
C# Fundamentals

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 1 — 2022/23

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 1 / 29

C# Types

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 2 / 29

Value Types

Variables stand for the value of that type (“has value”)
Integers:

▶ Signed: sbyte, int, short, long
▶ Unsigned: byte, uint, ushort, ulong

Floating point:
▶ float
▶ double

Examples:
▶ double average = 10.5
▶ float total = 34.87f

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 3 / 29

Signed vs Unsigned

By default int, short, long are signed data types as they
can hold a negative or a positive value of their ranges.
Unsigned variables can only hold positive values of its
range.

Other value types:
Decimal types: appropriate for storing monetary data.
Provides greater precision.

▶ decimal profit = 2211655.76M;
Boolean variables: True or False.

▶ bool student = True;

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 4 / 29

Signed vs Unsigned

By default int, short, long are signed data types as they
can hold a negative or a positive value of their ranges.
Unsigned variables can only hold positive values of its
range.

Other value types:
Decimal types: appropriate for storing monetary data.
Provides greater precision.

▶ decimal profit = 2211655.76M;
Boolean variables: True or False.

▶ bool student = True;

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 4 / 29

Types and Values

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 5 / 29

Enumerations
Enum Types:

▶ The enum keyword is used to declare an enumeration, a
distinct type consisting of a set of named constants called
the enumerator list.

▶ Every enumeration type has an underlying type, which can
be any integral type except char.

Example:
enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

▶ The default underlying type of the enumeration elements
is int. By default, the first enumerator has the value 0,
the next 1, etc.

▶ In the above example, Sat is 0, Sun is 1 etc
▶ Enumerators can have initialisers to override the default

values, e.g.
enum Days {Sat=1, Sun, Mon, Tue, Wed, Thu, Fri};

▶ In this enumeration, the sequence of elements is forced to
start from 1 instead of 0.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 6 / 29

Enumerations
Enum Types:

▶ The enum keyword is used to declare an enumeration, a
distinct type consisting of a set of named constants called
the enumerator list.

▶ Every enumeration type has an underlying type, which can
be any integral type except char.

Example:
enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

▶ The default underlying type of the enumeration elements
is int. By default, the first enumerator has the value 0,
the next 1, etc.

▶ In the above example, Sat is 0, Sun is 1 etc
▶ Enumerators can have initialisers to override the default

values, e.g.
enum Days {Sat=1, Sun, Mon, Tue, Wed, Thu, Fri};

▶ In this enumeration, the sequence of elements is forced to
start from 1 instead of 0.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 6 / 29

Enumerations
Enum Types:

▶ The enum keyword is used to declare an enumeration, a
distinct type consisting of a set of named constants called
the enumerator list.

▶ Every enumeration type has an underlying type, which can
be any integral type except char.

Example:
enum Days {Sat, Sun, Mon, Tue, Wed, Thu, Fri};

▶ The default underlying type of the enumeration elements
is int. By default, the first enumerator has the value 0,
the next 1, etc.

▶ In the above example, Sat is 0, Sun is 1 etc
▶ Enumerators can have initialisers to override the default

values, e.g.
enum Days {Sat=1, Sun, Mon, Tue, Wed, Thu, Fri};

▶ In this enumeration, the sequence of elements is forced to
start from 1 instead of 0.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 6 / 29

Value Types

A variable of value type directly represents its value
(“has value”).
Examples of value types are basic types such as int,
float, bool
Enumeration types, as above, are value types.
Structures, that are collections of mixed types, are also
value types.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 7 / 29

Struct Types

Struct types:
▶ are user-defined types
▶ can contain data members of different types
▶ cannot be extended

Example:
1 struct Person {
2 public string fName , lName;
3 public Person(String fName , String lName) {
4 this.fName = fName;
5 this.lName = lName;
6 }
7 }
8 Person p = new Person("John", "Smith");

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 8 / 29

Struct Types

Struct types:
▶ are user-defined types
▶ can contain data members of different types
▶ cannot be extended

Example:
1 struct Person {
2 public string fName , lName;
3 public Person(String fName , String lName) {
4 this.fName = fName;
5 this.lName = lName;
6 }
7 }
8 Person p = new Person("John", "Smith");

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 8 / 29

Structs vs Classes

Classes Structs
Reference type Value type
Used w/ dynamic instantiation Used with static instantiation
Ancestors of class Object Ancestors of class Object
Can be extended by inheritance Cannot be extended by inheri-

tance
Can implement one or more inter-
faces

Can implement one or more inter-
faces

Can initialize fields with initializ-
ers

Cannot initialize fields with initial-
izers

Can have a parameterless con-
structor

Cannot have a parameterless con-
structor

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 9 / 29

Reference Types

A variable of reference type contains a reference to a
memory location where data is stored (as pointers in
C/C++) (“contains value”). Properties:

▶ Direct inheritance from Object.
▶ Can implement many interfaces.
▶ Two predefined reference types in C#:

⋆ String, e.g.: string name = "John";
⋆ Object, root of all types

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 10 / 29

Value vs Reference Types

If x and y are of value type, the assignment
x = y
copies the contents of y into x.
If x and y are of reference type, the assignment
x = y
causes x to point to the same memory location as y.

Example:
1 Person p = new Person("John", "Smith");
2 Person q = p;
3 p.fName = "Will";
4 // what is the value of q.fName?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 11 / 29

Value vs Reference Types

If x and y are of value type, the assignment
x = y
copies the contents of y into x.
If x and y are of reference type, the assignment
x = y
causes x to point to the same memory location as y.

Example:
1 Person p = new Person("John", "Smith");
2 Person q = p;
3 p.fName = "Will";
4 // what is the value of q.fName?

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 11 / 29

Boxing and Unboxing

Boxing is the conversion of a value type to a reference
type. Unboxing is the opposite process.
Using boxing, an int value can be converted to an object
to be passed to a method (that takes an object as
argument).

Example:
1 int n = 5;
2 object nObject = n; // boxing
3 int n2 = (int) nObject; // unboxing

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 12 / 29

Boxing and Unboxing

Boxing is the conversion of a value type to a reference
type. Unboxing is the opposite process.
Using boxing, an int value can be converted to an object
to be passed to a method (that takes an object as
argument).

Example:
1 int n = 5;
2 object nObject = n; // boxing
3 int n2 = (int) nObject; // unboxing

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 12 / 29

Casting

There are 2 ways of changing the type of a value in the
program

▶ Implicit conversion by assignment e.g.
1 short myShort = 5;
2 int myInt = myShort;

▶ Explicit conversion using the syntax (type)expression

1 double myDouble = 4.7;
2 int myInt = (int)myDouble;

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 13 / 29

Nullable types

Variables of reference type can have the value null, if
they don’t refer to anything.
Variables of value type cannot have the value null,
because they represent values.
Sometimes it is useful to have a variable of value type
that may have “no value”.
To this end, a nullable type can be used:
int? i;
Here, i is of type int, but may have the value null

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 14 / 29

Arrays

C# supports one- and multi-dimensional arrays.
One-dimensional array

▶ are declared like this
string[] names = new string[30];

▶ starts at index 0 up to index 29 (in general, bound - 1).
▶ are accessed like this:
names[2] = "John";

Multi-dimensional array:
int[,] numbers = new int[5,10];

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 15 / 29

Some useful methods on arrays

Length . . . Gives the number of elements in an array.
Rank . . . Gives the number of dimensions of the array.
GetLength(n) . . . Gives the number of elements in the
n-th dimension

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 16 / 29

Jagged Arrays

A jagged array is a multi-dimensional array, where the
“rows” may have different sizes. It is declared like this
int [][] myJaggedArray = new int[4][];
The rows are filled in separately
myJaggedArray[0] = new int[5];
Access to array elements works like this:
myJaggedArray[0][2];

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 17 / 29

Control Structures: Conditional

1 if (expression)
2 statement 1
3 [else
4 statement 2]

In the above if statement:
The expression must evaluate to a bool value.
If expression is true,

▶ flow of control is passed to statement 1
▶ otherwise, control is passed to statement 2.

Can have multiple else clauses (using else if).

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 18 / 29

Logical Operators

For comparing values these operators exist:
==, !=, <=, >=, <, >
NB: = is for assignment; == is for equality test
These operators combine boolean values: &&, ||, !
Operators over int and float: +, -, *, / (% int only)
A conditional expression is written like this:
boolean expr ? expr true : expr false

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 19 / 29

Control Structures: Switch
1 switch (switch_expression) {
2 case constant -expression:
3 statement
4 jump statement
5 ...
6 case constant -expressionN:
7 statementN
8 jump statement
9 [default]

10 }

switch expression must be of type sbyte, byte,
short, ushort, int, uint, long, ulong, char or
string.
Each case clause must include a jump-statement (e.g.
break statement) apart from the last case in the switch.
Case clauses can be combined by writing them directly
one after the other.
The switch expression is evaluated and compared to
each of the constant-expressions.
On finding a match, control is passed to the first line of
code in the matching case statement.
If no match is found, control is passed to the default
clause.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 20 / 29

Control Structures: Iteration

1 while (boolean_expression)
2 statement

In a while statement, the boolean expression is evaluated
before the statement is executed, which is iterated while the
boolean expression remains true.

1 do
2 statement
3 while (boolean_expression)

In a do/while statement the boolean expression is evaluated
after the statement is executed, which is iterated until the
boolean expression becomes false.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 21 / 29

Control Structures: Iteration

1 while (boolean_expression)
2 statement

In a while statement, the boolean expression is evaluated
before the statement is executed, which is iterated while the
boolean expression remains true.

1 do
2 statement
3 while (boolean_expression)

In a do/while statement the boolean expression is evaluated
after the statement is executed, which is iterated until the
boolean expression becomes false.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 21 / 29

Control Structures: Iteration (cont’d)

1 for (initialization; boolean_expression; step)
2 statement

The for statement
performs initialization before the first iteration
iterates while boolean expression remains true
performs step at the end of each iteration

1 foreach (type identifier in expression)
2 statement

The foreach statement iterates over arrays and collections.
The variable identifier is bound to each element in turn.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 22 / 29

Control Structures: Iteration (cont’d)

1 for (initialization; boolean_expression; step)
2 statement

The for statement
performs initialization before the first iteration
iterates while boolean expression remains true
performs step at the end of each iteration

1 foreach (type identifier in expression)
2 statement

The foreach statement iterates over arrays and collections.
The variable identifier is bound to each element in turn.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 22 / 29

Functions

Functions (or static methods) encapsulate common
sequences of instructions.
As an example, this function returns the n-th element of
an array, e.g.

1 static int Get (int[] arr , int n) {
2 return arr[n];
3 }

This static method is called directly, e.g.
1 i = Get(myArr , 3);

Exercise: check that n is in a valid range

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 23 / 29

Function Parameters

All objects, arrays and strings are passed by reference,
i.e. changes effect the argument that is passed to the
function:

1 static void Set (int[] arr , int n, int x) {
2 arr[n] = x;
3 }

But, value types are copied. The keyword ref is needed
for passing by reference:

1 static void SetStep (int[] arr , ref int n, int x)
{

2 arr[n] = x;
3 n += 1 ;
4 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 24 / 29

Example: nullable types

1 public static int? Min(int[] sequence){
2 int theMinimum;
3 if (sequence.Length == 0)
4 return null;
5 else {
6 theMinimum = sequence [0];
7 foreach (int e in sequence)
8 if (e < theMinimum)
9 theMinimum = e;

10 }
11 return theMinimum;
12 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 25 / 29

Discussion

The type int? is a nullable int type.
The value null of this type is used to indicate that there
is no minimum in the case of an empty sequence.
The method HasValue can be used to check whether the
result is null:
int? min = Min(seq);
if (min.HasValue) ...
The combinator ?? can be used to select the first
non-null value:
min ?? 0
This returns the value of min, if its value is non-null, 0
otherwise.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 26 / 29

Example: nullable types (cont’d)

1 public static void ReportMinMax(int[] sequence) {
2 if (Min(sequence).HasValue && Max(sequence).HasValue)
3 Console.WriteLine("Min:␣{0}.␣Max:␣{1}",
4 Min(sequence), Max(sequence));
5 else
6 Console.WriteLine("Int␣sequence␣is␣empty");
7 }
8

9 public static void Main(){
10 int[] is1 = new int[] { -5, -1, 7, -8, 13};
11 int[] is2 = new int[] { };
12 ReportMinMax(is1);
13 ReportMinMax(is2);
14 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 27 / 29

Exercises

Recommended Exercises:
(a) Define Weekday as an enumeration type and

implement a NextDay method
(b) Implement a WhatDay method returning either

WorkDay or WeekEnd (use another enum)
(c) Write a method calculating the sum from 1 to n,

for a fixed integer value n
(d) Write a method calculating the sum over an array

(one version with foreach, one version with
explicit indexing)

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 28 / 29

Exercises (cont’d)
(e) Use the SetStep method to implement a method

Set0, which sets all array elements to the value 0.
(f) Implement a method, reading via ReadLine, and

counting how many unsigned short, unsigned int
and unsigned long values have been read.

(g) Define complex numbers using structs, and
implement basic arithmetic on them.

Mandatory exercises:
(I) Implement Euclid’s greatest common divisor

algorithm as a static method over 2 int
parameters.

(II) Implement matrix multiplication as a static
method taking two 2-dimensional arrays as
arguments.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2022/23 C# Fundamentals 29 / 29

https://en.wikipedia.org/wiki/Euclidean_algorithm
https://en.wikipedia.org/wiki/Matrix_multiplication

	C# Fundamentals

