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Parallel Programming

Engineering a parallel program entails specifying
computation: a correct, efficient algorithm
coordination: arranging the computations to achieve “good”
parallel behaviour. Metrics include:

I Speedup, i.e. reduction in execution time, and defined as execution
time on 1 processor / time on n processors:
speedup = t1/tn

I Efficiency: a speedup of 14 is good on 16 processors, but poor on
100.
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Coordination Aspects

Coordinating parallel behaviour entails, inter alia:
partitioning

I what threads to create
I how much work should each thread perform

thread synchronisation
load management
communication
storage management

Specifying full coordination details is a significant burden on the
programmer
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High Level Parallel Programming

High level parallel programming aims to reduce the programmer’s
coordination management burden.

This can be achieved by using
specific execution models (array languages such as SAC),
skeletons or parallel patterns (MapReduce/Hadoop, Eden),
data-oriented parallelism (PGAS languages),
dataflow languages (such as Swan),
parallelising compilers (pH for Haskell).

GpH (Glasgow parallel Haskell) uses a model of semi-explicit
parallelism: the programmer only needs to identify potential
parallelism.
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High Level Parallel Programming

GpH (Glasgow parallel Haskell) aims to simplify parallel programming
by requiring the programmer to specify only a few key aspects of
parallel programming, and leaving the language implementation to
automatically manage the rest.

GpH is a parallel extension to the non-strict, purely functional language
Haskell.
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GpH Coordination Primitives

GpH provides parallel composition to hint that an expression may
usefully be evaluated by a parallel thread.
We say x is “sparked” : if there is an idle processor a thread may be
created to evaluate it.

Evaluation
x ‘par‘ y⇒y

GpH provides sequential composition to sequence computations and
specify how much evaluation a thread should perform. x is evaluated
to Weak Head Normal Form (WHNF) before returning y.

Evaluation
x ‘pseq‘ y⇒y
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Introducing Parallelism: a GpH Factorial

Factorial is a classic divide and conquer algorithm.

Example (Parallel factorial)
pfact n = pfact’ 1 n

pfact’ :: Integer -> Integer -> Integer
pfact’ m n
| m == n = m
| otherwise = left ‘par‘ right ‘pseq‘ (left * right)

where mid = (m + n) ‘div‘ 2
left = pfact’ m mid
right = pfact’ (mid+1) n

Compare this to the sequential version in simples.hs
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Controlling Evaluation Order

Notice that we must control evaluation order: If we wrote the function
as follows, then the addition may evaluate left on this core/processor
before any other has a chance to evaluate it

| otherwise = left ‘par‘ (left * right)

The right ‘pseq‘ ensures that left and right are evaluated
before we multiply them.
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Controlling Evaluation Degree
In a non strict language we must specify how much of a value should
be computed.

For example the obvious quicksort produces almost no parallelism
because the threads reach WHNF very soon: once the first cons cell of
the sublist exists!

Example (Parallel quicksort)
quicksortN :: (Ord a) => [a] -> [a]
quicksortN [] = []
quicksortN [x] = [x]
quicksortN (x:xs) =
losort ‘par‘
hisort ‘par‘
losort ++ (x:hisort)
where

losort = quicksortN [y|y <- xs, y < x]
hisort = quicksortN [y|y <- xs, y >= x]
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Controlling Evaluation Degree II
Forcing the evaluation of the sublists gives the desired behaviour:

Example (Forcing evaluation)
forceList :: [a] -> ()
forceList [] = ()
forceList (x:xs) = x ‘pseq‘ forceList xs

quicksortF [] = []
quicksortF [x] = [x]
quicksortF (x:xs) =
(forceList losort) ‘par‘
(forceList hisort) ‘par‘
losort ++ (x:hisort)
where

losort = quicksortF [y|y <- xs, y < x]
hisort = quicksortF [y|y <- xs, y >= x]

Problem: we need a different forcing function for each datatype, and
each composition of datatypes, e.g. list of lists.
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GpH Coordination Aspects

To specify parallel coordination in Haskell we must

1 Introduce Parallelism
2 Specify Evaluation Order
3 Specify Evaluation Degree

This is much less than most parallel paradigms, e.g. no
communication, synchronisation etc.

It’s important that we do so without cluttering the program. In many
parallel languages, e.g. C with MPI, coordination so dominates the
program text that it obscures the computation.
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Evaluation Strategies:
Separating Computation and Coordination

Evaluation Strategies abstract over par and pseq,
raising the level of abstraction, and
separating coordination and computation concerns

It should be possible to understand the semantics of a function
without considering its coordination behaviour.
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Evaluation Strategies
An evaluation strategy is a function that specifies the coordination
required when computing a value of a given type, and preserves the
value i.e. it is an identity function.

type Strategy a = a -> Eval a

data Eval a = Done a

We provide a simple function to extract a value from Eval:

runEval :: Eval a -> a
runEval (Done a) = a

The return operator from the Eval monad will introduce a value into
the monad:

return :: a -> Eval a
return x = Done x
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Applying Strategies

using applies a strategy to a value, e.g.

using :: a -> Strategy a -> a
using x s = runEval (s x)

A typical GpH function looks like:

somefun x y = someexpr ‘using‘ somestrat

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Glasgow parallel Haskell 14 / 65

Simple Strategies
Simple strategies can now be defined.

r0 performs no reduction at all. Used, for example, to evaluate only the
first element but not the second of a pair.

rseq reduces its argument to Weak Head Normal Form (WHNF).

rpar sparks its argument.

r0 :: Strategy a
r0 x = Done x

rseq :: Strategy a
rseq x = x ‘pseq‘ Done x

rpar :: Strategy a
rpar x = x ‘par‘ Done x
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Controlling Evaluation Order
We control evaluation order by using a monad to sequence the
application of strategies.

So our parallel factorial can be written as:

Example (Parallel factorial)
pfact’ :: Integer -> Integer -> Integer
pfact’ m n
| m == n = m
| otherwise = (left * right) ‘using‘ strategy

where mid = (m + n) ‘div‘ 2
left = pfact’ m mid
right = pfact’ (mid+1) n
strategy result = do

rpar left
rseq right
return result
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Controlling Evaluation Degree - The DeepSeq Module
Both r0 and rseq control the evaluation degree of an expression.

It is also often useful to reduce an expression to normal form (NF), i.e.
a form that contains no redexes. We do this using the rnf strategy in a
type class.

As NF and WHNF coincide for many simple types such as Integer
and Bool, the default method for rnf is rwhnf.

class NFData a where
rnf :: a -> ()
rnf x = x ‘seq‘ ()

We define NFData instances for many types, e.g.

instance NFData Int
instance NFData Char
instance NFData Bool

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Glasgow parallel Haskell 17 / 65

We can define NFData for type constructors, e.g.

instance NFData a => NFData [a] where
rnf [] = ()
rnf (x:xs) = rnf x ‘seq‘ rnf xs

We can define a deepseq operator that fully evaluates it’s first
argument:

deepseq :: NFData a => a -> b -> b
deepseq a b = rnf a ‘seq‘ b
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Evaluation Degree Strategies

Reducing all of an expression with rdeepseq is by far the most
common evaluation degree strategy:

rdeepseq :: NFData a => Strategy a
rdeepseq x = x ‘deepseq‘ Done x
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Combining Strategies

As strategies are simply functions they can be combined using the full
power of the language, e.g. passed as parameters or composed.

dot composes two strategies on the same type:

dot :: Strategy a -> Strategy a -> Strategy a
s2 ‘dot‘ s1 = s2 . runEval . s1

evalList sequentially applies strategy s to every element of a list

evalList :: Strategy a -> Strategy [a]
evalList s [] = return []
evalList s (x:xs) = do x’ <- s x

xs’ <- evalList s xs
return (x’:xs’)
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Data Parallel Strategies
Often coordination follows the data structure, e.g. a thread is created
for each elements of a data structure.

For example parList applies a strategy to every element of a list in
parallel using evalList

parList :: Strategy a -> Strategy [a]
parList s = evalList (rpar ‘dot‘ s)

For tuples, parTuple2 evaluates both elements in parallel:

parTuple2 :: Strategy a -> Strategy b
-> Strategy (a,b)

parTuple2 strat1 strat2 =
evalTuple2 (rpar ‘dot‘ strat1)

(rpar ‘dot‘ strat2)
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Data-oriented Parallelism

parMap is a higher order function using a strategy to specify
data-oriented parallelism over a list.

Example (Parallel map)
parMap strat f xs = map f xs ‘using‘ parList strat

Use it like this:

parMap rdeepseq fact [12 .. 30]

Exercise
How many threads are created by the example above?
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Control-oriented Parallelism

Example (Parallel quicksort)
quicksortS [] = []
quicksortS [x] = [x]
quicksortS (x:xs) =
losort ++ (x:hisort) ‘using‘ strategy
where

losort = quicksortS [y|y <- xs, y < x]
hisort = quicksortS [y|y <- xs, y >= x]
strategy res = do

(rpar ‘dot‘ rdeepseq) losort
(rpar ‘dot‘ rdeepseq) hisort
rdeepseq res

Note how the coordination code (in strategy) is cleanly separated
from the computation.
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Thread Granularity
Some programs have coarse grain parallelism, i.e. there are only a few
threads. The challenge then is to create enough threads to utilise all
Processing Elements (PEs).

More commonly programs have massive fine-grain parallelism, and
several techniques are used to increase thread granularity.

It is only worth creating a thread if the cost of the computation will
outweigh the overheads of the thread, including

communicating the computation
thread creation
memory allocation
scheduling

It may be necessary to transform the program to achieve good parallel
performance, e.g. to improve thread granularity.
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Thresholds

Basic Idea:
Small tasks can be avoided in divide and conquer programs by not
dividing the problem once a threshold is reached, and instead solving
the small problem sequentially.
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Threshold Factorial

Example (Parallel factorial with thresholding)
pfactThresh :: Integer -> Integer -> Integer
pfactThresh n t = pfactThresh’ 1 n t

-- thresholding version
pfactThresh’ :: Integer -> Integer -> Integer -> Integer
pfactThresh’ m n t
| (n-m) <= t = product [m..n] -- seq solve
| otherwise = (left * right) ‘using‘ strategy

where mid = (m + n) ‘div‘ 2
left = pfactThresh’ m mid t
right = pfactThresh’ (mid+1) n t
strategy result = do

rpar left
rseq right
return result
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Chunking Data Parallelism
Evaluating individual elements of a data structure may give too fine
thread granularity, whereas evaluating many elements in a single
thread give appropriate granularity. The number of elements (the size
of the chunk) can be tuned to give good performance.

It’s possible to do this by changing the computational part of the
program, e.g. replacing
parMap rdeepseq fact [12 .. 30]

with
concat (parMap rdeepseq

(map fact) (chunk 5 [12 .. 30]))

chunk :: Int -> [a] -> [[a]]
chunk _ [] = [[]]
chunk n xs = y1 : chunk n y2
where
(y1, y2) = splitAt n xs
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Strategic Chunking
Rather than change the computational part of the program, it’s better
to change only the strategy.

We can do so using the parListChunk strategy which applies a
strategy s sequentially to sublists of length n:
map fact [12 .. 30] ‘using‘ parListChunk 5 rdeepseq

The definition of parListChunk is provided in the strategies library:

Example (Chunking)
parListChunk :: Int -> Strategy [a] -> Strategy [a]
parListChunk n s =
parListSplitAt n s (parListChunk n s)

parListSplitAt :: Int -> Strategy [a]
Strategy [a] -> Strategy [a]

parListSplitAt n stratPref stratSuff =
evalListSplitAt n (rpar ‘dot‘ stratPref)

(rpar ‘dot‘ stratSuff)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Glasgow parallel Haskell 28 / 65



The definition of parListChunk is based on this, sequential strategy:

Example (Chunking)
evalListSplitAt :: Int -> Strategy [a] ->

Strategy [a] -> Strategy [a]
evalListSplitAt n stratPref stratSuff [] = return []
evalListSplitAt n stratPref stratSuff xs
= do

ys’ <- stratPref ys
zs’ <- stratSuff zs
return (ys’ ++ zs’)
where
(ys,zs) = splitAt n xs

NB: This strategy only specifies evaluation degree and order, not
parallelism!
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Systematic Clustering
Sometimes we require to aggregate collections in a way that cannot be
expressed using only strategies. We can do so systematically using
the Cluster class:

cluster n maps the collection into a collection of collections
each of size n
decluster retrieves the original collection
decluster . cluster == id
lift applies a function on the original collection to the clustered
collection

Example (Cluster class)
class (Traversable c, Monoid a) => Cluster a c where
cluster :: Int -> a -> c a
decluster :: c a -> a
lift :: (a -> b) -> c a -> c b

lift = fmap -- c is a Functor, via Traversable
decluster = fold -- c is Foldable, via Traversable
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Systematic Clustering (cont’d)

An instance for lists requires us only to define cluster

instance Cluster [a] [] where
cluster = chunk

Read this as: In order to “cluster” parts of a list, combine them into
lists, or in short cluster lists by lists.
This means that the algorithm will operate over lists-of-lists in the
clustered version, rather than flat lists.
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A Strategic Div&Conq Skeleton
Example (Parallel divide-and-conquer)
divConq :: (a -> b) -- compute the result

-> a -- the value
-> (a -> Bool) -- threshold reached?
-> (b -> b -> b) -- combine results
-> (a -> Maybe (a,a)) -- divide
-> b

divConq f arg threshold conquer divide = go arg
where
go arg =
case divide arg of
Nothing -> f arg
Just (l0,r0) -> conquer l1 r1 ‘using‘ strat

where
l1 = go l0
r1 = go r0
strat x = do r l1; r r1; return x

where r | threshold arg = rseq
| otherwise = rpar

data Maybe a = Nothing | Just aHans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Glasgow parallel Haskell 32 / 65



Evaluation Strategy Summary

use laziness to separate algorithm from coordination
use the Eval monad to specify evaluation order
use overloaded functions (NFData) to specify the
evaluation-degree
provide high level abstractions, e.g. parList, parSqMatrix
are functions in algorithmic language⇒

I comprehensible,
I can be combined, passed as parameters etc,
I extensible: write application-specific strategies, and
I can be defined over (almost) any type

general: pipeline, d&c, data parallel etc.
Capable of expressing complex coordination, e.g. Embedded
parallelism, Clustering, skeletons
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Uses of GpH
Many Haskell Programs about 1 in 3 existing functional programs will
give acceptable speedups on multicores [TFP10].

Parallel Prototyping. A high-level coordination notation means that the
programmer can explore alternative parallelisations with relatively little
effort. With low-level notations a single parallelisation must be must be
designed into the program from the start.

High-performance computational finance, e.g. performing
data-intensive, large-scale risk assessment of derivatives etc (e.g. at
Standard Chartered, Jane Street Capital etc).

Data-intensive computational in general, e.g. data mining for user
profiles (e.g. Facebook).

Parallel symbolic applications, e.g. natural language processors,
symbolic algebra systems, etc.

Teaching parallel programming because the clear concepts, such as
separation of computation and coordination.
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A Methodology for Parallelisation

1 Sequential implementation. Start with a correct implementation of
an inherently-parallel algorithm.

2 Parallelise Top-level Pipeline. Most non-trivial programs have a
number of stages, e.g. lex, parse and typecheck in a compiler.
Pipelining the output of each stage into the next is very easy to
specify, and often gains some parallelism for minimal change.

3 Time Profile the sequential application to discover the “big eaters”,
i.e. the computationally intensive pipeline stages.

4 Parallelise Big Eaters using evaluation strategies. It is sometimes
possible to introduce adequate parallelism without changing the
algorithm; otherwise the algorithm may need to be revised to
introduce an appropriate form of parallelism, e.g. d & c or
data-parallelism.
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A Methodology for Parallelisation
1 Idealised Simulation. Simulate the parallel execution of the

program on an idealised execution model, i.e. with an infinite
number of processors, no communication latency, no
thread-creation costs etc. This is a “proving” step: if the program
isn’t parallel on an idealised machine it won’t be on any real
machine. A simulator is often easier to use, more heavily
instrumented, and can be run in a more convenient environment,
e.g. a desktop.

2 Realistic Simulation. Some simulators, like GranSim, can be
parameterised to emulate a particular parallel architecture,
forming a bridge between the idealised and real machines. A
major concern at this stage is to improve thread granularity so as
to offset communication and thread-creation costs.

3 Tune on Target Architecture. Use performance visualisation tools
(generally less detailed) to improve performance.

At the latter 3 stages, consider alternative parallelisations.
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Comparison with Low & Medium-level Methodologies

This methodology is heavily tool-based , probably even more than for
medium- and low-level approaches, where it is also important for
getting good sequential and parallel performance.

Typically only the top-level code is modified by adding a strategy; no
restructuring of code is necessary to achieve parallelism.

There is no risk of deadlock due to parallel coordination. However,
programs might not terminate if there is infinite recursion or full
evaluation of an infinite data structure.

Parallelism is largely independent of the underlying architecture. No
program changes should be necessary when moving to e.g. a larger
parallel machine.
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Comparison with Low & Medium-level Methodologies

In contrast, in low & medium-level methodologies:

it is very unusual to start with a sequential program; rather, the parallel
coordination is usually designed into the program from the beginning;

enforcing a specific evaluation order and parallelism pattern is easier,
because models such as C+MPI enforce sequential evaluation in the
host language;

because producing a parallel version is so time-consuming, only a very
small number of alternative parallelisations are considered (e.g. just
one).
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Developing a Parallel Matrix Multiplication

As an example of a parallel program, we return to our old friend: matrix
multiplication.

Problem If matrix A is an m × n matrix [aij ] and B is an n × p matrix
[bij ], then the product is an m × p matrix C where Cik = Σn

j=1aijbjk
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1: Sequential Implementation

-- Type synonyms
type Vec a = [a]
type Mat a = Vec (Vec a)

-- vector multiplication (’dot-product’)
mulVec :: Num a => Vec a -> Vec a -> a
u ‘mulVec‘ v = sum (zipWith (*) u v)

-- matrix multiplication, in terms of vector multiplications
mulMat :: Num a => Mat a -> Mat a -> Mat a
a ‘mulMat‘ b =

[[u ‘mulVec‘ v | v <- bt ] | u <- a]
where bt = transpose b
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3: Time Profile1

See GHC profiling documentation http://www.haskell.org/
ghc/docs/latest/html/users_guide/profiling.html

Compile for sequential profiling -prof -auto-all. Note naming
convention for profiling binary.

Run for a 200 by 200 matrix with time -pT and space -hC profiling
turned on

jove% ghc -prof -auto-all --make -threaded
-o MatMultSeq_prof MatMultSeq.hs

jove% MatMultSeq_prof 200 20 20 20 13 +RTS -pT -hC

Inspect profiles:
jove% more MatMultSeq_prof.prof
Fri Feb 3 13:07 2012 Time and Allocation Profiling Report (Final)

MatMultSeq_prof +RTS -pT -hC -RTS 200 20 20 20 13

total time = 2.24 secs (112 ticks @ 20 ms)
total alloc = 1,416,495,544 bytes (excludes profiling overheads)

1“2: Top-level Pipeline” does not apply here.
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Glasgow parallel Haskell 41 / 65

Time profile

COST CENTRE MODULE %time %alloc

mulVec Main 94.6 92.8
main Main 4.5 6.2

individual inherited
COST CENTRE MODULE no. entries %time %alloc %time %alloc

MAIN MAIN 1 0 0.0 0.0 100.0 100.0
CAF Main 338 8 0.0 0.0 100.0 100.0
mulMat Main 346 1 0.0 0.3 94.6 93.1
mulVec Main 347 1 94.6 92.8 94.6 92.8

main Main 344 1 4.5 6.2 5.4 6.9
chunk Main 345 404 0.9 0.7 0.9 0.7

CAF GHC.Read 315 1 0.0 0.0 0.0 0.0
CAF Text.Read.Lex 303 8 0.0 0.0 0.0 0.0
CAF GHC.Int 299 1 0.0 0.0 0.0 0.0
CAF GHC.IO.Handle.FD 275 2 0.0 0.0 0.0 0.0
CAF System.Posix.Internal274 2 0.0 0.0 0.0 0.0
...

jove%
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Space Profile

Improving space consumption is important for sequential tuning:
minimising space usage saves time and reduces garbage collection.

% hp2ps MatMultSeq_prof.hp
% ghostview -orientation=seascape MatMultSeq_prof.ps
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Space Profile

MatMultSeq_prof 200 1701 +RTS -pT -hC

5,682,109 bytes x seconds Tue Feb 25 01:00 2014

seconds0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

by
te

s

0M

2M

4M

6M

8M

(151)mulVec/mulMat/main/Ma...

(149)mulMat/main/Main.CAF

(137)chunk.(...)/chunk/mai...

(150)mulMat.bt/mulMat/main...

(135)main.rands/main/Main.CAF
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4: Parallelise Big Eaters

1st attempt: parallelise every element of the result matrix, or both
‘maps’

mulMatPar :: (NFData a, Num a) =>
Mat a -> Mat a -> Mat a

mulMatPar a b = (a ‘mulMat‘ b) ‘using‘ strat
where
strat m = parList (parList rdeepseq) m
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5: Idealised Simulation

The simulated measurements are all for pairs of 96x96 matrices.

Compile for simulation & simulate the program on an idealised
32-processor machine.

Postprocess & view results
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matMultPar_mg 3 +RTS -bP -bp32 -H16m  
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7: Tune on Target Architecture

Run program on a simulated 32-processor Beowulf cluster, i.e. high
latency with thread overheads, etc.

Postprocess & view results
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matMultPar_mg 3 +RTS -bP -bp32 -bl12000 -bG -by2 -H16m  
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Shared-Memory Naive Results
600 x 600 matrices on an 8-core shared memory machine (Dell
PowerEdge) lxpara2.

Compile with profiling; run on 4 cores; view results

% ghc --make -O2 -threaded -eventlog
-o MatMultPM MatMultPM.hs

% ./MatMultPM 600 90 20 20 13 +RTS -N7 -sstderr -ls
% threadscope MatMultPM.eventlog

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 62.6 1.0 0.89
2 56.9 1.10 0.99
4 59.7 1.04 0.95
7 60.2 1.04 0.96
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Improving Granularity

Currently parallelise both maps (outer over columns, inner over rows)

Parallelising only the outer, and performing the inner sequentially will
increase thread granularity .

mulMatParRow :: (NFData a, Num a) =>
Mat a -> Mat a -> Mat a

mulMatParRow a b =
(a ‘mulMat‘ b) ‘using‘ strat

where
strat m = parList rdeepseq m

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP2 – 2016/2017 Glasgow parallel Haskell 51 / 65

Improving Granularity (cont’d)

Granularity can be further increased by ‘row clustering’, i.e. evaluating
c rows in a single thread, e.g.

mulMatParRows :: (NFData a, Num a) =>
Int -> Mat a -> Mat a -> Mat a

mulMatParRows m a b =
(a ‘mulMat‘ b) ‘using‘ strat

where
strat m = parListChunk c rdeepseq m
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Shared-Memory Row-Clustered Results

600 x 600 matrices with clusters of 90 rows:

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 60.4 1.0 0.93
2 31.4 1.9 1.8
4 18.0 3.4 3.4
7 9.2 6.6 6.6
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Reducing Communication

Using blockwise clustering (a.k.a. Gentleman’s algorithm) reduces
communication as only part of matrix B needs to be communicated.

N.B. Prior to this point we have preserved the computational part of the
program and simply added strategies. Now additional computational
components are added to cluster the matrix into blocks size m times n.

mulMatParBlocks :: (NFData a, Num a) =>
Int -> Int -> Mat a -> Mat a -> Mat a

mulMatParBlocks m n a b =
(a ‘mulMat‘ b) ‘using‘ strat
where
strat x = return (unblock (block m n x

‘using‘ parList rdeepseq))
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block clusters a matrix into a matrix of matrices, and unblock does
the reverse.

block :: Int -> Int -> Mat a -> Mat (Mat a)
block m n = map f . chunk m where
f :: Mat a -> Vec (Mat a)
f = map transpose . chunk n . transpose

-- Left inverse of @block m n@.
unblock :: Mat (Mat a) -> Mat a
unblock = unchunk . map g where
g :: Vec (Mat a) -> Mat a
g = transpose . unchunk . map transpose
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7: Tune on Target Architecture: Shared Memory

600 x 600 matrices with block clusters: 20 x 20

No. Cores Runtime Relative Absolute
(s) Speedup Speedup

Seq 56.1 1.0
1 60.4 1.0 0.93
2 26.9 2.2 2.1
4 14.1 4.2 3.9
7 8.4 7.2 6.7
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Runtimes on a 48-core server
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Parallel Threadscope Profiles

For parallelism profiles compile with option -eventlog (all on one line!)

ghc -O2 -rtsopts -threaded -eventlog
-o parsum_thr_l parsum.hs

then run with runtime-system option -ls

./parsum_thr_l 90M 100 +RTS -N6 -ls

and visualise the generated eventlog profile like this:

/home/hwloidl/.cabal/bin/threadscope parsum_thr_l.eventlog

You probably want to do this on small inputs, otherwise the eventlog
file becomes huge!
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Parallel Threadscope Profiles
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7: Tune on Target Architecture: Beowulf Cluster

Performance measurement on our Beowulf cluster.

Matrix size: 300× 300 arbitrary precision integers
Row-wise clusters: 15 rows
Block-wise clusters: 60 x 60
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Summary

We have considered a methodology for developing programs with
high-level parallelism.

The methodology is
Tool-based, using both sequential and parallel profiling.
Iterative
Requires careful consideration of coordination aspects such as
thread granularity and communication
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GpH Exercise

The naive fibonacci program from parfib.hs sparks a huge
number of small grained tasks. Add a threshhold to reduce the
number of sparks produced.
Hint: Check the thresholding used in parsum.hs for an example.
Produce a data parallel version of the queens.hs program.
Hint 1: you will need to use strategies.
Hint 2: for perf. measurement use a board of at least 12× 12.
Hint 3: there are several ways of parallelising the program, and
you should explore which works best.

For a full list of (parallel) Haskell exercises see: http://www.macs.
hw.ac.uk/~hwloidl/Courses/F21DP/tutorial0.html
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