C# Threading

Hans-Wolfgang Loidl
<H.W.Loidl@hw.ac.uk>

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
HWAT T

UNIVERSITY

Semester 1 — 2018/19

9Based on: "An Introduction to programming with C# Threads"
By Andrew Birrell, Microsoft, 2005
Examples from "Programming C# 5.0", Jesse Liberty, O'Reilly. Chapter 20.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 1/ 33

Processes and Threads

e Traditionally, a process in an operating system consists of
an execution environment and a single thread of
execution (single activity).

e However, concurrency can be required in many programs
(e.g in GUIs) for various reasons.

@ The solution was to improve the notion of a process to
contain an execution environment and one or more
threads of execution.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 2/33

Processes and Threads (cont’d)

@ An execution environment is a collection of kernel
resources locally managed, which threads have access to.

It consists of:

» An address space.
» Threads synchronization and communication resources

» Higher-level resources such as file access.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 3/ 33

Processes and Threads (cont’d)

o Threads represent activities which can be created and
destroyed dynamically as required and several of them
can be running on a single execution environment.

@ The aim of using multiple threads in a single environment
is:

» To maximise the concurrency of execution between
operations, enabling the overlap of computation with
input and output.

» E.g. one thread can execute a client request while another
thread serving another request (optimising server
performance).

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 4 /33

Cincurrency and Parallelism

e In some applications concurrency is a natural way of
structuring your program:
» In GUIs separate threads handle separate events
e Concurrency is also useful operating slow devices
including e.g. disks and printers.
» 10 operations are implemented as a separate thread while
the program is progressing through other threads.
e Concurrency is required to exploit multi-processor
machines.
» Allowing processes to use the available processors rather
than one.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 5/33

Sources of Concurrency

e Concurrency aides user interaction:

» Program could be processing a user request in the
background and at the same time responding to user
interactions by updating GUI.

e Concurrency aides performance:

» A web server is multi-threaded to be able to handle
multiple user requests concurrently.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 6 /33

Thread Primitives

@ Thread Creation.

@ Mutual Exclusion.

e Event waiting.

e Waking up a thread.

@ The above primitives are supported by C#’s
System.Threading namespace and C# lock statement.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 7 /33

Thread Creation

@ A thread is constructed in C# by:

» Creating a Thread object.
» Passing to it a ThreadStart delegate.
» Calling the start method of the created thread.

o Creating and starting a thread is called forking.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 8/ 33

Thread Creation Example

Thread t = new Thread(new ThreadStart (func.A));

Main thread executing
t.start () ;

func.B() ;

N~ o o B~ W N o=

t.join();

@ The code above executes functions func.A() and
func.B() concurrently.

o Initially, only the main thread is executing.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 9/ 33

Thread Creation Example

Thread t = new Thread(new ThreadStart (func.A));
Main thread executing

1

2

3 t.start () ; .

. Thread t started, executing func.A()
£ .BQO); q

Z une-BO main exec func.B(), t exec func.A()

7 t.join();

@ The code above executes functions func.A() and
func.B() concurrently.

o Initially, only the main thread is executing.
@ In Line 3, Thread t is created and started.

@ While Thread t is executing func.A(), the main thread is
executing func.B()

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 9 /33

Thread Creation Example

Thread t = new Thread(new ThreadStart (func.A));
Main thread executing

1

2

3 t.start () ; .

. Thread t started, executing func.A()
£ .BQO); q

Z une-BO main exec func.B(), t exec func.A()

7 t.join();

Waiting for both threads to complete

@ The code above executes functions func.A() and
func.B() concurrently.

o Initially, only the main thread is executing.

@ In Line 3, Thread t is created and started.

@ While Thread t is executing func.A(), the main thread is
executing func.B()

o Execution completes when both method calls have
completed.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 9 /33

Mutual Exclusion

@ Mutual exclusion is required to control threads access to
a shared resource.

@ We need to be able to specify a region of code that only
one thread can execute at any time.

@ Sometimes called critical section.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 10 / 33

Mutual Exclusion in C#

1 lock (expression)
2 statement

Mutual exclusion is supported in C# by class Monitor
and the lock statement.

@ The lock argument can be any C# object.
o By default, C# objects are unlocked.
@ The lock statement
» locks the object passed as its argument,
» executes the statements,
» then unlocks the object.
o If another thread attempts to access the locked object,

the second thread is blocked until the lock releases the
object.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 11 /33

Example: Swap

1 public void Swap () {
> lock (this) {

3 Console.WriteLine ("Swapyenter: x={0}, y={1}",
4 this.x, this.y);

5 int z = this.x;

6 this.x = this.y;

7 this.y = z;

8 Console.WriteLine ("Swapleave: x={0}, ,y={1}",
9 this.x, this.y);

0}

11 }

OExamples from “Programming C# 3.0”, Jesse Liberty, O'Reilly. Chapter 20.
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 12 / 33

Example: Swap (cont’d)

1 public void DoTest () {
2 Thread tl1 = new Thread(new ThreadStart (Swap));

3 Thread t2 = new Thread(new ThreadStart (Swap));
4 tl.Start () ;

5 t2.Start () ;

6 t1.Join () ;

7 t2.Join () ;

s X

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 13 / 33

Waiting for a Condition

e Locking an object is a simple scheduling policy.

@ The shared memory accessed inside the lock statement is
the scheduled resource.

» More complicated scheduling is sometimes required.

v

Blocking a thread until a condition is true.

Supported in C# using the Wait, Pulse and PulseAll
functions of class Monitor.

\4

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 14 / 33

Waiting for a Condition (cont’d)

@ A thread must hold the lock to be able to call the Wait
function.

e The Wait call unlocks the object and blocks the thread.

@ The Pulse function awakens at least one thread blocked
on the locked object.

@ The PulseAll awakens all threads currently waiting on the
locked object.

@ When a thread is awoken after calling Wait and blocking,
it re-locks the object and return.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 15 / 33

Example: Increment/Decrement

1 public void Decrementer () {

2 try {

3 // synchronise this area

4 Monitor .Enter (this) ;

5 if (counter < 1) {

6 Console.WriteLine("In_ Decrementer._ Counter: {1}",
7 Thread.CurrentThread.Name, counter) ;

8 Monitor.Wait (this) ;

9 }

10

11 while (counter > 0) {

12 long temp = counter;

13 temp--;

14 Thread.Sleep (1) ;

15 counter = temp;

16 Console.WriteLine("In_ Decrementer._ Counter:{1}",
17 Thread.CurrentThread.Name, counter) ;

18 } } finally {

19 Monitor.Exit (this) ;

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 16 / 33

Example: Increment/Decrement (cont’d)

1 public void Incrementer () {

> try {

3 // synchronise this area

4 Monitor .Enter (this) ;

5

6 while (counter < 10) {

7 long temp = counter;

8 temp++;

9 Thread.Sleep (1) ;

10 counter = temp;

11 Console.WritelLine("In_, Incrementer.{1}.",
12 Thread.CurrentThread.Name, counter) ;
13 }

14 Monitor.Pulse(this);

15} finally {

16 Console.WriteLine ("Exiting,...",

17 Thread.CurrentThread.Name) ;

18 Monitor .Exit (this);

1 } }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 17 / 33

Example: Increment/Decrement (cont’d)
1 public void DoTest () {

2 Thread [] myThreads = {

3 new Thread(new ThreadStart (Decrementer)),

4 new Thread(new ThreadStart (Incrementer)) 1};

5

6 int n = 1;

7 foreach (Thread myThread in myThreads) {

8 myThread.IsBackground = true;

9 myThread.Name = "Thread"+n.ToString() ;

10 Console.WriteLine("Starting, thread, ,{0}",
myThread .Name) ;

11 myThread.Start () ;

12 n++;

13 Thread.Sleep (500) ;

14 }

15 foreach (Thread myThread in myThreads) {

16 myThread.Join () ;

17 }

18 Console.WriteLine ("All my, threads are done") ;

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 18 / 33

Example explained

o 2 threads are created: one for incrementing another for
decrementing a global counter

@ A monitor is used to ensure that reading and writing of
the counter is done atomically

@ Monitor.Enter/Exit are used for entering/leaving an
atomic block (critical section).

@ The decrementer first checks whether the value can be
decremented.

@ Monitor.Pulse is used to inform the waiting thread of a
status change.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 19 / 33

Thread Interruption

o Interrupting a thread is sometimes required to get the
thread out from a wait.

@ This can be achieved in C# by using the interrupt
function of the Thread class.

o A thread t in a wait state can be interrupted by another
thread by calling t.interrupt ().

» t will then resume execution by relocking the object
(maybe after waiting for the lock to become unlocked).

o Interrupts complicate programs and should be avoided if
possible.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 20 / 33

Race Conditions

Example:

@ Thread A opens a file
@ Thread B writes to the file

» = The program is successful, if A is fast enough to open
the file, before B starts writing.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 21/ 33

Deadlocks

@ Thread A locks object M1

@ Thread B locks object M2

@ Thread A blocks trying to lock M2

@ Thread B blocks trying to lock M1

e —> None of the 2 threads can make progress

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 22/ 33

Avoiding Deadlocks

@ Maintain a partial order for acquiring locks in the
program.

e For any pair of objects M1, M2, each thread that needs
to have both objects locked simultaneously should lock
the objects in the same order.

e E.g. M1 is always locked before M2.
o — This avoids deadlocks caused by locks.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 23 / 33

Deadlocks caused by waits

Example:

@ Thread A acquires resource 1
o Thread B acquires resource 2
@ Thread A wants 2, so it calls Wait to wait for 2
@ Thread B wants 1, so it calls Wait to wait for 1

e —> Again, partial order can be used to avoid the
deadlock.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 24 / 33

Other Potenital Problems

e Starvation: When locking objects or using
Monitor.Wait () on an object, there is a risk that the

object will never make progress.

e Program complexity.

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 25 / 33

Background Worker

@ BackgroundWorker is a helper class in the
System.ComponentModel namespace for managing a
worker thread.

e To use it you need to

» Instantiate BackgroundWorker and handle the DoWork
event.
» Call RunWorkerAsync, optionally with an object argument.

@ Any argument passed to RunWorkerAsync will be
forwarded to DoWork’s event handler, via the event
argument’s Argument property.

e For more info on monitoring progress, cancellation of
work etc, follow the link below.

OSee this section in “Threading in C#", by Joe Albahari
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 26 / 33

http://www.albahari.com/threading/part3.aspx#_BackgroundWorker

Background Worker Example

1 class Program {

> static BackgroundWorker _bw = new BackgroundWorker () ;
3

4+ static void Main() {

5 _bw.DoWork += bw_DoWork; // register the method
to be called

6 _bw.RunWorkerAsync ("Message,toyworker"); // run
the method asynchronously

7 Console.ReadLine () ;

s

9

10 static void bw_DoWork (object sender, DoWorkEventArgs

e) {

1 // This is called on the worker thread

12 Console.WritelLine (e.Argument); // writes "
Message to worker"

13 // Perform time-consuming task...

VI

15 }

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 27 / 33

The async & await constructs

The async & await constructs provide language support to
implement asynchronous methods without the need to
generate threads explicitly:

@ A method can have the modifier async to indicate that it
is an asynchronous methods

@ The return type of the method is then of the form
Task<TResult>, i.e. the method returns a handle to the
computation that is producing a result

@ The await keyword is used to wait for the result that is
being generated by an asynchronous method

o While the asynchronous method waits for the result,
control returns to the caller of the async method.

OSee this MSDN article on “Threading and Asynchronous Programming”
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 28 / 33

https://docs.microsoft.com/en-us/windows/uwp/threading-async/

Example of async/await

Asynchronous file reading (main interface):

1 public async Task ProcessRead(string filePath) {

2 try {
3 string text = await ReadTextAsync(filePath);
4 Console.WriteLine (text);

} catch (Exception ex) {
Console.WriteLine (ex.Message) ;

3

®w ~N o o

H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 29 / 33

Example of async/await

Asynchronous file reading (low-level implementation):

1 private async Task<string> ReadTextAsync(string

filePath) {

2 using (FileStream sourceStream =

3 new FileStream(filePath,

4 FileMode .Open, FileAccess.Read,

FileShare.Read,

5 bufferSize: 4096, useAsync: true)) {

6 StringBuilder sb = new StringBuilder();

7 byte[] buffer = new byte[0x1000];

8 int numRead;

9 while ((numRead = await sourceStream.ReadAsync (
buffer, 0, buffer.Length)) 0) {

10 string text = Encoding.Unicode.GetString(
buffer, 0, numRead) ;

11 sb.Append (text) ;

12 }

13 return sb.ToString() ;

14 }

Ci Threading 30/ 33

Example of async/await

A tester function, calling an asynchronous method several
times:

1 public async Task DolIt(params string[] strs){
2 Task t;

3 List<Task> tasks = new List<Task>();
4 foreach (string str in strs) {

5 t = ProcessRead(str);

6 tasks.Add (t) ;

7}

8 await Task.WhenAll (tasks);

o }

9See Asynchronous Programming with Async and Await (C# and Visual
Basic)
H-W. Loidl (Heriot-Watt Univ) F20SC/F21SC — 2018/19 C# Threading 31/ 33

https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/hh191443(v=vs.110)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/hh191443(v=vs.110)

Resources

Sample sources and background reading:

(]

e 6 o6 o

threads2.cs: incrementer/decrementer
threads4.cs: incrementer/decrementer with marks
mulT.cs: expanded multi-threading example
BgWorker.cs: background worker example
asyncFiles.cs: async example

See this screencast on LinkedIn Learning on “Async
Programming in C#"
See this section in “Threading in C#”, by Joe Albahari

See this MSDN article on “Threading and Asynchronous
Programming”

See Asynchronous Programming with Async and Await
(C+# and Visual Basic)

H-W. Loidl (Heriot-Watt Univ) C# Threading 32 /33

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/threads2.cs
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/threads4.cs
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/mulT.cs
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/BgWorker.cs
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/asyncFiles.cs
https://www.linkedin.com/learning/async-programming-in-c-sharp/keywords-async-and-await?u=2374954
https://www.linkedin.com/learning/async-programming-in-c-sharp/keywords-async-and-await?u=2374954
http://www.albahari.com/threading/part3.aspx#_BackgroundWorker
https://docs.microsoft.com/en-us/windows/uwp/threading-async/
https://docs.microsoft.com/en-us/windows/uwp/threading-async/
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/hh191443(v=vs.110)
https://docs.microsoft.com/en-us/previous-versions/visualstudio/visual-studio-2012/hh191443(v=vs.110)

Summary
Technologies for non-blocking behaviour of your code:

@ Threads are the most powerful mechanism, allowing for
independent strands of computation
» Independent threads also allow the usage of parallelism to
make your program run faster (e.g. one thread per core)
» Managing threads can be difficult and common pitfalls are
deadlocks, race conditions, and starvation
o A BackgroundWorker task achieves asynchronous
behaviour without explicitly generating threads.
» The task will run along-side the main application.
» When the task blocks on some operation, the caller can
take over and continue with other parts of the program.

e The async/await constructs allow you to compose your
own asynchronous methods
» Simpler than threads or BackgroundWorker, but still
single-threaded, and not suitable for parallel execution.

H-W. Loidl (Heriot-Watt Univ) C# Threading 33 /33

