F20SC/F21SC Overview

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
PWALT

Semester 1 — 2021/22

HERIOT
PWALT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 1/32

Welcome (back) to Heriot-Watt University

HERIOT
EFWATT S

Jack Carr Scholarship Fund

HERIOT
PWALT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 2/32

Welcome (back) to Heriot-Watt University

This year we will use a combination of online and face-to-face
teaching (hybrid).

HERIOT
PWATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 2/32

Weekly Schedule

@ Lectures will be asynchronous, online: watch the
screencast of the lecture in your own time

@ The online slots will be used for overview of the new
material in that week, for Q&A sessions, and exercises

o See the Week Overview item for that week on Canvas
with all necessary links

@ Scheduled slots for the course are:

» Mon 11:00-12:00 (online, sync lecture): overview of
lecture material for that week

» Tue 13:00-15:00 (online, sync lab): Q&A session and lab
exercises for that week

» Fri 17:00-18:00 (face-to-face lab): in-person lab session in
Windows (C#) or Linux lab (Python)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 3/32

Overview of F20SC/F21SC
“Industrial Programming”

Key course characteristics:

@ This course is about the programming skills

e We will cover:
» Systems languages: C#
» Scripting languages: Python

o It assumes solid prior knowledge of an object-oriented

language, eg. Java.
» It is about quickly picking up a new language of a familiar
paradigm.

» It is not a gentle introduction to programming.

HERIOT
WATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 4/32

Learning Outcomes

e Appreciation of role of different programming paradigms
in configuring/managing systems:
» Object-oriented: good at structuring large code
» Imperative: good at performance
» Functional: good at abstraction
» Logic: good at reasoning
e Autonomous problem analysis/solution:
» Really understand the problem to pick the right
paradigm/approach for producing a solution
@ Understanding of core characteristics of contemporary
operating systems: make good use of available resources

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 5/32

Learning Outcomes

e Appreciation of role of “language as glue wear” in
configuring/maintaining systems:
» Scripting languages combine existing code

o Knowledge of key abstractions across programming
languages:
» Write reusable and maintainable code

@ Technical proficiency in advanced techniques in different
programming paradigms:
» Learn the Best of all Worlds

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 6/32

Topics to cover

e Overview & Linux introduction (induction week)
e Core C# programming (3 weeks)

e Advanced C# programming (3 weeks)

e Reading Week (1 week)

e Python programming (4 weeks)

o Revision (1 week)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 7/32

Lecture Plan

e Week 0: Linux Introduction (with shell scripting)
@ Week 1: .Net and C# Introduction, C# Fundamentals
@ Week 2: C# Objects & Classes, C# Concurrency

o Week 3: C# Data Manipulation, Database access in C#
and LINQ, C# GUI development

@ Week 4: Threading in C#, C# Systems Programming
o Week 5: Advanced C# Features, C# Revision
@ Week 6: Reading Week

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 8/32

Lecture Plan (cont’d)

o Week 7: Parallel Programming in C#
@ Week 8: Python Introduction and Data Types
e Week 9: Python Control Structures and Functions

@ Week 10: Python Classes and Advanced Language
Constructs

@ Week 11: Python Libraries and Tools

e Week 12: Revision
Course material is available via the Canvas system:
http://canvas.hw.ac.uk/

Main course information page:
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 9/32

http://canvas.hw.ac.uk/
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/

Starting from Canvas ...

«

C @ QO 8 httpsy//canvas hw.ac.uk/courses/5343 80% ¥ Q search

£ Most Visited G Google Calendar @ Mozilla Firebird Help @ Mozilla Firebird Discu... @ Plugin FAQ

© To play video, you may need to install the required video codecs.

00 Other Bookmarks

X

Account

a®
Dashboar|

= F21SC . Modules

Ackmicer2022. - Recent announcements

‘Hnme
Collapse all
Modules

Blackboard
Collaborate

+ Main Course Information Page
Discussions

Grades & Main Course Information Page «
Office 365
Collaborations

Item Banks o WIS

[Welcome

Resetting the test student will clear all history for th
you to view the course as a brand new student.

(Heriot-Watt F20SC/F21SC

ident and allow

&5 View Course Stream
B Export Course Content i New Analy iy
5] View Course
Calendar

Q) View Course
Notifications

To-do

Nothing for now

Leave student view

Reset student

Course Overview

HERIOT

Pwall

10/32

Main course information page

[Course F215C: Industrial Fiefox _mx
File Edit View History Bookmarks Tools Help

aurse F215C: ndustrit.. 4]

& @

55 Most Visited v #MorillsFirebird Help Mozila Frebid Discuss... BPlug-in FAQ. EiLondon12

Home. Course Sides Coursework | Reading List FAQ News
structure

— News:
This page collects material on my course on Industrial Programming
This course will start
As a starting point for this course, this is a very good article, published in IEEE Computer, summarising the characteristics of September 15th, 2014 14:15.
scripting languages compared to general purpose programming languages.

A Guide for Independent Learners is available here.

Purpose and Learning Objectives Lecturers:

Hans-Wolfgang Loidl (HWL)
The purpose of the Course F21SC System Programming and Scripting is to deepen the understanding of a range of programming

languages and to obtain a critical understanding of the outstanding features of each of the languages. In doing so, it provides Course Links :
advanced programming language skills, exercised through a series of courseworks. In particular, this course conveys the idea of
scripting languages acting as glueware between components of existing software systems in order to build large systems. Vision page
Course Descriptor
Learning Objectives: Guide for Independent
Learners
of role of different paradigms in i ing systems: C# samples
Object-oriented: good at structuring large code —_—
Imperative: dood at performance Linux Introduction v

&
& oniversity

HERIOT
W,

| (Heriot-Watt F20SC/F21SC Course Overview 11/32

Assessment

o Assessed Coursework (2x): 100%
@ There is no exam for this module
Coursework:
e Project 1: C# programming project (50%)
e Handout: Week 3; Deadline: Week 7
e Project 2: Python programming project (50%)
o Handout: Week 8; Deadline: Week 13

There will be no individual deadline extensions. If you have a
case you must submit a “Mitigating Circumstances” form.

HERIOT
WATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 12/32

Skills tested in the Coursework

Composing bigger applications out of existing
components

Rapid prototyping
Resource conscious programming

GUI programming

Concurrency

HERIOT
WaATT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 13/32

Software Infrastructure

e Visual Studio 2019 with C# (Windows)

o Alternatively, stand-alone C# compiler with libraries
needed for GUI etc programming

e sh or bash scripting languages (Unix)
e Python interpreter
@ Overall: heavy use of libraries!

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview

Reading List

C+#
o Jesse Liberty, Brian MacDonald, “Learning C# 3.0”,
O’Reilly, 2009.
o lan Griffiths, “Programming C# 8.0”, O’Reilly, May
2019.

o Joseph Albahari, Ben Albahari, “C# 7.0 in a Nutshell:
The Definitive Reference”, O’Reilly, 2017.

e Kurt Normark, “Object-oriented Programming in C# for
C and Java Programmers”, 2011. on-line

@ Eric Gunnerson, “A programmer’s Introduction to C#
5.0”, Springer, 2012

o Andrew Birrell, “An Introduction to programming with
C# Threads”, Microsoft, 2005.

@ Arnold Robbins, “Classic Shell Scripting: Hidden
Commands that Unlock the Power of Unix”, O’Reilly, HERIOT

H-W. Loidl (Heriot-Watt Univ) Course Overview 15 /32

http://www.cs.aau.dk/~normark/oop-csharp/html/notes/theme-index.html

Characteristics of Systems Languages

Build algorithms and data structures from scratch

Use strong typing to help manage complexity of large
pieces of software

Focus is often on speed of execution

Easy access to low-level operating system is crucial
Examples: C, C#

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview

Characteristics of Scripting Language

@ Their main purpose is to glue software together
o Focus is on rapid-prototyping

e Safety aspects are of a lesser concern

e Thus, scripting languages are often type-less

@ Modern scripting languages incorporate features of
general purpose programming languages, especially
object-oriented (0-o) features, higher- order functions

o Easier to learn for casual programming
o Examples: sh, php, python, perl, ruby, lua

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 17 /32

A Short History of Scripting Languages

o Developed as an abstraction over assembler programs

@ They are higher-level by introducing abstraction
mechanisms to manage large pieces of code.

@ They provide fewer safety mechanisms and are typically
type-less (or dynamically typed)

o They delegate some control of the underlying machine to
(external) libraries and operating system

o Together this drastically increases programmer
productivity

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 18/32

Classifying Scripting Languages

1000
Scripting,
Visual Basic
=
a
E 100 —
2 TelPerl
E
=
=)
s o p 0l -
a Tava
- G+
) Assembly System Prograpuning,
Nohe Sirong

Degree af Typing

Figure 1. A comparison of varions programming langnages based on their level (higher
level langnages sxsente mons machine mstroetions for each langnage statement) and their
degree of typing, System programming langpages Lilee C tend to be strongly typed and
medinm level (5-10 instroctions/saement), Scipting langnages Liles Tel wnd to be
weakly typed and very high level (100-1000 instuctions/statement),

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 19/32

A Short History of Scripting Languages

o First Generation: simple composition of command-line
jobs (espec. Unix systems); also called batch-languages

@ Very little language abstraction

o Slightly different syntax in different languages

@ Rich libraries for low-level coordination with the
operating-system (OS)

e Examples: sh, bash, tcsh ...

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview

A Short History of Scripting Languages

e Second Generation: Trying to combine many different
language features into one language

o Addresses the problem that different batch languages do
the same thing slightly differently

@ Thus, the language becomes huge

@ The mixture of concepts makes it hard to read
third-party code.

e Also, extended support for graphical user interfaces
(GUIs)

o Examples: perl, tcl

HERTOT
GWAIT

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 21/32

A Short History of Scripting Languages

@ Third Generation: increasingly use modern programming
language abstractions to make programming simpler

@ In particular, heavy use of 0-o concepts

e Also, concepts from other programming paradigms such
as higher-order functions and polymorphism

e Examples: php, python, ruby, lua, go, dart

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview

Relevance of Scripting Languages

@ Increasing speed of processor makes the application of
interpreted languages viable

o Existence of large libraries makes the development of new
software from scratch less common-place

o Heterogeneous environment make a write- once
run-everywhere approach appealing

@ New technologies, such as the internet, make the issue of
composing services even more important

. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview

Common Features of Scripting Languages

e Scripting languages are usually typeless: no (type)
restrictions on the use of the input/output to/from
existing components are imposed

e This enhances the flexibility of the language but reduces
the safety

o Example from Unix shells: pipeline mechanism:

select | grep scripting | wc

e This reads the text currently selected in a window, passes
it to a search for the word “scripting” and counts the
number of lines in the output

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 24/32

e Modern scripting languages provide a limited amount of
type information to re-gain type safety

e To avoid frequent conversion functions between types,
class hierarchies and implicit type conversions are used

@ In contrast to systems languages, some type checks are
performed at run-time rather than compile-time (dynamic

typing)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview

@ Scripting languages are usually interpreted rather than
compiled

o This gains rapid turnaround time in writing and testing
code

e It increases flexibility, since the program can generate
strings that are in themselves programs

o It loses performance compared to executing compiled
code; but typically the amount of code in the scripting
language is small and performance is dominated by the
code in the components

. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 26/32

e Scripting languages are often higher-level than system
languages, espec. for the latest generation

e For example many scripting languages have powerful,
built-in mechanisms for regular expression substitution

o In the latest generation high-level concepts such as class
hierarchies are included, too.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 27/32

(Randy Wang)

H-W. Loidl (Heriot-Watt Univ)

wetks,
Telversion: 1600 Lines, = 1

Application Code | Effort
{ Contributor) Comparison Ratio | Ratio | Comments
Database application | C++ version: 2 months 60 | C++ version implemented
(Ken Corey) Tel version: 1 day first; Tel version had mors fune-
tionality.
Computer system C test application: 272 47 22 | Cversion implemented first.
test and mstallation | Klines, 120 months. Tel/Perl versionreplaced bath C
(Andy Belsey) C FIS application: 90 Klines, applications,
60 months,
TelPerl version: 7.7K lines, 8
meonths
Database Library C++ version: 2-3 months 8-12 | C++ version implemented first,
(Ken Corey) Tel version: 1 weelk
Secority scanmer C version: 3000 Lines 10 C version implemented first. Tel
(Jim Graham} Tel version: 300 Lines version had more functionality.
Display oil well pro- | C version: 3 months 6 | Tel version implemented first,
duction curves Tel version: 2 weelks
[Dan Schenclc)
Query disparcher C version: 1200 lines, 4-8 25 4-8 | C version implemented first,
(Panl Healy) wetks mncommented, Tel version had
Telversion: 500 Linss, 1 wesk comments, mors functionality.
Spreadsheet tool C version: 1460 Lines 4 Tel version implemented first.,
Tel version: 380 Lines
Simulater and GUL | Java version: 300 Lines, 3-4 2 3-4 | Telversionhad 10-20% moms

functionality, was Lmplemented
first,

Course Overview

When to use Scripting Languages

(]

Is the application’s main task to connect pre-existing
components?

Will the application manipulate a variety of different
kinds of things?

Does the application involve a GUI?
Does the application do a lot of string manipulation?
Will the application’s functions evolve rapidly over time?

(]
o
(]
(]

Does the application need to be extensible?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview

When to use Systems Languages

@ Does the application implement complex algorithms or
data structures?

e Does the application manipulate large data sets?

@ Are the application’s functions well-defined and changing
slowly?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 30/32

Application Domains for Scripting

e Graphical User Interfaces

» Fundamentally “gluing” nature
» Large percentage of code in modern apps

o Internet

» Main role: connecting a huge number of existing
computations and data (see success of perl)

» Web services as the next level of gluing
e Component Frameworks

» A flexible method of assembling components into

applications

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22

Course Overview

Summary

o Be aware of the characteristics of systems and scripting
languages
» Decide early on in a project which class of language to use
» Today’s trends in programming languages will be
tomorrow’s features in scripting languages

e Main reference:
“Scripting: Higher Level Programming in the 21-st
Century”, John K. Ousterhout, IEEE Computer, March
1998. URL:
http://home.pacbell.net/ouster/scripting.html

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 Course Overview 32/32

http://home.pacbell.net/ouster/scripting.html

	Overview

