
Distributed and Parallel Technology
Revision

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences
Heriot-Watt University, Edinburgh

Semester 2 — 2016/17

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 1 / 23

Table of Contents

1 Overview

2 A Classification of Parallel Hardware

3 Parallel Programming Languages

4 C+MPI

5 Parallel Haskell

6 Abstractions for Parallel Computation

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 2 / 23

Classes of Architectures

Shared memory: CPUs access common memory across
high-speed bus

CPU CPU CPU

Memory Memory Memory

Bus

Symmetric Multi-Processing (SMP), e.g. Sun SMP
I advantage: very fast communication between processors
I disadvantage: bus contention limits number of CPUs

hierarchical SMP, e.g. IBM ASCI White, 1.512 * 16 PowerPC SMP

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 3 / 23

Classes of Architectures

Distributed memory: CPUs communicate by message passing on
dedicated high-speed network (e.g. IBM SP2, Cray T3E)

CPU CPU CPU

Memory Memory Memory

Network

I advantage: highly scalable
I disadvantage: explicit data communication is relatively slow

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 4 / 23



Parallel Architectures & Clusters

The major distinction is between:
I Single Instruction Multiple Data (SIMD);
I Multiple Instruction Multiple Data (MIMD)

SIMD typically involves specialised CPU & communications
I Control CPU + multiple ALUs e.g. CDC 6600
I Today’s graphics processors (GPGPUs)

MIMD typically involves specialised communications
I Point to point on channels e.g. Meiko Computing Surface
I Communication hierarchy e.g. nCube, BBN Butterfly

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 5 / 23

Parallel Architectures & Clusters

Parallel hardware is increasingly heterogeneous:
Often SIMD components complement von Neumann CPUs in
standard microprocessors

I digital signal processing (DSP) on vectors of bits
I mainly for graphics and animation

e.g. NVidias Tesla cards or Intel MMX instructions

poor support in compilers: the programmer must drop into
assembly language
no generic libraries: compiler specific

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 6 / 23

Parallel Programming Languages

More recent parallel programming languages offer increasing levels of
abstraction to simplify parallel programming:

Very Low level: sequential host language (eg. C) with basic
primitives for coordination (semaphores, sockets);

I Advantage: complete control over coordination; potentially very
high performance

I Disadvantage: very difficult to program; error-prone

Low level: sequential host language (eg. C, Fortran) with a library
for communication and coordination (C+MPI);

I Advantage: standardised; complete control over coordination;
potentially very high performance;

I Disadvantage: difficult to program; error-prone
I Notes: very well suited for clusters

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 7 / 23

Parallel Programming Languages (cont’d)

Mid level: sequential host language (eg. C, Fortran) with compiler
directives for parallelism (OpenMP);

I Advantage: easy to introduce parallelism, if the structure fits (eg.
data-parallelism);

I Disadvantage: less flexible than general approaches; not all
programs fit the structure

I Notes: very well suited for multi-cores

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 8 / 23



Parallel Programming Languages (cont’d)

High level: extension of a sequential host language (eg. C) with
constructs for coordinating parallelism and distributing data (UPC
and other PGAS languages);

I Advantage: conceptually simple, because PGAS gives the illusion
of a (globally) shared memory

I Disadvantage: data placement and performance tuning is tricky;
poor pointer safety

Very high level: alternative languages with (semi-)implicit
parallelism (GpH, SAC);

I Advantage: introducing parallelism is simple and doesn’t change
the result (deterministic);

I Disadvantage: performance tuning is tricky; implementation
overhead; language is unfamiliar

I Notes: abstracts over harwdare structure; very well suited for
symbolic computation

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 9 / 23

Basic Point to Point Communication in MPI

MPI offers two basic point to point communication functions:
MPI_Send(message, count, datatype, dest, tag, comm)

I Blocks until count items of type datatype are sent from the
message buffer to processor dest in communicator comm.

F message buffer may be reused on return, but message may still be
in transit!

MPI_Recv(message,count,datatype,source,tag,comm,status)

I Blocks until receiving a tag-labelled message from processor
source in communicator comm.

I Places the message in message buffer.
F datatype must match datatype used by sender!
F Receiving fewer than count items is OK, but receiving more is an

error!

Aside: These are the two most important MPI primitives you have to
know.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 10 / 23

Send and Receive in more Detail

int MPI_Send(
void * message,
int count,
MPI_Datatype datatype,
int dest,
int tag,
MPI_Comm comm)

int MPI_Recv(
void * message,
int count,
MPI_Datatype datatype,
int source,
int tag,
MPI_Comm comm,
MPI_Status * status)

message pointer to send/receive buffer
count number of data items to be sent/received
datatype type of data items
comm communicator of destination/source processor

I For now, use default communicator MPI_COMM_WORLD
dest/source rank (in comm) of destination/source processor

I Pass MPI_ANY_SOURCE to MPI_Recv() if source is irrelevant
tag user defined message label

I Pass MPI_ANY_TAG to MPI_Recv() if tag is irrelevant
status pointer to struct with info about transmission

I Info about source, tag and #items in message received
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 11 / 23

High Level Parallel Programming

Many approaches have been proposed to reduce the programmer’s
coordination management burden, e.g. skeletons, parallelising
compilers, etc.

GpH (Glasgow parallel Haskell) aims to simplify parallel programming
by requiring the programmer to specify only a few key aspects of
parallel programming, and leaving the language implementation to
automatically manage the rest.

GpH is a parallel extension to the non-strict, purely functional language
Haskell.

What are the basic primitives to introduce parallelism; what is their
semantics?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 12 / 23



GpH Coordination Aspects

To specify parallel coordination in Haskell we must

1 Introduce parallelism
2 Specify Evaluation Order
3 Specify Evaluation Degree

This is much less than most parallel paradigms, e.g. no
communication, synchronisation etc.

It’s important that we do so without cluttering the program. In many
parallel languages, e.g. C with MPI, coordination so dominates the
program text that it obscures the computation.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 13 / 23

Evaluation Strategies: Separating Computation and
Coordination

Evaluation Strategies abstract over par and pseq,
raising the level of abstraction, and
separating coordination and computation concerns
It should be possible to understand the semantics of a function
without considering its coordination behaviour.

How can you implement a data-parallel strategy over a list?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 14 / 23

Parallel Performance Tuning

Consider:
How to use thresholding in divide-and-conquer programs?
How to use chunking in data-parallel programs?
How to code these techniques in parallel Haskell?

Go through the worked example of parallelisation and tuning from the
GpH slides!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 15 / 23

Evaluation Strategy Summary
Critically evaluate the properties of strategies.
Evaluation Strategy

use laziness to separate algorithm from coordination
use the Eval monad to specify evaluation order
use overloaded functions (NFData) to specify the
evaluation-degree
provide high level abstractions, e.g. parList, parSqMatrix
are functions in algorithmic language ⇒

I comprehensible,
I can be combined, passed as parameters etc,
I extensible: write application-specific strategies, and
I can be defined over (almost) any type

general: pipeline, d&c, data parallel etc.
Capable of expressing complex coordination, e.g. Embedded
parallelism, Clustering, skeletons

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 16 / 23



A Methodology for Parallelisation

1 Sequential implementation. Start with a correct implementation of
an inherently-parallel algorithm.

2 Parallelise Top-level Pipeline. Most non-trivial programs have a
number of stages, e.g. lex, parse and typecheck in a compiler.
Pipelining the output of each stage into the next is very easy to
specify, and often gains some parallelism for minimal change.

3 Time Profile the sequential application to discover the “big eaters”,
i.e. the computationally intensive pipeline stages.

4 Parallelise Big Eaters using evaluation strategies. It is sometimes
possible to introduce adequate parallelism without changing the
algorithm; otherwise the algorithm may need to be revised to
introduce an appropriate form of parallelism, e.g. d & c or
data-parallelism.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 17 / 23

A Methodology for Parallelisation
1 Idealised Simulation. Simulate the parallel execution of the

program on an idealised execution model, i.e. with an infinite
number of processors, no communication latency, no
thread-creation costs etc. This is a “proving” step: if the program
isn’t parallel on an idealised machine it won’t be on any real
machine. A simulator is often easier to use, more heavily
instrumented, and can be run in a more convenient environment,
e.g. a desktop.

2 Realistic Simulation. Some simulators, like GranSim, can be
parameterised to emulate a particular parallel architecture,
forming a bridge between the idealised and real machines. A
major concern at this stage is to improve thread granularity so as
to offset communication and thread-creation costs.

3 Tune on Target Architecture. Use performance visualisation tools
(generally less detailed) to improve performance.

At the latter 3 stages, consider alternative parallelisations.
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 18 / 23

General issues of performance tuning

Consider the granularity of the parallelism: how much work is
done in each thread?
Consider the computation-communication ratio
Avoid communication as much as possible, or try to overlap
communication with computation (latency hiding)
Measure run-time and speed-up to assess the quality of the code
Distinguish between relative speed-up (parallel vs parallel
1-processor code) and absolute speed-up (parallel vs sequential
code)
Assess performance through speedup and scalability graphs
Assess issues beyond performance: programmability, portability,
ease-of-maintenance

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 19 / 23

Foster’s PCAM Parallel Program Design Methodology

PROBLEM

partition communication

mapping

agglomeration

Methodology
see DBPP Online, Part I, Chapter 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 20 / 23



Algorithmic Skeletons — The Computation Model

A skeleton is
a useful pattern of parallel computation and interaction,
packaged as a framework/second order/template construct (i.e.
parametrised by other pieces of code).
Slogan: Skeletons have structure (coordination) but lack detail
(computation).

Each skeleton has
one interface (e.g. generic type), and
one or more (architecture-specific) implementations.

I Each implementations comes with its own cost model .

A skeleton instance is
the code for computation together with
an implementation of the skeleton.

I The implementation may be shared across several instances.

Note: Skeletons are more than design patterns.
Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 21 / 23

Skeletons Are Parallel Higher-Order Functions

Observations:
A skeleton (or any other template) is essentially a higher-order
function (HOF), ie. a function taking functions as arguments.

I Sequential code parameters are functional arguments.

Skeleton implementation is parallelisation of HOF.
Many well-known HOFs have parallel implementations.

I Thinking in terms of higher-order functions (rather than explicit
recursion) helps in discovering parallelism.

Consequences:
Skeletons can be combined (by function composition).
Skeletons can be nested (by passing skeletons as arguments).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 22 / 23

A Skeleton Implementation — Google MapReduce

user
program

worker

worker

worker

split 0

split 1

split 2

split 3

split 4

master

worker

worker output
file 1

output
file 0read (3) local write (4)

write (6)

assign reduce (2)

assign m
ap (2

)

fork (1)fork (1)

input
files

map
phase

intermediate files
(on local disks)

reduce
phase

output
files

remote read (5)

fork (1)

J. Dean, S. Ghemawat. MapReduce: Simplified Data Processing
on Large Clusters, Commun. ACM 51(1):107–113, 2008

Hans-Wolfgang Loidl (Heriot-Watt Univ) F21DP – 2016/2017 Revision 23 / 23


	Overview
	A Classification of Parallel Hardware
	Parallel Programming Languages
	C+MPI
	Parallel Haskell
	Abstractions for Parallel Computation

