HERIOT
&) WATT

L"'ﬁ.?
4 UNIVERSITY

—

Heterogeneous Computing
using openCL
lecture 1

F21DP Distributed and Parallel
Technology

Sven-Bodo Scholz

HERIOT
SWATT

¥ UNIVERSITY

3
‘:éj‘

My Coordinates

e Office EM G.27
* email: S.Scholz@hw.ac.uk

* contact time:
— Thursday after the lecture or
— on appointment

A

HERIOT

&) WATT

The Big Picture [

Introduction to Heterogeneous Systems
OpenCL Basics
Memory Issues
Scheduling
Optimisations

HERIOT
R WATT

s\'
17 UNIVERSITY

Reading

Click to LOOK INSIDE!

Ly v re

+ all about

Hored s R Gagsar o0 Bowas Useid Kaal

openCL et tivedt v v

Heterogeneous Computing

‘OpenCL
Oy PO e

klndle edmon]

HERIOT

FHWAT T

A
‘w'l? UNIVERSITY

Heterogeneous Systems

A Heterogeneous System is a Distributed
System containing different kinds of hardware
to jointly solve problem:s.

HERIOT
3%‘. WATT

¥ UNIVERSITY

Focus

* Hardware: SMP + GPUs:

HERIOT
SYWATT

¥ UNIVERSITY

3
‘:éj‘

Recap Concurrency

“Concurrency describes a situation where two
or more activities happen in the same time
interval and we are not interested in the order
in which it happens”

A

HERIOT
ZYWATT

A
4 UNIVERSITY

Recap Parallelism

“In CS we refer to Parallelism if two or more
concurrent activities are executed by two or
more physical processing entities”

4

HERIOT
S WATT

Ceals
4 UNIVERSITY

Recap Data-Parallelism

12 2 3 3 4 4 S5
W
1 175 225 275 325 3.5 425 9
b[i] =.25 * a[i-1] + 0.5 * a[i] + 0.25 * a[i+1]

b[i] = a[i]

HERIOT
ae WATT

A Peek Preview © i

= loop iteration
Single-threaded (CPU) :

// there are N elements Time >

for(i = 0; 1 <N i+ To o a2l lals el nlalo 015

C[1i] = A[1] + BI[1]

Multi-threaded (CPU)

// tid is the thread id TO
// P is the number of cores T1
for(i = 0; i < tid*N/P; i++) T2

Cli] = A[i] + B[1i] T3

Massively Multi-threaded (GPU)

// tid is the thread id

Cltid] = A[tid] + B[tid] ™
T2

T3

-]
-—
N

. HERIOT
Conventional CPU S WATT
Architecture

2
4 UNIVERSITY

Space devoted to control logic Conventional CPU Block Diagram
instead of ALU

CPUs are optimized to minimize
the latency of a single thread

— Can efficiently handle control Control Logic L2 Cache
flow intensive workloads L3
Multi level caches used to hide Cache
latency

ALU L1 Cache

Limited number of registers due
to smaller number of active
threads 25GBPS

Control logic to reorder
execution, provide ILP and
minimize pipeline stalls

System Memory

A present day multicore CPU could have more than
one ALU (typically < 32) and some of the cache
hierarchy is usually shared across cores

HERIOT

: FEWATT
Modern GPGPU Architecture | A&

Generic many core GPU

— Less space devoted to control
logic and caches

— Large register files to support
multiple thread contexts
Low latency hardware
managed thread switching

Large number of ALU per
“core” with small user
managed cache per core

Memory bus optimized for
bandwidth

— ~150 GBPS bandwidth allows
us to service a large number
of ALUs simultaneously

SNV 3|dwis

ii

High Bandwidth
bus to ALUs

On Board System Memory

I 3

HERIOT
T WATT

l'? &
"17 UNIVERSITY

Typical System

* Host initiated memory transfers
* Host initiated computations on the GPU (kernels)

A

Nvidia GPUs FHRICH
Fermi Architecture

3
“%

e GTX 480 - Compute 2.0 capability

— 15 cores or Streaming
Multiprocessors (SMs)

— Each SM features 32 CUDA
processors

— 480 CUDA processors

Cor

_—
=/

Cor Cor Cor

Cor Cor Cor

Cor Cor Cor

Cor Cor Cor

* Global memory with ECC

Cor Cor Cor Cor

Cor Cor Cor Cor

CU DA Core Cor Cor Cor Cor

Dispatch Port

Cor Cor Cor Cor

CH CGH @ CH CH CH CH CH CH G4 CH CH CGH CH
))))))) D) N)))

Operand Collector

Interconnect Memory

L1 Cache / 64kB Shared Memory

Nvidia GPUs AT

Fermi Architecture

SM executes threads in groups of
32 called warps.

— Two warp issue units per SM
Concurrent kernel execution

— Execute multiple kernels
simultaneously to improve
efficiency

CUDA core consists of a single ALU
and floating point unit FPU

CUDA Core

Dispatch Port

Operand Collector

< UNIVERSITY

| ‘

Cor Cor Cor Cor

SFU

Cor Cor Cor Cor

Cor Cor Cor Cor

Cor Cor Cor Cor

Cor Cor Cor Cor

Cor Cor Cor Cor

Cor Cor Cor Cor

Cor Cor Cor Cor

CGH G4 54 5 5+ G4 T&H U CH CH & CH G4 &+ TH
)))))))) N)))

-

Interconnect Memory

L1 Cache / 64kB Shared Memory

HERIOT

SIMD vs SIMT B

* SIMT denotes scalar instructions and multiple
threads sharing an instruction stream

— HW determines instruction stream sharing across ALUs

— E.g. NVIDIA GeForce (“SIMT” warps), AMD Radeon architectures
(“wavefronts”) where all the threads in a warp /wavefront proceed in
lockstep

— Divergence between threads handled using
predication

* SIMT instructions specify the execution and
branching behavior of a single thread

e SIMD instructions exposes vector width,

— E.g. of SIMD: explicit vector instructions like x86 SSE -

HERIOT

SIMT Execution Model - A

e SIMD execution can be combined with pipelining
e ALUs all execute the same instruction
e Pipelining is used to break instruction into phases

e When first instruction completes (4 cycles here), the next instruction is ready to execute

SIMD Width : ;

Wavefront

Cycle 1

HERIOT

NVIDIA Memory Hierarchy |t

L1 cache per SM configurable to support Registers

shared memory and caching of global A Thread

memory Block
— A48 KB Shared / 16 KB of L1 cache | ’2222 I

— 16 KB Shared / 48 KB of L1 cache

Data shared between work items of a ¥

Shared
group using shared memory Mefnriry L1 Cache
Each SM has a 32K register bank i
L2 cache (768KB) that services all .

ache
operations (load, store and texture)
— Unified path to global for loads and stores I

Global Memory

NVIDIA Memory Model in S
OpenCL

¥ UNIVERSITY

* Like AMD, a subset of hardware
memory exposed in OpenCL

Private Private Private Private

Memory Memory Memory Memory * Configurable shared memory is
usable as local memory

Workitem 1 Workitem 1 Workitem 1 Workitem 1

— Local memory used to share data
between items of a work group at
lower latency than global memory

P Local Vemory * Private memory utilizes registers
per work item

Global / Constant Memory Data Cache

Compute Device

Global Memory

Compute Device Memory

HERIOT

SR WAT'T

Mapping Threads to Data § &g

 Consider a simple vector addition of 16 elements
— 2 input buffers (A, B) and 1 output buffer (C) are required

Array

Indices\
Vector

Addition:

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
+
B

e
bl L
A

HERIOT
S WATT

Mapping Threads to Data | e

* Create thread structure to match the problem Thread Code:

— 1-dimensional problem in this case
C[tid] = A[tid] + B[tid]
Thread IDs

Thread
Structure —>

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

e
bl L
A

Vector
Addition:

o+ >

HERIOT

Thread Structure Foall

OpenCL’s thread structure is designed to be
scalable

Each instance of a kernel is called a work-item
(though “thread” is commonly used as well)

Work-items are organized as work-groups

— Work-groups are independent from one-another
(this is where scalability comes from)

An index space defines a hierarchy of work-
groups and work-items

A

HERIOT

Thread Structure GPWATT

 Work-items can uniquely identify themselves based on:
— A global id (unique within the index space)
— A work-group ID and a local ID within the work-group

WOrk-group size Sx

[d
' 1
work-group (w, , wy)
work-item work-item
Wy S5, wy Syvsy) s (Wy Sy#5,. w, Sy*sy;
(Sy. syi =(0,0) Sy s,/' = (Sx-f. o)
work-group size Sy
»
{ work-item work-item
NDRange size G, (Wy Sy#Sy. W, S5, Wy Sy#8. W, S 5
\ _________ {5y 80 =10.5,1) | sy s = (51 S0 1)

-
I

NDRange size Gy

HERIOT

If you are excited..... © s

you can get started on your own ©
google AMD openCL

or Intel openCL

or Apple openCL

or Khronos

download an SDK and off you go!

A

