HERIOT
&) WATT

L"'ﬁ.?
4 UNIVERSITY

—

Heterogeneous Computing
using openCL
lecture 2

F21DP Distributed and Parallel
Technology

Sven-Bodo Scholz

HERIOT
& WATT

Ceals
4 UNIVERSITY

Example: Squares

result[i] = datali] * datali]

A

HERIOT
SYWATT

¥ UNIVERSITY

“%J‘

Selecting a Platform

cl platform id *platforms,

cl int clGetPlatformIDs (cl uint num_entries,
cl uint *num_platforms)

 Each OpenCL implementation (i.e. an OpenCL
library from AMD, NVIDIA, etc.) defines
platforms which enable the host system to
interact with OpenCL-capable devices

— Currently each vendor supplies only a single
platform per implementation

A

HERIOT
S WAT'T

Selecting Devices D omisssrs

Once a platform is selected, we can then query for
the devices that it knows how to interact with

clGetDeviceIDs’ (cl_platform id platform,
cl_device type device type,
cl uint num_entries,
cl_device id *devices,
cl uint *aum_devices)

We can specify which types of devices we are
interested in (e.g. all devices, CPUs only, GPUs only)

This call is performed twice as with clGetPlatformIDs

— The first call is to determine the number of devices, the
second retrieves the device objects

A

Contexts

* [s an abstract execution environment

HERIOT
S WATT

2
4 UNIVERSITY

ﬁ_context clCreateContext (const cl_context properties *properties,
cl _uint num_devices,
const cl_device_id *devices,

void *user_data),
void *user_data,
K cl_int *errcode_ref)

void (CL_CALLBACK *pfn_notify)(const char *errinfo,
const void *private_info, size t cb,

\

J

Empty
context

HERIOT
S WATT

Command Queues

e Command queues associate a context with a device

cl command queue clCreateCommandQueue (cl_context context,
cl_device_id device,
cl_command queue_properties properties,
cl_int *errcode_ret)

Command
queues

HERIOT

Lucky You |© gLt

/***

*initGPU : sets up the openCL environment for using a GPU.

* Note that the system may have more than one GPU in which case
* the one that has been pre-configured will be chosen.

* If anything gows wrong in the course, error messages will be

* printed to stderr and the last error encountered will be returned.
*

***/

extern cl_int initGPU ();

Choses platform and device and creates
a context and a command queue for you ©

HERIOT
S WATT

Memory Objects - JU

cl mem clCreateBuffer (cl context context,
cl_ mem flags flags,
size_t size,
void *host_ptr,
cl _int *errcode_ret)

Uninitialized OpenCL memory objects—the original
/ /data will be transferred later to/from these objects

Original input/output d
(not OpenCL memory ob

HERIOT
SO WATT

Transferring Data s LU

ﬁ_ int clEnqueueWriteBuffer (c| command queue command_queuex
cl_mem buffer,

cl_bool blocking write,

size t offset,

size tcb,

const void *ptr,

cl uint num_events_in_wait_list,

const cl_event *event _wait_list,

K cl_event *event)

The images are
redundant here to
show that they are
both part of the
context (on the
host) and
physically on the
device

Images are written to a
device

HERIOT
WATT

Pro grams P

cl program clCreateProgramWithSource (cl_context context,
cl_uint count,
const char **strings,
const size _t *lengths,
cl _int *errcode_ret)

P
Program

HERIOT
S WAT'T

Compiling Programs Q)

C,ﬁ_int clBuildProgram (cl_program program, \

cl_uint num_devices,

const cl_device id *device_list,

const char *options,

void (CL_CALLBACK *pfn_notify)(cl_program program,
void *user_data),

K void *user _data) /

* This function compiles and links an executable
from the program object for each device in the
context

— If device_list is supplied, then only those devices are
targeted

e Optional preprocessor, optimization, and other
options can be supplied by the options argument

A

HERIOT
S WATT

Ke r n e I S &Y UNIVERSITY

cl kernel clCreateKernel (cl_program program,
const char *kernel _name,
cl_int *errcode_ret)

Kernels

4

HERIOT

Runtime Compilation Qe

 Thereis a high overhead for compiling programs and
creating kernels
— Each operation only has to be performed once (at the
beginning of the program)

* The kernel objects can be reused any number of times by setting
different arguments

Read source
codeintoan ——>| clCreateProgramWithSource

v

array

clBuildProgram | —| clCreateKernel

clCreateProgramWithBinary i)

HERIOT
FIWATT

Kernel Arguments & e

cl int clSetKernelArg (cl_kernel kernel,
cl_uint arg_index,
size targ size,
const void *arg value)

Data (e.g. images) are
set as kernel
arguments

HERIOT
SO WATT

Lucky you Il © HWALY

/***

*

* setupKernel : this routine prepares a kernel for execution. It takes the

* following arguments:

- the kernel source as a string

- the name of the kernel function as string

- the number of arguments (must match those specified in the
kernel source!)

- followed by the actual arguments. Each argument to the kernel
results in two or three arguments to this function, depending
on whether these are pointers to float-arrays or integer values:

legal argument sets are:
FloatArr::clarg_type, num_elems::int, pointer::float *, and
IntConst::clarg_type, number::int

¥ ¥ X X X X X ¥ X X ¥ %

typedef enum {
FloatArr,
IntConst

} clarg_type;

HERIOT
JHWAT'T

Lucky you Il cont.

*

If anything goes wrong in the course, error messages will be
printed to stderr. The pointer to the fully prepared kernel
will be returned.

Note that this function actually performs quite a few openCL
tasks. It compiles the source, it allocates memory on the
device and it copies over all float arrays. If a more
sophisticated behaviour is needed you may have to fall back to
using openCL directly.

¥ ¥ X X ¥ X ¥ ¥ %

**/

extern cl_kernel setupKernel(const char *kernel_source, char *kernel_name, int num_args, ...);

count = 1024;

kernel = setupKernel(KernelSource, "square", 3, FloatArr, count, data,
FloatArr, count, results,
IntConst, count);

HERIOT

& WAT'T
Lucky you Il cont. & oy
const char *KernelSource = "\n"
" __kernel void square(\n"
" __ global float* input, \n"
" _ global float* output, \n"
" const unsigned int count) \n"
" \n"
" inti=get_global _id(0); \n"
" output[i] = input[i] * input[i]; \n"
"} \n”;

data = (float *) malloc (count * sizeof (float));
results = (float *) malloc (count * sizeof (float));

for (inti=0;i< count; i++)
datali] = rand () / (float) RAND_MAX;

kernel = setupKernel(KernelSource, "square", 3, FloatArr, count, data,
FloatArr, count, results,
IntConst, count);

HERIOT

Executing the Kernel D ki

@ int clEnqueueNDRangeKernel (cI command queue command_queu)
cl_kernel kernel,
cl_uint work dim,
const size t *global work_offset,
const size_t *global work_size,
const size t *local work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event)

An index space of —
threads is created
(dimensions match
the data)

HERIOT
ae WATT

Executing the Kernel e

* A thread structure defined by the index-space that is
created

— Each thread executes the same kernel on different data

Each thread
executes the kernel

SIMT = Single Instruction
Multiple Thread

HERIOT
S WATT

Copying Data Back

/ cl int clEnqueueReadBuffer (cI| command queue command queue, \
cl_mem buffer,

cl_bool blocking read,

size t offset,

size tcb,

void *ptr,

cl uint num_events_in_wait_list,

const cl_event *event_wait_list,

cl_event *event) J

|
Copied back
from GPU

HERIOT
SWAT'T

Lucky you Il ©

/***

* runKernel : this routine executes the kernel given as first argument.

* The thread-space is defined through the next two arguments:

* <dim> identifies the dimensionality of the thread-space and

* <globals> is a vector of length <dim> that gives the upper
bounds for all axes. The argument <local> specifies the size
of the individual warps which need to have the same dimensionality
as the overall range.
If anything gows wrong in the course, error messages will be
printed to stderr and the last error encountered will be returned.

¥ ¥ ¥ ¥ ¥

Note that this function not only executes the kernel with the given
range and warp-size, it also copies back *all* arguments from the
kernel after the kernel's completion. If a more sophisticated

behaviour is needed you may have to fall back to using openCL directly.

¥ ¥ ¥ ¥ ¥

*

**/

extern cl_int runKernel(cl_kernel kernel, int dim, size_t *global, size_t *local);

size_t global[1] = {1024};
size_t local[1] = {32};
runKernel(kernel, 1, global, local);

HERIOT

Finally: Release the Resources | A=

/***

*

* freeDevice : this routine releases all acquired ressources.
* If anything gows wrong in the course, error messages will be

* printed to stderr and the last error encountered will be returned.
%

**/

extern cl_int freeDevice();

LT G,
S WAT'T

OpenCL Timing PWALT

OpenCL provides “events” which can
be used for timing kernels
— Events will be discussed in detail in
Lecture 11
We pass an event to the OpenCL
enqueue kernel function to capture
timestamps

Code snippet provided can be used to
time a kernel

— Add profiling enable flag to create
command queue

— By taking differences of the start and
end timestamps we discount
overheads like time spent in the
command queue

cl_event event_timer;
clEnqueueNDRangeKernel(
myqueue , myKernel,
2, 0, globalws, localws,
0, NULL, &event_timer);

unsigned long starttime, endtime;

clGetEventProfilinginfo(event_time,
CL_PROFILING_COMMAND_START,
sizeof(cl_ulong), &starttime, NULL);

clGetEventProfilingInfo(event_time,
CL_PROFILING_COMMAND_END,
sizeof(cl_ulong), &endtime, NULL);

unsigned long elapsed =
(unsigned long)(endtime - starttime);

