
F21DP Distributed and Parallel Technology

OpenMP lab

1 Task 1

Implement the algorithm for approximating π as given in the lecture in C. Expose
concurrency using openMP. Do not use the openMP support for loops. Do not use the
mutual exclusion support (neither critical nor atomic). Measure the runtime perfor-
mance for varying numbers of threads and relate that to the number of cores of the
hardware that you use.

2 Task 2

Try to avoid the false sharing of the solution given in the lecture by turning the array
sum into a two dimensional array with [10][64] elements. Instead of using sum[id] do
use sum[id][0] for computing the partial sums for each thread. Measure the runtime
impact of this modification. Why/how does that work?

3 Task 3

As explained in the lecture, use openMP’s mutual exclusion support for avoiding the
array sum. How do you need to use it to achieve the best possible performance?

4 Task 4

Use the loop support of openMP to further simplify your implementation of the π
approximation. Investigate the impact of different schedulings. Which one gives you
the best performance results?

Hand-out: 18/02/2015


