F21SC Industrial Programming:
Python Advanced Language Features

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
@ WATT
A/ UNIVERSITY

Semester 1 — 2020/21

HERIOT
GwarT

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 1/22

Outline

0 Python Overview

e Getting started with Python
e Control structures

e Functions

e Classes

@ Exceptions
ﬂ lterators and Generators

© Overloading

© More about Types and Classes
@ Decorating Functions

@ Interpretation and Compilation
@ Functional Programming in Python

@ Libraries

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2020/21

HERIOT
GwarT

2/22

Overloading

@ Operators such as +, <= and functions such as abs, str and
repr can be defined for your own types and classes.

Example

class Vector (object) :
constructor
def _ init_ (self, coord):
self.coord = coord
turns the object into string
def _ str_ (self):
return str(self.coord)

vl = Vector ([1,2,3])
performs conversion to string as above
print (vl)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 3/22

Overloading

Example

class Vector (object) :
constructor
def _ _init__ (self, coord):
self.coord = coord

turns the object into string: use <> as brackets, and
def _ str__ (self):
g = """
if len(self.coord)==0:
return s+">"
else:
s = st+str(self.coord[0])
for x in self.coord[l:]:
s = s+";"+str (x);
return s+">"
vl = Vector([1,2,3]); print (vl)
v
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 4/22

Overloading arithmetic operations

Example

import math # sqrt
import operator # operators as functions

class Vector (object) :

def _ _abs_ (self):

""’Vector length (Euclidean norm) .’’’

return math.sqgrt (sum(x*x for x in self.coord))
def _ _add__ (self, other):

"7’'Vector addition.’’’

return map (operator.add, self.coord, other.coord)

print (abs (vl))
print (vl + vl)

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 5/22

Overloading of non-symmetric operations

@ Scalar multiplication for vectors can be written either v1 » 5 or
5 « vl.

Example

class Vector (object) :

def _ mul_ (self, scalar):
"Multiplication with a scalar from the right.’
return map (lambda x: x*scalar, self.coord)

def _ rmul__ (self, scalar):
"Multiplication with a scalar from the left.’
return map (lambda x: scalar*x, self.coord)

@ vl « 5callsvl.__mul(5). FRIOT
'WMF
@5 x vlicallsvl.___rmul(5).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 6/22

Overloading of indexing

@ Indexing and segment-notation can be overloaded as well:

Example

class Vector (object) :

def _ getitem_ (self, index):
"' TReturn the coordinate with number index.’’’
return self.coord[index]

def getslice_ (self, left, right):
"''Return a subvector.’’’
return Vector (self.coord[left:right])

print v1[2]
print v1[0:2]

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 7/22

Exercise (optional)

@ Define a class Matrix and overload the operations + und * to
perform addition and multiplication on matrices.

@ Define further operations on matrices, such as m.transpose (),
str(m), repr (m).

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 8/22

Types

@ type (v) yields the type of v.

@ Type-membership can be tested like this
isinstance (val, typ). E.Q.
>>> isinstance (5, float)
False
>>> isinstance (5., float)
True

@ This check observes type-membership in the parent class. E.g.
>>> isinstance (NameError (), Exception)
True

@ issubclass checks the class-hierarchy.

>>> issubclass (NameError, Exception)

True

] i ! HERIOT
>>> issubclass (int, object) BEWALT
True

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 9/22

Manual Class Generation

@ type (name, superclasses, attributes) creates a class
object with name name, parent classes superclasses, and
attributes attributes.

@ C = type(’C’, (), {}) correspondsto class C: pass.
@ Methods can be passed as attributes:

Example

def £ (self, coord):
self.coord = coord

Vec = type (’'Vec, (object,), {’/__init_ " : f})

@ Manual class generation is useful for meta-programming, i.e.
programs that generate other programs.

HERIOT
WALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 10/22

Properties

@ Properties are attributes for which read, write and delete
operations are defined.
@ Construction:
property (fget=None, fset=None, fdel=None, doc=None,

Example

class Rectangle (object) :

def _ init_ (self, width, height) :
self.width = width
self.height = height

this generates a read only property

area = property(
lambda self: self.width x self.height, # anonymot
doc="Rectangle area (read only).")

~

print ("Area of a 5x2 rectange: ", Rectangle (5,2) .aresq

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 11/22

Controlling Attribute Access

@ Access to an attribute can be completely re-defined.
@ This can be achieved as follows:

_ _getattribute_ (self, attr)
__setattr_ (self, attr, wvalue)
__delattr_ (self, attr)

@ Example: Lists without append

Example

class listNoAppend(list) :
def _ getattribute_ (self, name) :
if name == ’'append’: raise AttributeError
return list.__ _getattribute_ (self, name)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 12/22

Static Methods

@ A class can define methods, that don’t use the current instance
(self).
» Class methods can access class attributes, as usual.
» Static methods can’t do that!.

Example

class Static:
static method
def _ bla(): print ("Hello, world!")
hello = staticmethod(__bla)

@ The static method hel1lo can be called like this:

Static.hello ()
Static () .hello ()

ERIOT
'WAI T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 13/22

Class/Instance Methods

@ A class or instance method takes as first argument a reference to
an instance of this class.

Example

class Static:
val = 5
class method
def sqgr(c): return c.val * c.val
sgr = classmethod (sqgr)

Static.sqgr ()
Static () .sqgr ()

@ It is common practice to overwrite the original definition of the
method, in this case sqr.
@ Question: What happens if we omit the line with classmethgﬁgwggi}i
above? e
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 14/22

Function Decoration

@ The pattern
def f(args):
f = modifier (£f)
has the following special syntax:
@modifier
def f(args):
@ We can rewrite the previous example to:
Example
class Static:
val = 5
class method
@classmethod
def sgr(c): return c.val x c.val

o
R
. EBWATT
@ More examples of using modifiers: Memoisation, Type—checkm:\-“““

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 15/22

Memoisation with Function Decorators

@ We want a version of Fibonacci (below), that remembers previous
results (“memoisation”).

Example
def fib(n) :
"""Compute Fibonacci number of @n@."""
if n==0 or n==1:
return 1

else:
return fib(n-1)+fib (n-2))

@ NB: This version performs an exponential number of function
calls!

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 16/22

Memoisation with Function Decorators

@ To visualise the function calls, we define a decorator for tracing:
Example
def trace (f):

"""Perform tracing on function @func@."""

def trace_func(n):

print ("++ computing”, f._ name_ ," with ",
return f (n)

str(n)

return trace_func

@ and we attach this decorator to our £ib function:
Example

Qtrace
def fib(n):

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 17/22

Memoisation with Function Decorators

@ Now, we implement memoisation as a decorator.
@ Idea:

» Whenever we call £ib, we remember input and output.
» Before calling a £ib, we check whether we already have an output.
» We use a dictionary memo_dict, to store these values.

@ This way, we never compute a Fibonacci value twice, and runtime
becomes linear, rather than exponential!

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 18/22

Memoisation with Function Decorators

Here is the implementation of the decorator:

Example

def memoise (f) :
"""Perform memoisation on function @func@."""
def memo_func (n, memo_dict=dict ()) :
if n in memo_dict.keys () :
return memo_dict [n]

else:
print ("++ computing", f._ _name_ ," with ", str
x = f(n)
memo_dict [n] = x
print (".. keys in memo_dict: ", str (memo_dict.K

return x

return memo_func

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21

19/22

Memoisation with Function Decorators

@ We attach this decorator to the £ib function like this:
Example

@memoise
def fib(n):

@ Nothing else in the code changes!
@ See online sample memofib.py

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 20/22

Interpretation

@ Strings can be evaluated using the function eval, which
evaluates string arguments as Python expressions.
>>> x = 5
>>> eval ("x")
5
>>> f = lambda x: eval("x * x")
>>> f(4)
16

@ The command exec executes its string argument:

>>> exec ("print (x+1)")
5

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 21/22

Compilation
@ This performs compilation of strings to byte-code:

>>> ¢ = compile ("map (lambda x:x%2,range (10))", # cc
"pseudo-file.py’, # filename for error msg
"eval’) # or ’"exec’ (module) or ’single’ (stm)

>>> eval (c)
<map object at 0x7£2e990e3d30>

>>> for 1 in eval(c): print (i)
0 ...
@ Beware of indentation in the string that you are composing!
>>> c2 = compile(’’’
def bla(x):

print x=*x
return x

bla (5)
rrr, ’"pseudo’, ’'exec’)
>>> exec c2 ERIOT

HWATT
25 '

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 22/22

	Overloading
	More about Types and Classes
	Decorating Functions
	Interpretation and Compilation

