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Welcome (back) to Heriot-Watt University

This year we will use a combination of online and face-to-face
teaching (hybrid).

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 2/32



Weekly Schedule

@ Lectures will be asynchronous, online: watch the
screencast of the lecture in your own time

@ The online slots will be used for overview of the new
material in that week, for Q&A sessions, and exercises

o See the Week Overview item for that week on Canvas
with all necessary links

@ Scheduled slots for the course are:

» Mon 11:00-12:00 (online, sync lecture): overview of
lecture material for that week

» Tue 13:00-15:00 (online, sync lab): Q&A session and lab
exercises for that week

» Fri 17:00-18:00 (face-to-face lab): in-person lab session in
Windows (C#) or Linux lab (Python)
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Overview of F20SC/F21SC
“Industrial Programming”

Key course characteristics:

@ This course is about the programming skills

e We will cover:
» Systems languages: C#
» Scripting languages: Python

o It assumes solid prior knowledge of an object-oriented

language, eg. Java.
» It is about quickly picking up a new language of a familiar
paradigm.

» It is not a gentle introduction to programming.
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Learning Outcomes

e Appreciation of role of different programming paradigms
in configuring/managing systems:
» Object-oriented: good at structuring large code
» Imperative: good at performance
» Functional: good at abstraction
» Logic: good at reasoning
e Autonomous problem analysis/solution:
» Really understand the problem to pick the right
paradigm/approach for producing a solution
@ Understanding of core characteristics of contemporary
operating systems: make good use of available resources
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Learning Outcomes

e Appreciation of role of “language as glue wear” in
configuring/maintaining systems:
» Scripting languages combine existing code

o Knowledge of key abstractions across programming
languages:
» Write reusable and maintainable code

@ Technical proficiency in advanced techniques in different
programming paradigms:
» Learn the Best of all Worlds
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Topics to cover

e Overview & Linux introduction (induction week)
e Core C# programming (3 weeks)

e Advanced C# programming (3 weeks)

e Reading Week (1 week)

e Python programming (4 weeks)

o Revision (1 week)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 7/32



Lecture Plan

e Week 0: Linux Introduction (with shell scripting)
@ Week 1: .Net and C# Introduction, C# Fundamentals
@ Week 2: C# Objects & Classes, C# Concurrency

o Week 3: C# Data Manipulation, Database access in C#
and LINQ, C# GUI development

@ Week 4: Threading in C#, C# Systems Programming
o Week 5: Advanced C# Features, C# Revision
@ Week 6: Reading Week
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Lecture Plan (cont’d)

o Week 7: Parallel Programming in C#
@ Week 8: Python Introduction and Data Types
e Week 9: Python Control Structures and Functions

@ Week 10: Python Classes and Advanced Language
Constructs

@ Week 11: Python Libraries and Tools

e Week 12: Revision
Course material is available via the Canvas system:
http://canvas.hw.ac.uk/

Main course information page:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/
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This page collects material on my course on Industrial Programming
This course will start
As a starting point for this course, this is a very good article, published in IEEE Computer, summarising the characteristics of September 15th, 2014 14:15.
scripting languages compared to general purpose programming languages.

A Guide for Independent Learners is available here.

Purpose and Learning Objectives Lecturers:

Hans-Wolfgang Loidl (HWL)
The purpose of the Course F21SC System Programming and Scripting is to deepen the understanding of a range of programming
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Assessment

o Assessed Coursework (2x): 100%
@ There is no exam for this module
Coursework:
e Project 1: C# programming project (50%)
e Handout: Week 3; Deadline: Week 7
e Project 2: Python programming project (50%)
o Handout: Week 8; Deadline: Week 13

There will be no individual deadline extensions. If you have a
case you must submit a “Mitigating Circumstances” form.
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Skills tested in the Coursework

Composing bigger applications out of existing
components

Rapid prototyping
Resource conscious programming

GUI programming

Concurrency
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Software Infrastructure

e Visual Studio 2019 with C# (Windows)

o Alternatively, stand-alone C# compiler with libraries
needed for GUI etc programming

e sh or bash scripting languages (Unix)
e Python interpreter
@ Overall: heavy use of libraries!

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview



Reading List

C+#
o Jesse Liberty, Brian MacDonald, “Learning C# 3.0”,
O’Reilly, 2009.
o lan Griffiths, “Programming C# 8.0”, O’Reilly, May
2019.

o Joseph Albahari, Ben Albahari, “C# 7.0 in a Nutshell:
The Definitive Reference”, O’Reilly, 2017.

e Kurt Normark, “Object-oriented Programming in C# for
C and Java Programmers”, 2011. on-line

@ Eric Gunnerson, “A programmer’s Introduction to C#
5.0”, Springer, 2012

o Andrew Birrell, “An Introduction to programming with
C# Threads”, Microsoft, 2005.

@ Arnold Robbins, “Classic Shell Scripting: Hidden
Commands that Unlock the Power of Unix”, O’Reilly, HERIOT
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Characteristics of Systems Languages

Build algorithms and data structures from scratch

Use strong typing to help manage complexity of large
pieces of software

Focus is often on speed of execution

Easy access to low-level operating system is crucial
Examples: C, C#
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Characteristics of Scripting Language

@ Their main purpose is to glue software together
o Focus is on rapid-prototyping

e Safety aspects are of a lesser concern

e Thus, scripting languages are often type-less

@ Modern scripting languages incorporate features of
general purpose programming languages, especially
object-oriented (0-o) features, higher- order functions

o Easier to learn for casual programming
o Examples: sh, php, python, perl, ruby, lua
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A Short History of Scripting Languages

o Developed as an abstraction over assembler programs

@ They are higher-level by introducing abstraction
mechanisms to manage large pieces of code.

@ They provide fewer safety mechanisms and are typically
type-less (or dynamically typed)

o They delegate some control of the underlying machine to
(external) libraries and operating system

o Together this drastically increases programmer
productivity
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Classifying Scripting Languages
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A Short History of Scripting Languages

o First Generation: simple composition of command-line
jobs (espec. Unix systems); also called batch-languages

@ Very little language abstraction

o Slightly different syntax in different languages

@ Rich libraries for low-level coordination with the
operating-system (OS)

e Examples: sh, bash, tcsh ...
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A Short History of Scripting Languages

e Second Generation: Trying to combine many different
language features into one language

o Addresses the problem that different batch languages do
the same thing slightly differently

@ Thus, the language becomes huge

@ The mixture of concepts makes it hard to read
third-party code.

e Also, extended support for graphical user interfaces
(GUIs)

o Examples: perl, tcl

HERTOT
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A Short History of Scripting Languages

@ Third Generation: increasingly use modern programming
language abstractions to make programming simpler

@ In particular, heavy use of 0-o concepts

e Also, concepts from other programming paradigms such
as higher-order functions and polymorphism

e Examples: php, python, ruby, lua, go, dart
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Relevance of Scripting Languages

@ Increasing speed of processor makes the application of
interpreted languages viable

o Existence of large libraries makes the development of new
software from scratch less common-place

o Heterogeneous environment make a write- once
run-everywhere approach appealing

@ New technologies, such as the internet, make the issue of
composing services even more important
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Common Features of Scripting Languages

e Scripting languages are usually typeless: no (type)
restrictions on the use of the input/output to/from
existing components are imposed

e This enhances the flexibility of the language but reduces
the safety

o Example from Unix shells: pipeline mechanism:

select | grep scripting | wc

e This reads the text currently selected in a window, passes
it to a search for the word “scripting” and counts the
number of lines in the output
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e Modern scripting languages provide a limited amount of
type information to re-gain type safety

e To avoid frequent conversion functions between types,
class hierarchies and implicit type conversions are used

@ In contrast to systems languages, some type checks are
performed at run-time rather than compile-time (dynamic

typing)
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@ Scripting languages are usually interpreted rather than
compiled

o This gains rapid turnaround time in writing and testing
code

e It increases flexibility, since the program can generate
strings that are in themselves programs

o It loses performance compared to executing compiled
code; but typically the amount of code in the scripting
language is small and performance is dominated by the
code in the components
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e Scripting languages are often higher-level than system
languages, espec. for the latest generation

e For example many scripting languages have powerful,
built-in mechanisms for regular expression substitution

o In the latest generation high-level concepts such as class
hierarchies are included, too.
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When to use Scripting Languages

(]

Is the application’s main task to connect pre-existing
components?

Will the application manipulate a variety of different
kinds of things?

Does the application involve a GUI?
Does the application do a lot of string manipulation?
Will the application’s functions evolve rapidly over time?

(]
o
(]
(]

Does the application need to be extensible?
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When to use Systems Languages

@ Does the application implement complex algorithms or
data structures?

e Does the application manipulate large data sets?

@ Are the application’s functions well-defined and changing
slowly?
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Application Domains for Scripting

e Graphical User Interfaces

» Fundamentally “gluing” nature
» Large percentage of code in modern apps

o Internet

» Main role: connecting a huge number of existing
computations and data (see success of perl)

» Web services as the next level of gluing
e Component Frameworks

» A flexible method of assembling components into

applications
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Summary

o Be aware of the characteristics of systems and scripting
languages
» Decide early on in a project which class of language to use
» Today’s trends in programming languages will be
tomorrow’s features in scripting languages

e Main reference:
“Scripting: Higher Level Programming in the 21-st
Century”, John K. Ousterhout, IEEE Computer, March
1998. URL:
http://home.pacbell.net/ouster/scripting.html
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