
 Industrial Programming 1

Industrial Programming
Systems Programming & Scripting

Lecture 11: Systems Programming in
C#

 Industrial Programming 2

Characteristics of System
Programming in C#

• Build algorithms and data structures from scratch

– C# is a full-blown object-oriented language

• Use strong typing to help manage complexity of
large pieces of software

– Strong typing throughout the language

• Focus is often on speed of execution

– Direct management of space and time

• Easy access to low-level operating system is
crucial

– Low-level system libraries

 Industrial Programming 3

Example of low-level data-
structures: Doubly Linked List

• Goal: Define a data structure that is
space efficient and permits traversal in
both directions

• Method: Explicit use of references into
the heap

• Exercise in resource conscious
programming

 Industrial Programming 4

Basic Structure

class LinkedListNode {

 LinkedListNode next;

 LinkedListNode prev;

 private int data;

 public int MyData() { … }

 public void Insert(LinkedListNode node) { …
 }

 public void Remove() { … }

 public void ShowList () { ... }

 public LinkedListNode (int data) { ... }

}

 Industrial Programming 5

Constructor

public LinkedListNode (int data) {

 this.data = data;

 // init references

 this.next = null;

 this.prev = null;

 }

 Industrial Programming 6

Lookup

public int MyData() {

 return this.data;

}

 Industrial Programming 7

Insertion

public void Insert(LinkedListNode node) {

 LinkedListNode nextNode = this.next;

 this.next = node;

 node.prev = this;

 node.next = nextNode;

 if (nextNode != null) { // pitfall

 nextNode.prev = node;

 }

 }

 Industrial Programming 8

Removal (buggy)

public void RemoveBuggy() {

 this.prev.next = this.next;

 this.next.prev = this.prev;

 //nulls are put here to ensure stability

 this.next = null;

 this.prev = null;

 }

 Industrial Programming 9

Removal

public void Remove() {

 if (this.prev != null) {

 this.prev.next = next; }

 if (this.next != null) {

 this.next.prev = prev; }

 //the nulls are put here to ensure stability

 this.next = null;

 this.prev = null;

 }

 Industrial Programming 10

Showing

public void ShowList () {

Console.WriteLine("{0}",this.MyData());

 if (this.next == null) {

 return;

 } else {

 this.next.ShowList();

 }

 }

 Industrial Programming 11

Showing (reverse order)

public void ShowListReverse () {

Console.WriteLine("{0}",this.MyData());

 if (this.prev == null) {

 return;

 } else {

 this.prev.ShowListReverse();

 }

}

For details see: https://

msdn.microsoft.com/en-gb/

C# 6.0: Null-conditional Operators

 These help to tackle NullReferenceExceptions.

 When accessing fields through several levels of a
hierarchy, you can use the ? Operator to implicitly check
for a null pointer, e.g.

myNode = right?.left;

 Before that you had to use conditionals like this:

if (right.left == null)
 myNode = null;
else
 myNode = right.left;

 Industrial Programming 13

C# 6.0: Null-conditional Operators

public void ShowList () {

Console.WriteLine("{0}",this.MyData())
;

 this.next?.ShowList();

 }

 }

 Industrial Programming 14

(Un-)managed vs (un-)safe

• Managed code: Code which runs within the
confines of the .NET CLR.

• Unmanaged code: Code which does not run
in the CLR, and are totally independent of it.

• Safe code: Managed code which has type
safety and security embedded within.

• Unsafe code: Managed code which involves
'unsafe' operations, such as pointer
operations which access memory directly.

 Industrial Programming 15

Unsafe C# Code

• Unsafe C# code permits direct access to
the memory with C-style pointers.

• Direct access data structures must be
marked with the keyword fixed

• It must be marked with the keyword
unsafe

 Industrial Programming 16

Pointers in C#

• Within code marked as unsafe, it is
possible to use C-style pointers, i.e.

&x represents the address of the data
structure in x

*x de-references a pointer, i.e. it returns
the value at location x in memory

• Address arithmetic can be used on
pointers, e.g. to traverse an array

 Industrial Programming 17

A Simple Example with Pointers

• The following method swaps the values of 2
integer variables:

 unsafe static void Swap(int* x, int *y) {

 int z = *x;

 *x = *y;

 *y = z;

 }

• The method should be called like this:

int x =5; int y = 7;

Swap (&x, &y);

 Industrial Programming 18

Pointer Arithmetic

• Display a memory area:

p = &arr;
for (int i=0; i < arr.Length; i++) {
 Console.WriteLine(*(p+i));
}

 Industrial Programming 19

Example of unsafe C# code

• Copy a block of memory containing ints

 public unsafe static void memcpy (int
*p1, int *p2, int n) {

 int *p = p1;

 int *q = p2;

 for (int i = 0; i<n; i++) {

 *q++ = *p++; }

 }

 Industrial Programming 20

Calling unsafe code

• The memory being processed must be
fixed so that garbage collection won't
move it while running the unsafe code:

 int[] iArray = new int[10];
 int[] jArray = new int[10];
 ...
 fixed (int *fromPtr = iArray) {
 fixed (int *toPtr = jArray) {
 memcpy(fromPtr, toPtr, 10);
 }}

 Industrial Programming 21

Call external functions from C#

• To call an external function, its type and
some meta-information has to be
declared. For example sum should be a
C function, computing the sum of an
array of integers:

[DllImport ("libsum.so", EntryPoint="sum")]
static unsafe extern int sum(int *p, int n);

 Industrial Programming 22

Call external functions from C#

• We can call this function from C# like this

int []arr = new int[10];

for (int i = 0; i<arr.Length; i++) { arr[i]=i; }

fixed (int *p = arr) {

 Console.WriteLine("array initialised to [0..9] =
{0}", showArr(arr));

 int s = sum(p, 10); // calls a C function

 Console.WriteLine("sum of array, computed on C
side {0}", s);

}

 Industrial Programming 23

External functions

• This is the C function, computing the
sum:

int sum (int *p, int n) {
 int s;
 int *q;
 for (s = 0, q = p+n; p<q; s+=*p++) { }
 return s;
}

 Industrial Programming 24

Compiling with external function

• To compile the code, several steps are necessary:

– First compile the external C code:

– Then compile the C# code

– Now you can execute it

gcc -O2 -fPIC -c -o libsum.o sum.c
gcc -shared -Wl,-soname,libsum.so -o
libsum.so libsum.o

gmcs -unsafe sumWrapper.cs

mono sumWrapper.exe

 Industrial Programming 25

Summary

• Explicit references can be used for
resource conscious programming

• Care has to be taken when
dereferencing

• This level of programming is similar to
using explicit pointers in C; it is
– powerful and

– dangerous

 Industrial Programming 26

Exercises

• Complete the linked list module as presented
and write a Tester function.

• Write an append function, that takes 2 linked
lists, represented by a reference to their start
nodes, and add all elements of the 2nd list to
the end of the 1st list

• Develop a 2nd version of append that leaves
the input lists unchanged.

• Implement an in-place array reversal function,
using explicit pointers.

