaelson and Patrick Maier
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 1 / 28

What Is Datacenter (Warehouse) Computing

A datacenter is
a server farm — a room/floor/warehouse full of servers.
underpinning the much wider area of Cloud Computing.

Datacenter requirements:
Massive storage and compute power
High availability — 24/7 operation, no downtimes acceptable
High security against intrusion (both physical and electronic)
Homogeneous hardware and software architecture
Recently: Low power consumption

Who uses datacenters?
Every big name on the internet: Google, Amazon, Facebook, ...
Lots of other companies

I to provide services over the internet and/or
I to manage their business processes

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 2 / 28

Datacenter Computing — Architecture
web servers

app servers

ISP2ISP1

firewall

Architecture stack:
replicated web servers, connected to multiple ISPs
firewall (often also replicated)
1000s of application servers, each with large disk

I app servers run application software
I data stored on app servers (via distributed FS/DB)

F no dedicated file server/data base servers
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 3 / 28

Datacenter Computing — Application Programming

Problems:
Distributed resources:

I Often data distributed over 1000s of machines
Performance:

I Scalability of applications is paramount
Availability:

I Apps must cope with compute/network component downtimes
I Apps must re-configure dynamically when cluster is upgraded

Solution: Distributed execution engine
Offers skeleton-based programming model
Hides most performance issues from programmer

I Automatic parallelisation, controllable by few parameters
Hides all distribution and availability issues from programmer
Some particular engines:

I MapReduce (Google; Apache Hadoop)
I Dryad (Microsoft)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 4 / 28



MapReduce — Overview

Observation
Many applications conceptually simple (e.g. triv. data-parallel)
Reliably dist. even simple apps on 1000s of nodes is a nightmare.

I Skeletons could help!

MapReduce programming model
MapReduce skeleton

I Programmer writes only map and reduce functions.
I Runtime system takes care of parallel execution and fault tolerance.

Implementation requires
Distributed file system (Google: GFS, Hadoop: HDFS)
For DB apps: dist. data base (Google: BigTable, Hadoop: HBase)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 5 / 28

MapReduce — For Functional Programmers

What func programmers think when they hear “map/reduce”

-- map followed by reduce (= fold of associative m with identity e)
fp_map_reduce :: (a -> b)

-> (b -> b -> b) -> b
-> [a] -> b

fp_map_reduce f m e = foldr m e . map f

-- map followed by group followed by groupwise reduce
fp_map_group_reduce :: (a -> b)

-> ([b] -> [[b]])
-> ([b] -> b)
-> [a] -> [b]

fp_map_group_reduce f g r = map r . g . map f

-- list-valued map then group then groupwise list-valued reduce
fp_map_group_reduce’ :: (a -> [b])

-> ([b] -> [[b]])
-> ([b] -> [b])
-> [a] -> [[b]]

fp_map_group_reduce’ f g r = map r . g . (concat . map f)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 6 / 28

MapReduce — For Functional Programmers

Google’s MapReduce (sequential semantics)

-- list-valued map then fixed group stage then list-valued reduce
map_reduce :: Ord c => ((a,b) -> [(c,d)])

-> (c -> [d] -> [d])
-> [(a,b)] -> [(c,[d])]

map_reduce f r = map (\ (k,vs) -> (k, r k vs)) .
(group . sort) .
(concat . map f)

where sort :: Ord c => [(c,d)] -> [(c,d)]
sort = sortBy (\ (k1,_) (k2,_) -> compare k1 k2)
group :: Eq c => [(c,d)] -> [(c,[d])]
group = map (\ ((k,v):kvs) -> (k, v : map snd kvs)) .

groupBy (\ (k1,_) (k2,_) -> k1 == k2)

Specialised for processing key/value pairs.
I Group by keys
I Reduction may depend on key and values

Not restricted to lists — applicable to any container data type
I Reduction should be associative+commutative in 2nd argument

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 7 / 28

MapReduce — Applications
TotientRange
-- Euler phi function
euler :: Int -> Int
euler n = length (filter (relprime n) [1 .. n-1])
where relprime x y = hcf x y == 1

hcf x 0 = x
hcf x y = hcf y (rem x y)

-- Summing over the phi functions in the interval [lower .. upper]
sumTotient :: Int -> Int -> Int
sumTotient lower upper = head (snd (head (map_reduce f r input)))

where input :: [((),Int)]
input = zip (repeat ()) [lower, lower+1 .. upper]
f :: ((),Int) -> [((),Int)]
f (k,v) = [(k, euler v)]
r :: () -> [Int] -> [Int]
r _ vs = [sum vs] -- reduction assoc+comm in 2nd arg

Degenerate example: only single key
Still exhibits useful parallelism

I but would not perform well on Google’s implementation

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 8 / 28



MapReduce — Applications
URL count
isURL :: String -> Bool
isURL word = "http://" ‘isPrefixOf‘ word

-- input: lines of log file
-- output: frequency of URLs in input
countURL :: [String] -> [(String,[Int])]
countURL lines = map_reduce f r input
where input :: [((),String)]

input = zip (repeat ()) lines
f :: ((),String) -> [(String,Int)]
f (_,line) = zip (filter isURL (words line)) (repeat 1)
r :: String -> [Int] -> [Int]
r url ones = [length ones]

Map phase
1 breaks line into words
2 filters words that are URLs
3 zips URLs (which become keys) with value 1

Group phase groups URLs with values (which = 1)
Reduction phase counts #values

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 9 / 28

MapReduce — How To Parallelise

Sequential code

map_reduce f r = map (\ (k,vs) -> (k, r k vs)) .
(group . sort) .
(concat . map f)

suggests 3-stage pipeline
1 map phase

I data parallel task farm
2 parallel sorting and grouping

I parallel mergesort
3 groupwise reduce phase

I data parallel task farm

Note: This is not how Google do it.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 10 / 28

Google MapReduce — Execution Overview

user
program

worker

worker

worker

split 0

split 1

split 2

split 3

split 4

master

worker

worker output
file 1

output
file 0read (3) local write (4)

write (6)

assign reduce (2)

assign m
ap (2

)

fork (1)fork (1)

input
files

map
phase

intermediate files
(on local disks)

reduce
phase

output
files

remote read (5)

fork (1)

J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters, Commun. ACM 51(1):107–113, 2008

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 11 / 28

Google MapReduce — Execution Overview

Execution steps:
1 User program forks master, M map workers, R reduce workers.
2 Master assigns map/reduce tasks to map/reduce workers.

I Map task = 16–64 MB chunk of input
I Reduce task = range of keys + names of M intermediate files

3 Map worker reads input from GFS and processes it.
4 Map worker writes output to local disk.

I Output partitioned into R files (grouped by key)
5 Reduce worker gathers files from map workers and reduces them.

1 Merge M intermediate files together, grouping by key.
2 Reduce values groupwise.

6 Reduce worker writes output to GFS.
7 Master returns control to user program after all task completed.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 12 / 28



Main Selling Points of MapReduce

Easy to use for non-experts in parallel programming (details are
hidden in the MapReduce implementation)
Fault tolerance is integrated in the implementation
Good modularity: many problems can be implemented as
sequences of MapReduce
Flexibility: many problems are instances of MapReduce
Good scalability: using 1000s of machines at the moment
Tuned for large data volumes: several TB of data
Highly tuned parallel implementation to achieve eg. good load
balance

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 13 / 28

Similar Datacenter Frameworks

Apache Hadoop
MapReduce programming model
Open source Java implementation

I http://hadoop.apache.org/

Dryad (Microsoft)
More general skeleton:

I Programmer specifies directed acyclic dataflow graph:
F vertex = sequential program
F edge = unidirectional communication channel

I Generalises Unix paradigm of “piping” apps together
High-level languages building on Dryad

I Nebula scripting language
I DryadLINQ: database query compiler

Closed source C++ implementation
M. Isard et al. Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks, EuroSys 2007

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 14 / 28

How MapReduce/Hadoop Work

Components:
Distributed file system

I We’ll have a look at HDFS (Apache Hadoop)

D. Borthakur. HDFS Architecture.
http://hadoop.apache.org/common/docs/current/
hdfs_design.html

I GFS (Google) is quite similar (but pre-dates MapReduce)

S. Ghemawat, H. Gobioff, S. Leung. The Google File System.
SOSP 2003

Fault-tolerant task scheduling system
I Can take advantage of distributed file system.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 15 / 28

Hadoop HDFS — Architecture

Design goals:
Fault-tolerance

I HDFS runs on large clusters. Hardware failures are common.
Large files

I Up to terabytes per file.
Performance

I Exploiting network locality where possible.

Portable across heterogeneous hardware and software platforms.

Some design choices:
Emphasis on high throughput rather than low latency

I Optimise for streaming access rather than random access.
Simple coherency model: 1 streaming writer / many readers.

I Lock-free reading and writing.
Processing facilities near the data.

I Moving computations cheaper than moving large data sets.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 16 / 28

http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://hadoop.apache.org/common/docs/current/hdfs_design.html


Hadoop HDFS — Datacenter Network Topology

node

node

node

rack rack rack

cluster

Cluster consists of multiple racks.
Inter-rack traffic needs to cross (at least) 2 more switches than
intra-rack traffic.

I inter-rack latency > intra-rack latency
I aggregate intra-rack bandwidth � inter-rack bandwidth

HDFS must optimise for parallel intra-rack access where possible.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 17 / 28

Hadoop HDFS — Logical Architecture

NameNode

DataNodeDataNode DataNode

Client Client

...

...

HDFS Server

Client/Server architecture (with distributed server)
HDFS server implements master/worker pattern:

I 1 master: NameNode (stores HDFS meta-data on local FS)
I Many workers: DataNodes (store HDFS data on local FS)

Client applications may run on DataNodes (rather than on
separate machines).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 18 / 28

Hadoop HDFS — File Organisation

Metadata (on NameNode)
Hierarchical namespace (file/directory tree)
Limited access control

I File system access control not important if clients are trusted.

Data (on DataNodes)
Files stored in large blocks spread over the whole cluster.

I Block size up to 64 MB (configurable per file)
I Each block stored as a file on DataNode’s local FS

Each block replicated n times.
I Replication factor n configurable per file (default n = 3)
I Replicas spread over the cluster

1 to achieve high availability, and
2 to increase performance.

Replication strategy crucial for both objectives.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 19 / 28

Hadoop HDFS — Replication Strategies

Two simple replication strategies:
1 Spread all replicas evenly over racks of cluster.

+ Optimises availability.
– Performance may suffer if clients have to fall back on off-rack

replicas.
2 Retain one replica on same rack as primary replica, spread

remaining replicas over other racks.
+ Optimises performance (even primary replica unavailable).
– Availability almost as high as with strategy 1.

F Single node failures more common than full rack failures.

Many more strategies are possible.
Finding good (high availability + high performance) strategies is a
hot research topic in distributed file systems / data bases.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 20 / 28



Hadoop HDFS — Writing to a File

DataNode

replica 1

DataNode

replica 3

Client

DataNode

replica 2

NameNode

1

3

3

3

56

6 5

4

7

2

1 Request to write to block i in file F
2 Return block handle and locations
3 Data transfer/forwarding

I Client sends data to nearest replica.
I Replicas form forwarding pipeline.

4 Initiate write on primary replica
5 Initiate replication
6 Commit secondary replica
7 Commit write

I Commit only if writing successful on
all replicas.

I Otherwise return error msg to client.

Note: Minimal interaction with NameNode (to avoid bottleneck).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 21 / 28

Hadoop HDFS — Reading from a File

DataNode

replica 1

DataNode

replica 3

Client

DataNode

replica 2

NameNode

1

4 23

1 Request to read from block i in file F
2 Return block handle and locations

I Client may cache handle and
locations.

F Only cache for short time: location
data becomes invalid quickly.

3 Request data
I Client requests data from nearest

replica.
4 Transfer data

Note: Minimal interaction with NameNode.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 22 / 28

Hadoop HDFS — Reading from a Dead Node

DataNode

replica 1

DataNode

replica 3

Client

DataNode

replica 2

NameNode

1

23

5 6

1 Request to read from block i in file F
2 Return block handle and locations
3 Request data

I Client requests data from nearest
replica.

4 Request times out because
I network down,
I DataNode dead or
I DataNode overloaded.

5 Re-request data
I Client requests data from another

replica.
6 Transfer data

Note: No additional interaction with NameNode.
NameNode will detect and deal with failure independently.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 23 / 28

Hadoop HDFS — Reading from a Corrupt File

DataNode

replica 1

DataNode

replica 3

Client

DataNode

replica 2

NameNode

1

23

5 6

4

4

1 Request to read from block i in file F
2 Return block handle and locations
3 Request data
4 Signal corruption

I Inform both Client and NameNode.
5 Re-request data

I Client requests data from another
replica.

6 Transfer data

Note: No additional Client/NameNode interaction.
NameNode will deal with failure independently.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 24 / 28



Hadoop HDFS — Fault Tolerance

Fast recovery from NameNode failure
Snapshot of NameNode’s state regularly dumped to disk and
replicated off-rack.
State updates between snapshots journaled.
Note: No automatic NameNode failure detection.

Recovery from DataNode failure or network partition
Failure detection: NameNode listens to DataNodes’ heartbeats.
Fast recovery:

1 Clients timeout and fall back on other replicas.
2 NameNode initiates re-replication of blocks residing on dead nodes.

Recovery from data corruption
Failure detection: DataNode compares checksums.
Fast recovery:

1 Clients timeout and fall back on other replicas.
2 DataNode notifies NameNode, which initiates re-replication of

corrupt block.
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 25 / 28

How MapReduce Piggybacks on HDFS

user
program

worker

worker

worker

split 0

split 1

split 2

split 3

split 4

master

worker

worker output
file 1

output
file 0read (3) local write (4)

write (6)

assign reduce (2)

assign m
ap (2

)

fork (1)fork (1)

input
files

map
phase

intermediate files
(on local disks)

reduce
phase

output
files

remote read (5)

fork (1)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 26 / 28

How MapReduce Piggybacks on HDFS

Fault-tolerance:
MapReduce worker heartbeat monitoring done by HDFS.

I DataNodes run Map or Reduce workers as applications.
I NameNode runs MapReduce master as application.

F If DataNode dead, re-replicate its data and re-execute its Map or
Reduce tasks somewhere else.

Performance:
Select Map workers optimising for local reads.

I Prefer DataNodes with blocks of input file on disk.
I Failing that, prefer DataNodes with blocks of the input file on the

same rack.
Have Reduce worker write primary replica to same DataNode.

I Replication strategy distributes output file evenly over other racks.
Select Reduce optimising access to all Map workers.

I Prefer grouping Reduce workers on same rack as Map workers.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 27 / 28

Further Reading:

Tom White, “Hadoop: The Definitive Guide”. O’Reilly Media, Third
edition, May 2012.
Hadoop documentation: http://hadoop.apache.org/
See also the links on Hadoop-level “scripting” languages such as
Pig and Hive.
D. Borthakur, “HDFS Architecture”.
http://hadoop.apache.org/common/docs/current/hdfs_

design.html

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Warehouse Computing 28 / 28

http://hadoop.apache.org/
http://hadoop.apache.org/common/docs/current/hdfs_design.html
http://hadoop.apache.org/common/docs/current/hdfs_design.html

