
 Industrial Programming 1

Industrial Programming

Lecture 4: C# Objects & Classes

 Industrial Programming 2

What is an Object

• Central to the object-oriented programming
paradigm is the notion of an object.

• Objects are the nouns…
– a person called John…

• Objects have characteristics (fields,
attributes or properties)
– John has black hair and is 20 years old

• Objects can perform actions (methods or
functions)
– John can tell me the sum of two numbers

 Industrial Programming 3

What is a Class

• Before we create an object, we must describe it:
– What characteristics it has (attributes/fields).
– What actions it can perform (methods/functions).

• The class is the blueprint / template / plan /
recipe / description for the object.
– Here we describe the fields & methods for all objects

of this type.
• An object is an instance of a class.

– Creating an object is often called instantiation.
 For example, we can define a class person with

attributes name, age etc and then instantiate it to a name
John

 Industrial Programming 4

What is a Class (cont'd)

• We can create many objects from one class.
– may spend a lot of time creating the class initially, but creating

many objects from the class is easy! Re-use!
– for example, we can have lots of buttons that all have the same

attributes and methods available.

• BUT… all objects created from one class are NOT
identical.

– Same name & data types for the fields, but different field values
(different state).

– Different button names, text, size etc.

• The values of these fields define the state of an object.

 Industrial Programming 5

These shapes have common attributes. We could
define a Rectangle class.

Attributes:

Name:

Data Type:

x

y

z

Each object has the same attribute names & data
types, but different attribute values, i.e.

x)

y)

z)

 Industrial Programming 6

Class name

Attributes

Methods

Rectangle

fillColour

height

width

Class

(Rectangle)

Red

1cm

5cm

Object
(Instance of a Class)

Shows state.
No need to indicate methods as
they exist for a whole class

 Industrial Programming 7

Bank Account

CBankAccount

accountNo : int

Surname: string

Balance: double

deposit(double)

withdraw(double)

Class

(CBankAccount)

11111

Smith

101.00

Example Object
• Attribute:

 Account No.
 Surname
 Balance (in

£’s)

• Methods:
 deposit
 withdraw

 Industrial Programming 8

Declaring & Creating Objects

• Declare a name for an object of a specific type
(class), e.g.

BankAccount myAccount;

• Create (instantiate) an object of a specific type
(class), e.g.

myAccount = new
BankAccount(11111,”Smith”);

 Industrial Programming 9

Object

Type/Class

State

Properties/
attributes

Methods/
Behaviour

Events

Has a
Has a

Has

Affect

Respond to

Receives
&

Generates Has

 Industrial Programming 10

Simple C# Class

using System;
class Point
{
public int x;
public int y;

public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
}

}
class Test{
public static void Main()

 {
 Point point1 = new Point(5,10);
 Point point2 = new Point(20, 15);
 Console.WriteLine(“Point1({0}, {1})”, point1.x, point1.y);
 Console.WriteLine(“Point2({0}, {1})”, point2.x, point2.y);
}

}

 Industrial Programming 11

Example Explained

• A class named Point is defined.
• It has two integer members x and y.
• The class includes a constructor.

–A special method called to construct an
instance of the class.

–It takes two integer parameters.
–Keyword this refers to the current

instance.

 Industrial Programming 12

Class and Constructor

• Classes are declared by using the keyword class
followed by the class name and a set of class
members surrounded by curly braces.

• Every class has a constructor, which is called
automatically any time an instance of a class is
created.

• The purpose of constructors is to initialise class
members when an instance of the class is
created.

• Constructors do not have return values and
always have the same name as the class.

 Industrial Programming 13

Constructors (cont'd)

• A default constructor, without parameters,
is generated automatically.

• The user can define more constructors by
overloading the default constructor, passing
values to initialise fields.

• Object initialisers allow you to separate
initialisation from the constructor method:

BankAccount bonusAcc = new
BankAccount(1112,”Smith”)
{ balance = 20; };

 Industrial Programming 14

Default values of fields

• Unless explicitly initialised in the constructor, fields
will have these default values:

Numeric (int, long...) 0

Bool False

Char '\0'

Enum 0

Reference null

 Industrial Programming 15

Anonymous Types

• Anonymous types reduce the coding
overhead in creating a class.

• They are typically used for types that are
used only once.

• They are useful in the context of LINQ
when connecting to databases.

• Notation:
var myCircle = new { radius=3 };
• Note that this variable is read-only.

 Industrial Programming 16

Example Explained (cont'd)

• Another class named Test is defined.
• It contains a static main function where

program execution starts.
• In the main function, two Point objects

(instances) are created (using new).
• The x and y coordinates of the two points

are printed out.
• The data fields are accessed directly

(public fields), not a good idea. Why?

 Industrial Programming 17

Hiding Data Fields

using System;
class Point{
 private int x;
 private int y;

public Point(int x, int y){
 this.x = x;
 this.y = y;
}
public int GetX() {return(x);}
public int GetY() {return(y);}

}
class Test{
public static void Main(){
Point point1 = new Point(5,10);
Point point2 = new Point(20, 15);
Console.WriteLine(“Point1({0}, {1})”, point1.GetX(), point1.GetY());
Console.WriteLine(“Point2({0}, {1})”, point2.GetX(), point2.GetY());
}

}

 Industrial Programming 18

Hiding Data Fields (cont'd)

• Access modifier private is used to hide
data fields.

• Member functions are used to access the
data fields.

• Member functions GetX() and GetY() take
no input parameters and return an integer
(the coordinate value).

 Industrial Programming 19

Access Modifiers

• public: no access restrictions
• private: only methods of the same class

can access the field
• protected: only methods in the same

class and in classes derived from it can
access the field

• internal: accessible to methods of any
class in this class' assembly (collection of
files, wrapped up in a executable or library)

 Industrial Programming 20

Instance and Static Members

• Fields and methods can be instance or static
members of the class.

• Each object has its own copy of an instance
field. All fields so far have been instance fields.

• A static field exists just once for a class and is
shared by all objects of that class. This is useful
for counting the number of objects of a class.

• An example of a static field in the Points
class:

public static int noOfPoints = 0;

 Industrial Programming 21

Static Methods

• The same distinction between instance and
static members exists for methods.

• An instance method is always applied to an
object and can access the object's fields via
the this variable. E.g.

point1.GetX();
• A static method is associated to class rather

than an object and takes all arguments via
its parameters. E.g.

Console.WriteLine(“Hello world!”);

 Industrial Programming 22

C# Properties

• Properties are another way of hiding fields
• Properties look like attributes but behave like methods:
class Point{
 private int x;
 private int y;

 public int PointX {
 get { return x; }
 set { this.x = value; }
 }
 // analogous for PointY

 Industrial Programming 23

C# Properties (cont'd)

• Every lookup for PointX will be translated into a call
of the get function, e.g.

Console.WriteLine("Point1({0}, {1})", point1.PointX,
point1.PointY);

• Every assignment to PointX will be translated into
a call to the set function, e.g.

point1.PointX += 10;
• As shorthand notation you can use automatic

properties, matching the names to the fields
public int PointX { get ; set ; }
• A private field PointX will be generated

automatically by the compiler

 Industrial Programming 25

C# Methods

• The constructor, GetX() and GetY() are methods.
• A method can have four parts:

– Method name.
– Parameters list.
– Return type.
– Access modifier.

Semantic information should be added in
comments:
– What is the meaning of a parameter?
– What are the invariants of the method/class?

 Industrial Programming 26

Overloading

• C# allows you to define different versions of a
method/function in class, and the compiler will
automatically select the matching one based on
the parameters supplied.

• Generally, you should consider overloading a
method when you need several methods that
take different parameters, but conceptually do
the same thing.

• You should not use overloads when two methods
really do different things.

 Industrial Programming 27

Example: Overloading

public class AddingNumbers
 {
 public int add(int a, int b)
 {
 return a+b;
 }
 public int add(int a, int b, int c)
 {
 return a+b+c;
 }
 }

Calling Overloaded Methods

int i = add(2, 3);
int j = add(2, 3, 4);

 Industrial Programming 28

Operator Overloading

• Using the operator keyword, it is
possible to overload existing operators,

public static
Complex operator +(Complex a, Complex b)
 {
 return new Complex(a.Real+b.Real,

 a.Imag+b.Imag);
 }

 Industrial Programming 29

Inheritance

• A central concept in object-oriented
programming.

• A class is derived from another class.
• This allows the programmer to build a

class hierarchy.
• A main activity in program design is the

design of a suitable class hierarchy.
• Useful for code reuse.

 Industrial Programming 30

Inheritance Example: Base Class
using System;
class Person{

private string fName;
private string lName;
private string address;

public Person(string fName, string lName, string
address){
this.fName = fName;
this.lName = lName;
this.address = address;
}
string GetfName(){return fName;}
string GetlName(){return lName;}
string GetAddress(){return address;}

}

 Industrial Programming 31

Inheritance Example: Subclass
using System;
class Student: Person{

private string matricNo;
private string degree;

public Student(string fName, string lName, string
address, string matricNo, string degree): base(fName,
lName, address){
 this.matricNo = matricNo;
 this.degree = degree;
}
string GetMatricNo(){return matricNo;}
string GetDegree(){return degree;}
}

 Industrial Programming 32

Test Class
class Test{
 public static void Main(){

Person p = new Person("John", "Smith",
"Edinburgh");
Student s = new Student("Brian", "Hillman",
"London", "99124678", "CS");
Console.WriteLine("Student matric no: {0} ",
s.GetMatricNo());
Console.WriteLine("Student address: {0} ",
s.GetAddress());
Console.WriteLine("Person address: {0} ",
p.GetAddress());
}

}

 Industrial Programming 33

Example Explained

• Person is a base class.
• Student is a subclass of Person.
• It inherits all the fields and methods in Person

and defines new ones.
• Its constructor uses this to distinguish

member fields from method arguments.
• Its constructor uses the notation
:base (fName,lName,address)
to call the constructor of the base class with

these arguments.

 Industrial Programming 34

Interfaces

• An interface is a contract.
• A class that implements an interface

must implement all of its methods.
• Whereas a class can inherit from just

one class, it can implement several
interfaces.

• These interfaces characterise various
roles the class can take.

 Industrial Programming 35

An Example of an Interface

• An interface IStorable, with methods
for reading and writing data:

 interface IStorable {
 void Read ();
 void Write(object obj);
 int Status { get ; set ;}
 }

 Industrial Programming 36

An Example of an Interface

• Here is one possible implementation
public class Document : IStorable {
 public Document (string str) {
 Console.WriteLine("Creating document with: {0}", str);
 }
#region IStorable
 public void Read () {
 Console.WriteLine("Executing document's read method for IStorable");
 }
 public void Write(object obj) {
 Console.WriteLine("Executing document's write method for IStorable");
 }
 // property required by IStorable
 public int Status { get; set ; }
#endregion
}

 Industrial Programming 37

3 Pillars of Object-oriented
Programming

• Encapsulation: each class should be self-
contained to localise changes. Realised through
public and private access modifiers.

• Specialisation: model relationships between
classes. Realised through inheritance.

• Polymorphism: treat a collection of items as a
group. Realised through methods at the right
level in the class hierarchy.

 Industrial Programming 39

Exercises

(a) Implement the bank account example as
discussed in the lecture.

(b) Complete the Points example and
implement access to the x- and y-fields,
using direct access, public methods, and
(automatic) properties, respectively.

 Industrial Programming 40

Exercises

(a) Use inheritance and overloading to define a
method Area, that works on different shapes,
namely circles, rectangles and squares.

(b) Let the user decide how many of these
objects to construct, with which parameters,
calculate the overall and per-shape area and
print it

(c) Write a (polymorphic) function that takes an
array of shapes and calculates the total area
covered by all elements.

 Industrial Programming 41

Exercises

(a) Modify the ReadLine exercise from the
previous lecture to generate instances of
classes containing an unsigned short,
unsigned int and unsigned long field,
respectively.

(b) Implement basic arithmetic on complex
numbers using operator overloading.

(c) Implement the data structure of
binary search trees with operations
for inserting and finding an element.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 39
	Slide 40
	Slide 41

