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Haskell: yet another Functional Language

Haskell is a polymorphicly-typed, lazy, purely-functional language.
Hence Haskell is similar to SML, e.g.

Function definitions
SML: Haskell:
fun fac 1 = 1 | fac 1 = 1
fac n = n*fac (n-1); fac n = n*fac (n-1)

Evaluation
fac 5⇒ 5 * 4 * 3 * 2 * 1
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Characteristics of Functional Languages
Like other modern functional languages e.g. F# or Racket, Haskell
includes advanced features:

Sophisticated polymorphic type system, with type inference.

length :: [a] → Int

Pattern matching.

length :: [a] → Int
length [] = 0
length (x : xs) = 1 + length xs

Higher-order functions.

map (∗2) [1, 2, 3, 4]

Data abstraction.

data MyList a = Nil
| Cons a (MyList a)

Garbage-collected storage management.
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Characteristics of Functional Languages (cont’d)
These features are also found in modern object-oriented languages.
The distinctive feature of pure functional languages is their referential
transparency .

Definition (Stoy, 1977)
The only thing that matters about an expression is its value, and any
subexpression can be replaced by any other equal in value. Moreover,
the value of an expression is, within certain limits, the same wherever it
occurs.

Implications:
Two expressions are equal if they have the same value, e.g.
sin(6) = sin(1+5).
Value-based equality enables equational reasoning, where one
expression is substituted by another of equal value, e.g.
f(x) + f(x) = 2*f(x)
Scope matters: if x = 6, then sin(x) = sin(6) = sin(1+5)
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Referentially Opaque Notations

Example
English:

“Eric the Red was so called because of his red beard”

Cannot substitute “Eric Jarlsson” for “Eric the Red” and retain the
meaning.

Procedural programming languages: x = x + 1

Exercise
In C, does replacing the sum of two function calls: f(x) + f(x), by 2*f(x)
preserve the meaning of the program? If not, give an example function,
f that should not be substituted.
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Referentially Transparent Notations

Most of mathematics is referentially transparent.
integer algebras: 2x + x = 12.
relational algebra: R ∪ S = S ∪ R
As SQL is based on the relational algebra, a large subset of it is
referentially transparent, except for parts that change the
database, e.g. UPDATE, DELETE etc.
Mathematical logics: P(x) ∧Q(x).
As a result, a large part of most logic, or deductive, languages is
referentially transparent, except for features like CUT, ASSERT
and RETRACT.
Purely functional languages
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Consequences of Referential Transparency
Equational reasoning

Proofs of correctness are much easier than reasoning about state as in
procedural languages.

Used to transform programs, e.g. to transform simple specifications into
efficient programs.

Freedom from execution order.

Meaning of program is not dependent on execution order: so programs
are shorter as the programmer doesn’t have to specify an execution
order.

Lazy evaluation: Most languages have a strict evaluation order, e.g.
evaluate the parameters to a function left-to-right before calling it.
A lazy language only evaluates an expression when, and if, it’s needed.

Parallel/distributed evaluation. Often there are many expressions that
can be evaluated at a time, because we know that the order of
evaluation doesn’t change the meaning, the sub-expressions can be
evaluated in parallel (Wegner 1978)

Elimination of side effects (unexpected actions on a global state).
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Downside of referential transparency

Interaction with state outside the program, e.g. reading from a file,
updating a database is harder.
⇒ language needs special constructs for dealing with stateful objects,
and Haskell uses Monads

No straightforward language support for in-place operations
⇒ libraries are provided that achieve in-place operations on certain
data structures using a monadic style of programming.
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Differences between SML and Haskell

Where SML is an imperative language with a large purely-functional
subset, Haskell is (almost entirely) purely-functional, guaranteeing
referential transparency.

Where SML is strict with a defined evaluation order, Haskell is lazy .

Other minor differences: different module systems, Haskell has
parametric polymorphism (C#’s and Java’s generics are based on it),
etc.
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Preliminaries

Basic types in Haskell:
Bool : boolean values: True und False
Char : characters
String: strings (as list of characters)
Int : fixed precision integers
Integer : arbitrary precision integers
Float : single-precision floating point numbers
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Preliminaries

Compound types:
Lists: [·], e.g. [Int ] list of (fixed precision) integers;
Tupels: (·, · · · ), e.g. (Bool , Int) tupel of boolean values and
integers;
Records: · { ·, · · · }, e.g. BI { b :: Bool , i :: Int } a record of
boolean values and integers;
Functions: a → b, e.g. Int → Bool

Typesynonyms can be defined like this:

type IntList = [Int ]
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Haskell Types & Values

Note that all Haskell values are first-class: they may be passed as
arguments to functions, returned as results, placed in data structures.

Example
Example Haskell values and types:

5 :: Integer
′a′ :: Char
True :: Bool
inc :: Integer → Integer
[1, 2, 3] :: [Integer ]
(′b′, 4) :: (Char , Integer)

N.B: The "::" can be read “has type.”
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Function Definitions

Functions are normally defined by a series of equations. Giving type
signatures for functions is optional, but highly recommended.

inc :: Integer → Integer
inc n = n + 1

To indicate that an expression e1 evaluates to another expression e2,
we write

Evaluation
e1⇒e2

Evaluation
inc (inc 3)⇒5
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User-defined Types
Data constructors are introduced with the keyword data.
Nullary data constructors, or enumerated types:

data Bool = False | True
data Color = Red |Green | Blue
data Day = Mon | Tue |Wed | Thu | Fri | Sat | Sun

Pattern matching over such data types is frequently used to make a
case distinction over a user-defined (algebraic) data-type:

next :: Day → Day
next Mon = Tue
next Tue = Wed
next Wed = Thu
next Thu = Fri
next Fri = Sat
next Sat = Sun
next Sun = Mon
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User-defined Types

A recursive data constructor:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

fringe :: Tree a → [a]
fringe (Leaf x) = [x ]
fringe (Branch left right) = fringe left ++ fringe right

Here ++ is the infix operator that concatenates two lists.
N.B: type constructor names must be capitalised.
N.B: This is the same declaration in SML:

datatype ′a binTree = leaf
| node of ′a ∗ ′a binTree ∗ ′a binTree;
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Type Synonyms

Type synonyms are names for commonly used types, rather than new
types, and defined with the keyword type:

type String = [Char ]
type Person = (Name,Address)
type Name = String

data Address = None | Addr String

Syntactic support is provided for strings, e.g. “bye”
⇒[’b’,’y’,’e’], and list operations operations can be applied to
them, e.g. length “bye” ⇒3.
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Pattern Matching

A pattern may contain a wildcard, e.g. to chose just the first n
elements of a list,

Evaluation
take 2 [1,2,3]⇒[1,2]

take 0 _ = []
take _ [] = []
take n (x : xs) = x : take (n − 1) xs
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Guarded Patterns

A pattern may contain a guard: a condition that must be true for the
pattern to match, e.g.

sign x | x > 0 = 1
| x == 0 = 0
| x < 0 = − 1
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Lists
Constructed from cons (:) and nil ([]), e.g.

1 : []
1 : 2 : 3 : []
′b′ :′ y ′ :′ e′ : []

having types [Integer ], [Integer] and [Char]. Lists are commonly
abbreviated:

[1]
[1, 2, 3]
[′b′,′ y ′,′ e′]

A list can be indexed with the !! operator:

Evaluation

[1, 2, 3] !! 0⇒ 1
[′b′,′ y ′,′ e′] !! 2⇒ ′e′

A list can be enumerated:

Evaluation

[1 .. 5]⇒ [1, 2, 3, 4, 5]
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List Comprehensions

“List comprehensions” are a short-hand notation for defining lists, with
notation similar to set comprehension in mathematics. They have been
introduced as ZF-comprehensions in Miranda, a pre-cursor of Haskell,
and are also supported in Python.
Example: List of square values of all even numbers in a given list of
integers xs:

sq_even xs = [x ∗ x | x ← xs, even x ] sq_even xs = [x ∗ x | x ← xs, even x ] sq_even xs = [x ∗ x | x ← xs, even x ] sq_even xs = [x ∗ x | x ← xs, even x ]

The expression x ∗ x is the body of the list comprehension. It defines
the value of each list element.
The expression x ← xs is the generator and binds the elements in xs
to the new variable x , one at a time.
The condition even x determines, whether the value of x should be
used in computing the next list element.
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List comprehension example

List comprehensions enable list functions to be expressed concisely:

quicksort [] = []
quicksort (x : xs) =

quicksort [y | y ← xs, y < x ] + +
[x ] + +
quicksort [y | y ← xs, y >= x ]
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Polymorphic Functions

A polymorphic function (generic method in Java or C#) can operate on
values of many types, e.g.

length :: [a] → Integer
length [] = 0
length (x : xs) = 1 + length xs

Evaluation

length [1, 2, 3]⇒ 3
length [′b′,′ y ′,′ e′]⇒ 3
length [[1], [2]]⇒ 2

N.B: a is a type variable, that can stand for any type.
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Local Definitions

Haskell, like SML has a mutually recursive let binding, e.g.

let y = a ∗ b
f x = (x + y)/y

in f c + f d

The Haskell where binding scopes over several guarded equations:

f x y | y > z = ...
| y == z = ...
| y < z = ...

where z = x ∗ x
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Layout

Haskell lays out equations in columns to disambiguate between
multiple equations, e.g. could previous definition be:

let y = a ∗ b f
x = (x + y)/y

in f c + f d

Key rule: declarations start to the right of where or let.
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Curried & Infix Functions
Currying: a function requiring n arguments can be applied to fewer
arguments to get another function, e.g.

add x y = x + y
inc :: Integer → Integer
inc = add 1

Example
Define the sum over list of squares over all even numbers:

sqs_even :: [Integer ] → Integer

sqs_even [] = 0
sqs_even (x : xs)| even x = x2 + sqs_even xs

| otherwise = sqs_even xs
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Higher Order Functions

Functions are first class values and can be passed as arguments to
other functions and returned as the result of a function.
Many useful higher-order functions are defined in the Prelude and
libraries, including most of those from your SML course, e.g.
filter takes a list and a boolean function and produces a list containing
only those elements that return True

filter :: (a → Bool) → [a] → [a]

filter p [] = []
filter p (x : xs)| p x = x : filter p xs

| otherwise = filter p xs

Evaluation
filter even [1,2,3]⇒[2]

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/17 Introducing Haskell 26 / 61

The higher-order function map
map applies a function f to every element of a list

map :: (a → b) → [a] → [b]
map f [] =[]
map f (x : xs) =(f x) : map f xs

Evaluation
map inc [2,3]
⇒(inc 2) : map inc [3]
⇒(inc 2) : (inc 3) : map inc []
⇒(inc 2) : (inc 3) : []
. . .
⇒[3,4]

In general:

Evaluation
map f [x0, x1, . . . , xn] =⇒ [f x0, . . . , f xn]
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map example

Example: sum over list of squares over all even numbers:

sqs_even :: [Integer ] → Integer
sqs_even xs = sum (map (λ x → x ∗ x) (filter even xs))
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The higher-order function foldr
foldr applies a binary function to every element of a list:

foldr :: (a → b → b) → b → [a] → b
foldr f z [] = z
foldr f z (x : xs) = f x (foldr f z xs)

Example:

Evaluation
foldr add 0 [2,3]
⇒add 2 (foldr add 0 [3])
⇒add 2 (add 3 (foldr add 0 []))
...
⇒5

In general: foldr replaces every : in the list by an f , and the [] by an v :

Evaluation
foldr ⊕ v(x0 : . . . : xn : []) =⇒ x0 ⊕ . . .⊕ (xn ⊕ v)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/17 Introducing Haskell 29 / 61

zip converts a pair of lists into a list of pairs:

zip :: [a] → [b] → [(a,b)]

Evaluation
zip [1,2,3] [9,8,7]⇒[(1,9),(2,8),(3,7)]

zipWith takes a pair of lists and a binary function and produces a list
containing the result of applying the function to each ’matching’ pair:

Evaluation
zipWith ⊕ (x0 : . . . : xn : []) (y0 : . . . : yn : [])
=⇒ (x0 ⊕ y0) : . . . : (xn ⊕ yn)

Example
dotProduct xs ys = sum (zipWith (*) xs ys)
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Lambda Abstractions

Functions may be defined “anonymously” via a lambda abstraction (fn
in SML). For example definitions like

inc x =x + 1
add x y =x + y

are really shorthand for:

inc = \ x → x + 1
add = \ x y → x + y

Lambda Expressions
SML: Haskell:
fn x => ... \ x -> ...
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Infix Operators
Infix operators are really just functions, and can also be defined using
equations, e.g. list concatenation:

(++) :: [a] → [a] → [a]

[] + + ys = ys
(x : xs) + + ys = x : (xs ++ys)

and function composition:

(.) :: (b → c) → (a → b) → (a → c)
f . g = \ x → f (g x)

Lexically, infix operators consist entirely of “symbols,” as opposed to
normal identifiers which are alphanumeric.

Function composition
SML: Haskell:
f o g f . g
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Sections

Since operators are just functions, they can be curried, e.g.
(parentheses mandatory)

(x+) = \ y → x + y
(+y) = \ x → x + y
(+) = \ x y → x + y

Example
The sum over list of squares of all even numbers:

sqs_even :: [Integer ] → Integer
sqs_even = foldr (+) 0 .map (λ x → x ∗ x) . filter even
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Lazy Functions
Most programming languages have strict semantics: the arguments to
a function are evaluated before the evaluating the function body. This
sometimes wastes work, e.g.

f True y = 1
f False y = y

It may even cause a program to fail when it could complete, e.g.

Evaluation

f True (1/0)⇒ ?

It may even cause a program to fail when it could complete, e.g.

Evaluation

f True (1/0)⇒1

Haskell functions are lazy : the evaluation of the arguments is delayed,
and the body of the function is evaluated and only if the argument is
actually needed (or demanded) is it evaluated.
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“Infinite” Data Structures
As an example of lazy evaluation, consider the following function:

foo x y z = if x < 0 then abs x
else x + yfoo x y z = if x < 0 then abs x
else x + yfoo x y z = if x < 0 then abs x
else x + y

Evaluation order:

Evaluating the conditional requires the evaluation of x < 0 which
in turn requires the evaluation of the argument x .
If x < 0 is True, the value of abs x will be returned; in this case
neither y nor z will be evaluated.
If x < 0 id False, the value of x + y will be returned; this requires
the evaluation of y .
z won’t be evaluated in either of these two cases.
In particular, the expression foo 1 2 (1 ‘div ‘ 0) is well-defined.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/17 Introducing Haskell 35 / 61

“Infinite” Data Structures
Data constructors are also lazy (they’re just a special kind of function),
e.g. list construction (:)

Non-strict constructors permit the definition of (conceptually) infinite
data structures. Here is an infinite list of ones:

ones = 1 : ones

More interesting examples, successive integers, and all squares (using
infix exponentiation):

numsFrom n = n : numsFrom (n + 1)
squares = map (^2) (numsFrom 0)

Any program only constructs a finite part of an infinite sequence, e.g.

Evaluation
take 5 squares⇒[0,1,4,9,16]
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Infinite Data-structures
The prelude function for selecting the n-the element of a list:

[] !! _ = error ”Empty list”
(x : _) !! 0 = x
(_ : xs) !! n = xs !! (n − 1)

Here is the evaluation order of [0..]!!2:

Evaluation
[0..]!!2 =⇒ is the list empty?
(0 : [1..])!!2 =⇒ is the index 0?
[1..]!!1 =⇒ is the list empty?
(1 : [2..])!!1 =⇒ is the index 0?
[2..]!!0 =⇒ is the list empty?
(2 : [3..])!!0 =⇒ is the index 0?
2
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Example Sieve of Erathostenes

Compute a list of all prime numbers by,
1 starting with a list of all natural numbers,
2 take the first number in the list and cancel out all its multiples,
3 repeat Step 2 forever.

−− i t e r a t i v e l y remove a l l m u l t i p l e s o f i d e n t i f i e d prime numbers
s ieve : : [ Integer ] −> [ Integer ]
s ieve ( p : xs ) = p : s ieve ( removeMults p xs )

−− remove a l l m u l t i p l e s o f a given number
removeMults : : Integer −> [ Integer ] −> [ Integer ]
removeMults p xs = [ x | x <− xs , not ( x ‘ rem ‘ p == 0) ]

−− def ine an i n f i n i t e l i s t o f prime numbers
primes : : [ Integer ]
primes = sieve [ 2 . . ]

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/17 Introducing Haskell 38 / 61

An example of an infinite data structure

The goal is to create a list of Hamming numbers, i.e. numbers of the
form 2i3j5k for i , j , k ∈ N
hamming = 1 : map ( 2∗ ) hamming ‘ union ‘

map ( 3∗ ) hamming ‘ union ‘
map ( 5∗ ) hamming

union a@( x : xs ) b@( y : ys ) = case compare x y of
LT −> x : union xs b
EQ −> x : union xs ys
GT −> y : union a ys

Note, that hamming is an infinite list, defined as a cyclic data structure,
where the computation of one element depends on prior elements in
the list.

0Solution from Rosetta code
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/17 Introducing Haskell 39 / 61

Normal Forms
Normal forms are defined in terms of reducable expressions, or
redexes, i.e. expressions that can be simplified e.g. (+) 3 4 is
reducable, but 7 is not.
Strict languages like SML reduce expressions to Normal Form (NF),
i.e. until no redexes exist (they are “fully evaluated”). Example NF
expressions:

5
[4, 5, 6]
\ x → x + 1

Lazy languages like Haskell reduce expressions to Weak Head Normal
Form (WHNF), i.e. until no top level redexes exist. Example WHNF
expressions:

(:) 2 [2 + 1] usually written as 2 : [2 + 1]
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Examples

Example non-WHNF expressions:

(+) 4 1
(\ x → x + 1) 3

Example WHNF expressions that are not in NF :

(∗) ((+) 4 1)
\ x → 5 + 1
(3 + 1) : [4, 5]
(22) : (map (2) [4, 6])

N.B: In a parallel non-strict language threads, by default, reduce
expressions to WHNF.
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In addition to the parametric polymorphism already discussed, e.g.

length :: [a] → Int

Haskell also supports ad hoc polymorphism or overloading, e.g.
1, 2, etc. represent both fixed and arbitrary precision integers.
Operators such as + are defined to work on many different kinds
of numbers.
Equality operator (==) works on numbers and other types.

Note that these overloaded behaviors are different for each type and
may be an error, whereas in parametric polymorphism the type truly
does not matter, e.g. length works for lists of any type.
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Declaring Classes and Instances
It is useful to define equality for many types, e.g. String, Char,
Int, etc, but not all, e.g. functions.
A Haskell class declaration, with a single method:

class Eq a where
(==) :: a → a → Bool

Example instance declarations, integerEq and floatEq are
primitive functions:

instance Eq Integer where
x == y = x ‘integerEq‘ y

instance Eq Float where
x == y = x ‘floatEq‘ y

instance (Eq a)⇒ Eq (Tree a) where
Leaf a ==Leaf b = a == b
(Branch l1 r1) ==(Branch l2 r2) = (l1 == l2) && (r1 == r2)
_ ==_ = False
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Number Classes

Haskell has a rich set of numeric types and classes that inherit in the
obvious ways. The root of the numeric class hierarchy is Num.

Integer in class Integral: Arbitrary-precision integers
Int in class Integral: Fixed-precision integers
Float in class RealFloat: Real floating-point, single precision
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Input/Output
To preserve referential transparency, stateful interaction in Haskell
(e.g. I/O) is performed in a Monad .
Input/Output actions occur in the IO Monad, e.g.

getChar :: IO Char
putChar :: Char → IO ()
getArgs :: IO [String]
putStr , putStrLn :: String → IO ()
print :: Show a⇒ a → IO ()

Every Haskell program has a main :: IO () function, e.g.

main = putStr ”Hello”

A do statement performs a sequence of actions, e.g.

main :: IO ()
main =do c ← getChar

putChar c
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Useful I/O
Many useful IO functions are in the system module and must be
imported, see below.

show :: (Show a)⇒ a → String

converts values of most types into a String, e.g.

Evaluation
show 3⇒“3”

read :: (Read a)⇒ String → a

parses a value of most types from a String.
A program returning the sum of its command line arguments:

main = do args ← getArgs
let x = read (args!!0)
let y = read (args!!1)
putStrLn (show (x + y))
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How to read monadic code
Monadic code enforces a step-by-step execution of commands,
operating on a hidden state that is specific to the monad
⇒ this is exactly the programming model you are used to from other
languages.

In functional languages, monadic code is a special case, and typically
used when interacting with the outside world. We need to distinguish
between monadic and purely functional code. This distinction is made
in the type, e.g.

readFile :: FilePath → IO String

Read this as: “the readFile function takes a file-name, as a full
file-path, as argument and performs an action in the IO monad which
returns the file contents as a string.”

NB: Calling readFile doesn’t give you the string contents, rather it
performs an action
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Another example of monadic code
Read a file that contains one number at each line, and compute the
sum over all numbers.

myAction : : String −> IO I n t −− def ine an IO−act ion , t h a t takes a s t r i n g as i npu t
myAction fn =
do −− t h i s s t a r t s a block o f monadic ac t i ons

s t r <− readFi le fn −− perform an act ion , reading from f i l e
l e t l ns = l ines s t r −− s p l i t the f i l e contents by l i n e s
l e t nums = map read l ns −− t u rn each l i n e i n t o an i n t e g e r value
l e t res = sum nums −− compute the sum over a l l i n t e g e r values
pr in t res −− p r i n t the sum
return res −− r e t u r n the sum

NB: the← operator (written <-) binds the result from executing
monadic code to a variable.
The let constructs assigns the value of a (purely functional)
computation to a variable.
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Case Study: Caesar Cipher

As a case study of a slightly larger program we examine the “Caesar
Cipher” implementation that we have seen in F21CN Computer
Network Security. It is one of the examples in the textbook
"Programming in Haskell", by Graham Hutton (p42ff).

The code is available here:
http://www.macs.hw.ac.uk/ hwloidl/Courses/F21CN/Labs/caesar.hs

See the comments in this file on installing required packages and
running the program.
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Example: Caesar Cipher
To summarise:

to encrypt a plaintext message M, take every letter in M and
shift it by e elements to the right to obtain the encrypted
letter; to decrypt a ciphertext, take every letter and shift it by
d = −e elements to the left

As an example, using e = 3 as key, the letter A is encrypted as a D, B
as an E etc.
Plain: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher: DEFGHIJKLMNOPQRSTUVWXYZABC

Encrypting a concrete text, works as follows:
Plaintext: the quick brown fox jumps over the lazy dog
Ciphertext: WKH TXLFN EURZQ IRA MXPSV RYHU WKH ODCB GRJ

More formally we have the following functions for en-/de-cryption:

Ee(x) = x + e mod 26

De(x) = x − e mod 26
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Characteristics of Caesar’s Cipher

Note the following:
The sets of plain- and cipher-text are only latin characters. We
cannot encrypt punctuation symbols etc.
The en- and de-cryption algorithms are the same. They only differ
in the choice of the key.
The key strength is not tunable: shifting by 4 letters is no more
safe than shifting by 3.
This is an example of a symmetric or shared-key cryptosystem.

Exercise
Implement an en-/de-cryption function based on the Caesar cipher.
Implement a function that tries to crack a Caesar cipher, ie. that
retrieves plaintext from ciphertext for an unknown key.
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Program header and import statements

module Caesar where

import Data . Char
import Math . Algebra . F i e l d . Base
import Data . List
import Test . QuickCheck

The import statement makes all definitions from a different module
available in this file.
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http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/caesar.hs


Helper functions

−− conver t a charac te r to an in teger , s t a r t i n g w i th 0 f o r ’ a ’ e tc
l e t 2 i n t : : Char −> I n t
l e t 2 i n t c = ord c − ord ’ a ’

−− conver t an index , s t a r t i n g w i th 0 , to a character , e . g ’ a ’
i n t 2 l e t : : I n t −> Char
i n t 2 l e t n = chr ( ord ’ a ’ + n )

−− s h i f t a charac te r c by n s l o t s to the r i g h t
s h i f t : : I n t −> Char −> Char
s h i f t n c | isLower c = i n t 2 l e t ( ( ( l e t 2 i n t c ) + n ) ‘mod‘ 26)

| otherwise = c

The shift function is the basic operation that we need in the Caesar
Cipher: it shifts a character by given number of steps through the
alphabet.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/17 Introducing Haskell 53 / 61

The encoding function

−− top− l e v e l s t r i n g encoding f u n c t i o n
encode : : I n t −> String −> String
encode n cs = [ s h i f t n c | c <− cs ]

percent : : I n t −> I n t −> Float
percent n m = ( fromIntegral n / fromIntegral m)∗100

−− compute f requenc ies o f l e t t e r s ’ a ’ . . ’ z ’ i n a given s t r i n g
f reqs : : String −> [ Float ]
f reqs cs = [ percent ( count c cs ) n | c <− [ ’ a ’ . . ’ z ’ ] ]

where n = lowers cs

The function freqs determines the frequencies of all letters of the
alphabet in the given text cs.
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The decoding function

−− chi−square f u n c t i o n f o r computing d is tance between 2 frequency l i s t s
ch i sq r : : [ Float ] −> [ Float ] −> Float
ch i sq r os es = sum [ ( ( o−e ) ^ 2 ) / e | ( o , e ) <− zip os es ]

−− t ab l e o f f requenc ies o f l e t t e r s ’ a ’ . . ’ z ’
t ab l e : : [ Float ]
t ab l e = [ 8 . 2 , 1 .5 , 2 .8 , 4 .3 , 12.7 , 2 .2 , 2 .0 ,

6 .1 , 7 .0 , 0 .2 , 0 .8 , 4 .0 , 2 .4 ,
6 .7 , 7 .5 , 1 .9 , 0 .1 , 6 .0 , 6 .3 , 9 .1 ,
2 .8 , 1 .0 , 2 .4 , 0 .2 , 2 .0 , 0 . 1 ]

The chisqr function formalises the intuition of matching two curves
and returning a value that represents a “distance” between the two
curves.
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The decoding function

−− top− l e v e l decoding f u n c t i o n
crack : : String −> String
crack cs = encode (− f a c t o r ) cs

where f a c t o r = head ( p o s i t i o n s (minimum ch i t ab ) ch i t ab )
ch i t ab = [ ch i sq r ( r o t a t e n tab le ’ ) t ab l e

| n <− [ 0 . . 2 5 ] ]
tab le ’ = f reqs cs

In the crack function, we try all possible shift values, and match the
curve for each value with the known frequency of letters, taken from an
English dictionary.
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More helper functions

−− r o t a t e a l i s t by n s l o t s to the l e f t ; take , drop are Prelude f u n c t i o n s
r o t a t e : : I n t −> [ a ] −> [ a ]
r o t a t e n xs = drop n xs ++ take n xs

−− the number o f lower case l e t t e r s i n a given s t r i n g
lowers : : String −> I n t
lowers cs = length [ c | c <− cs , isLower c ]

−− count the number o f occurrences of c i n cs
count : : Char −> String −> I n t
count c cs = length [ c ’ | c ’ <− cs , c==c ’ ]

−− f i n d l i s t o f p o s i t i o n s o f x i n the l i s t xs
p o s i t i o n s : : Eq a => a −> [ a ] −> [ I n t ]
p o s i t i o n s x xs = [ i ’ | ( x ’ , i ’ ) <− zip xs [ 0 . . n ] , x==x ’ ]

where n = length xs − 1

These are the helper functions, needed by crack.
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Case Study

To test the program, start the Haskell interpreter ghci:

# ghci -package HaskellForMaths -package QuickCheck caesar.hs

Now, inside the interpreter try these commands:

#> let s1 = "a completely random text string"
#> let c1 = encode 3 s1
#> c1
#> let d1 = crack c1
#> d1
#> let s2 = "unusal random string"
#> let c2 = encode 7 s2
#> c2
#> let d2 = crack c2
#> d2
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Main learning & reference material
A list of learning resources is on the Haskell Wiki:
http://www.haskell.org/haskellwiki/Learning_Haskell

An excellent site for learning Haskell is:
https://www.fpcomplete.com/school

A very recent MOOC on Haskell has been developed at the Univ.
of Glasgow: https://www.futurelearn.com/courses/
functional-programming-haskell/

the Haskell Wiki has a lot of resources:
http://www.haskell.org/haskellwiki/Haskell

the language specification is available as Haskell Report:
http://www.haskell.org/onlinereport/haskell2010/

a list of all prelude functions is available:
http://www.haskell.org/ghc/docs/latest/html/
libraries/base/Prelude.html

Hackage is a list of (lost of) third-party libraries:
http://hackage.haskell.org/
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Uses of Haskell

Rapid prototyping: code is much shorter

Symbolic applications development , e.g. natural language processors,
chess games.

Computational finance for market predictions based on mathematical
models.

High-level programming concepts: Generics in Java/C# are instances
of polymorphism

Computation language for parallel, distributed, mobile or Grid
languages

Used by major companies and institutions, such as Facebook, AT&T,
and NASA.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/17 Introducing Haskell 60 / 61

http://www.haskell.org/haskellwiki/Learning_Haskell
https://www.fpcomplete.com/school
https://www.futurelearn.com/courses/functional-programming-haskell/
https://www.futurelearn.com/courses/functional-programming-haskell/
http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/onlinereport/haskell2010/
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html
http://www.haskell.org/ghc/docs/latest/html/libraries/base/Prelude.html
http://hackage.haskell.org/


Exercise: Trees

Implement a function depth :: Tree a -> Int to compute
the depth of the tree, ie. the longest path from the root of the tree
to one of the leaves.
Using the depth function, write a function isBalanced ::
Tree a -> Bool that checks, whether a tree is balanced, ie. the
lengths of any 2 paths in the tree does not differ by more than 1.
Write a Haskell function mkTree :: [a] -> Tree a that
constructs a balanced binary tree, containing the elements of a
given list.
Hint: Check the prelude function splitAt.

For a full list of Haskell exercises see: http://www.macs.hw.ac.
uk/~hwloidl/Courses/F21DP/tutorial0.html
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