
 Industrial Programming 1

Industrial Programming
Systems Programming & Scripting

Lecture 11: Systems Programming in
C#

 Industrial Programming 2

Characteristics of System
Programming in C#

• Build algorithms and data structures from scratch
– C# is a full-blown object-oriented language

• Use strong typing to help manage complexity of
large pieces of software
– Strong typing throughout the language

• Focus is often on speed of execution
– Direct management of space and time

• Easy access to low-level operating system is
crucial
– Low-level system libraries

 Industrial Programming 3

Example of low-level data-
structures: Doubly Linked List

• Goal: Define a data structure that is
space efficient and permits traversal in
both directions

• Method: Explicit use of references into
the heap

• Exercise in resource conscious
programming

 Industrial Programming 4

Basic Structure

class LinkedListNode {
 LinkedListNode next;
 LinkedListNode prev;
 private int data;

 public int MyData() { … }
 public void Insert(LinkedListNode node) { …
 }
 public void Remove() { … }
 public void ShowList () { ... }
 public LinkedListNode (int data) { ... }
}

 Industrial Programming 5

Constructor

public LinkedListNode (int data) {

 this.data = data;

 // init references

 this.next = null;

 this.prev = null;

 }

 Industrial Programming 6

Lookup

public int MyData() {
 return this.data;
}

 Industrial Programming 7

Insertion

public void Insert(LinkedListNode node) {
 LinkedListNode nextNode = this.next;
 this.next = node;
 node.prev = this;
 node.next = nextNode;
 if (nextNode != null) { // pitfall
 nextNode.prev = node;
 }
 }

 Industrial Programming 8

Removal (buggy)

public void RemoveBuggy() {

 this.prev.next = this.next;
 this.next.prev = this.prev;

 //nulls are put here to ensure stability
 this.next = null;
 this.prev = null;
 }

 Industrial Programming 9

Removal

public void Remove() {

 if (this.prev != null) {

 this.prev.next = next; }

 if (this.next != null) {

 this.next.prev = prev; }

 //the nulls are put here to ensure stability

 this.next = null;

 this.prev = null;

 }

 Industrial Programming 10

Showing

public void ShowList () {

Console.WriteLine("{0}",this.MyData());

 if (this.next == null) {
 return;
 } else {
 this.next.ShowList();
 }
 }

 Industrial Programming 11

Showing (reverse order)

public void ShowListReverse () {

Console.WriteLine("{0}",this.MyData());

 if (this.prev == null) {

 return;

 } else {

 this.prev.ShowListReverse();

 }

}

For details see: https://
msdn.microsoft.com/en-gb/
magazine/dn802602.aspx

C# 6.0: Null-conditional Operators

 These help to tackle NullReferenceExceptions.
 When accessing fields through several levels of a

hierarchy, you can use the ? Operator to implicitly check
for a null pointer, e.g.

myNode = right?.left;

 Before that you had to use conditionals like this:

if (right.left == null)
 myNode = null;
else
 myNode = right.left;

 Industrial Programming 13

C# 6.0: Null-conditional Operators

public void ShowList () {

Console.WriteLine("{0}",this.MyData())
;

 this.next?.ShowList();

 }

 }

 Industrial Programming 14

(Un-)managed vs (un-)safe

• Managed code: Code which runs within the
confines of the .NET CLR.

• Unmanaged code: Code which does not run
in the CLR, and are totally independent of it.

• Safe code: Managed code which has type
safety and security embedded within.

• Unsafe code: Managed code which involves
'unsafe' operations, such as pointer
operations which access memory directly.

 Industrial Programming 15

Unsafe C# Code

• Unsafe C# code permits direct access to
the memory with C-style pointers.

• Direct access data structures must be
marked with the keyword fixed

• It must be marked with the keyword
unsafe

 Industrial Programming 16

Pointers in C#

• Within code marked as unsafe, it is
possible to use C-style pointers, i.e.

&x represents the address of the data
structure in x

*x de-references a pointer, i.e. it returns
the value at location x in memory

• Address arithmetic can be used on
pointers, e.g. to traverse an array

 Industrial Programming 17

A Simple Example with Pointers

• The following method swaps the values of 2
integer variables:

 unsafe static void Swap(int* x, int *y) {
 int z = *x;

 *x = *y;

 *y = z;

 }

• The method should be called like this:
int x =5; int y = 7;

Swap (&x, &y);

 Industrial Programming 18

Pointer Arithmetic

• Display a memory area:

p = &arr;
for (int i=0; i < arr.Length; i++) {
 Console.WriteLine(*(p+i));
}

 Industrial Programming 19

Example of unsafe C# code

• Copy a block of memory containing ints
 public unsafe static void memcpy (int

*p1, int *p2, int n) {

 int *p = p1;

 int *q = p2;

 for (int i = 0; i<n; i++) {

 *q++ = *p++; }

 }

 Industrial Programming 20

Calling unsafe code

• The memory being processed must be
fixed so that garbage collection won't
move it while running the unsafe code:

 int[] iArray = new int[10];
 int[] jArray = new int[10];
 ...
 fixed (int *fromPtr = iArray) {
 fixed (int *toPtr = jArray) {
 memcpy(fromPtr, toPtr, 10);
 }}

 Industrial Programming 21

Call external functions from C#

• To call an external function, its type and
some meta-information has to be
declared. For example sum should be a
C function, computing the sum of an
array of integers:

[DllImport ("libsum.so", EntryPoint="sum")]
static unsafe extern int sum(int *p, int n);

 Industrial Programming 22

Call external functions from C#

• We can call this function from C# like this
int []arr = new int[10];

for (int i = 0; i<arr.Length; i++) { arr[i]=i; }

fixed (int *p = arr) {

 Console.WriteLine("array initialised to [0..9] =
{0}", showArr(arr));

 int s = sum(p, 10); // calls a C function

 Console.WriteLine("sum of array, computed on C
side {0}", s);

}

 Industrial Programming 23

External functions

• This is the C function, computing the
sum:

int sum (int *p, int n) {
 int s;
 int *q;
 for (s = 0, q = p+n; p<q; s+=*p++) { }
 return s;
}

 Industrial Programming 24

Compiling with external function

• To compile the code, several steps are necessary:
– First compile the external C code:

– Then compile the C# code

– Now you can execute it

gcc -O2 -fPIC -c -o libsum.o sum.c
gcc -shared -Wl,-soname,libsum.so -o
libsum.so libsum.o

gmcs -unsafe sumWrapper.cs

mono sumWrapper.exe

 Industrial Programming 25

Summary

• Explicit references can be used for
resource conscious programming

• Care has to be taken when
dereferencing

• This level of programming is similar to
using explicit pointers in C; it is
– powerful and
– dangerous

 Industrial Programming 26

Exercises

• Complete the linked list module as presented
and write a Tester function.

• Write an append function, that takes 2 linked
lists, represented by a reference to their start
nodes, and add all elements of the 2nd list to
the end of the 1st list

• Develop a 2nd version of append that leaves
the input lists unchanged.

• Implement an in-place array reversal function,
using explicit pointers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

