F21SC Industrial Programming:
Python Advanced Language Features

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh

HERIOT
G WAT T

UNIVERSITY

Semester 1 — 2020/21

°No proprietary software has been used in producing these slides

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Overloading

F20SC/F21SC — 2020/21

@ Operators such as +, <= and functions such as abs, str and
repr can be defined for your own types and classes.

Example

class Vector (object) :
constructor
def _ init__ (self, coord):
self.coord = coord
turns the object into string
def _ str (self):
return str(self.coord)

vl = Vector([1,2,3])

performs conversion to string as above

print (vl)

HERIOT
GWATT

1/22

o’

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2020/21

3/22

Outline

ﬂ Python Overview

9 Getting started with Python

e Control structures

e Functions

e Classes

@ Exceptions

ﬂ lterators and Generators

© Overloading

© More about Types and Classes
@ Decorating Functions

@ Interpretation and Compilation
@ Functional Programming in Python

7

. . HERIOT
@ Libraries EWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 2/22
Overloading
Example
class Vector (object) :
constructor
def _ init_ (self, coord):
self.coord = coord
turns the object into string: use <> as brackets, and
def _ _str_ (self):
s = "g"
if len(self.coord)==
return s+">"
else:
s = s+str(self.coord[0])
for x in self.coord[1l:]:
s = s+";"+str(x);
return s+">"
vl = Vector([1,2,3]); print (vl)
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 4/22

as s

Overloading arithmetic operations

Example

import math # sqrt
import operator # operators as functions

class Vector (object) :

def _ _abs_ (self):

"7’Vector length (Euclidean norm) .’’’

return math.sqgrt (sum(xxx for x in self.coord))
def _ _add__ (self, other):

"'’Vector addition.’’’

return map (operator.add, self.coord, other.coord)

print (abs (vl))
print (vl + v1)

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 5/22

Overloading of indexing

@ Indexing and segment-notation can be overloaded as well:

Example

class Vector (object) :

def _ getitem_ (self, index):
"'TReturn the coordinate with number index.’’’
return self.coord[index]

def _ getslice_ (self, left, right):
"'"TReturn a subvector.’’’
return Vector (self.coord[left:right])

print v1[2]
print v1[0:2]

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 7/22

o

Overloading of non-symmetric operations

@ Scalar multiplication for vectors can be written either v1 « 5 or
5 % vl.
Example

class Vector (object) :

def _ mul_ (self, scalar):
"Multiplication with a scalar from the right.’
return map (lambda x: xxscalar, self.coord)

def _ rmul__ (self, scalar):
"Multiplication with a scalar from the left.’
return map (lambda x: scalar*x, self.coord)

@ vl » 5callsvl. mul(5).
HERIOT
@5 « vicallsvl. rmul(5). WWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 6/22

Exercise (optional)

@ Define a class Matrix and overload the operations + und « to
perform addition and multiplication on matrices.

@ Define further operations on matrices, such as m.transpose (),
str (m), repr (m).

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 8/22

Types

@ type (v) yields the type of v.

@ Type-membership can be tested like this
isinstance (val, typ). E.g.
>>> isinstance (5, float)
False
>>> isinstance (5.,
True

@ This check observes type-membership in the parent class. E.g.

Exception)

float)

>>> isinstance (NameError (),
True

@ issubclass checks the class-hierarchy.
>>> issubclass (NameError, Exception)

True

>>> issubclass (int,

True

Hans-Wolfgang Loidl (Heriot-Watt Univ)

object) HERIOT
WWATT

F20SC/F21SC — 2020/21 9/22

Properties

@ Properties are attributes for which read, write and delete
operations are defined.

@ Construction:
property (fget=None, fdel=None,

fset=None, doc=None)

Example

class Rectangle (object) :

def _ init_ (self, width, height):
self.width = width
self.height height

this generates a read only property

area = property (
lambda self: self.width * self.height,
doc="Rectangle area (read only).")

anonymous functio

print ("Area of a 5x2 rectange: ", Rectangle(S,Z).area)

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2020/21 11/22

Manual Class Generation

@ type (name, superclasses, attributes) creates a class
object with name name, parent classes superclasses, and
attributes attributes.

@ C = type(’C’, (),{}) corresponds to class C: pass
@ Methods can be passed as attributes:

Example

def £ (self,
self.coord =

coord) :
coord

Vec = type(’Vec, (object,), {’_init_ ' f})

@ Manual class generation is useful for meta-programming, i.e.
programs that generate other programs.

HERIOT
WWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 10/22
Controlling Attribute Access
@ Access to an attribute can be completely re-defined.
@ This can be achieved as follows:
__getattribute_ (self, attr)
__setattr_ (self, attr, value)
__delattr__ (self, attr)
@ Example: Lists without append
Example
class listNoAppend (list) :
def _ getattribute_ (self, name):
if name == ’'append’: raise AttributeError
return list.__getattribute__ (self, name)
HERIOT
YWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 12/22

Static Methods

@ A class can define methods, that don’t use the current instance
(self).

» Class methods can access class attributes, as usual.
» Static methods can’t do that!.

Example

class Static:
static method
def _ bla(): print ("Hello, world!")
hello = staticmethod(__bla)

@ The static method hello can be called like this:

Static.hello ()
Static () .hello ()

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 13/22

Function Decoration

@ The pattern
def f(args):
f = modifier (f)
has the following special syntax:
@modifier
def f(args):
@ We can rewrite the previous example to:

Example
class Static:
val = 5
class method
@classmethod
def sgr(c): return c.val % c.val

v
ERIVUT

o T
@ More examples of using modifiers: Memoisation, Type-checking:*:1!

Class/Instance Methods

@ A class or instance method takes as first argument a reference to
an instance of this class.

Example

class Static:
val = 5
class method

def sgr(c): return c.val x c.val
sgr = classmethod (sqr)

Static.sqgr ()
Static() .sqgr ()

@ It is common practice to overwrite the original definition of the
method, in this case sqr.

@ Question: What happens if we omit the line with classmethaodrior
above? EWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 14/22

Memoisation with Function Decorators

@ We want a version of Fibonacci (below), that remembers previous
results (“memoisation”).

Example
def fib(n):
"""Compute Fibonacci number of @n@."""
if n==0 or n==1:
return 1
else:
return fib (n-1)+fib(n-2)

@ NB: This version performs an exponential number of function
calls!

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 16/22

Memoisation with Function Decorators

@ To visualise the function calls, we define a decorator for tracing:

Example
def trace (f):

"""Perform tracing on function @func@."""

def trace_func(n) :
print ("++ computing",
return f (n)

f.__name_ ," with ", str(n

return trace_func

)

@ and we attach this decorator to our £ib function:
Example

Qtrace
def fib (n) :

W

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21

Memoisation with Function Decorators

Here is the implementation of the decorator:

Example
def memoise (f):
"""Perform memoisation on function @func@."""
def memo_func (n, memo_dict=dict ()) :
if n in memo_dict.keys () :
return memo_dict [n]
else:
print ("++ computing",
f(n)
memo_dict [n] = x
print ("..
return x

f.__name_ ," with ", str

X =

keys in memo_dict: ", str (memo_dict.X

return memo_func

17/22

eys()));

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 19/22

Memoisation with Function Decorators

@ Now, we implement memoisation as a decorator.
@ ldea:
» Whenever we call £ib, we remember input and output.
» Before calling a £ib, we check whether we already have an output.
» We use a dictionary memo_dict, to store these values.
@ This way, we never compute a Fibonacci value twice, and runtime
becomes linear, rather than exponential!

HERIOT
EWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 18/22
Memoisation with Function Decorators
@ We attach this decorator to the £ib function like this:
Example
@memoise
def fib (n) :
@ Nothing else in the code changes!
@ See online sample memofib.py
HERIOT
@WATT

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2020/21 20/22

Interpretatlon @ This performs compilati%;rQ gp QH%EQRQ byte-code:

>>> ¢ = compile ("map (lambda x:xx2,range (10))", # code

"pseudo-file.py’, # filename for error msg
@ Strings can be evaluated using the function eval, which ‘eval’) # or ’exec’ (module) or ‘single’ (stm)
evaluates string arguments as Python expressions. >>> eval (c)
.. : <map object at 0x7f2e990e3d30>
X =
>>> eval ("x") >>> for i in eval(c): print (i)
A\ X
0
5
>>> £ = lambda x: eval ("x % x") @ Beware of indentation in the string that you are composing!
>>> f(4) >>> c2 = compile(’’’
16 ... def bla(x):
@ The command exec executes its string argument: e print xrx
return Xx
L o A
>>> exec ("print (x+1)") bla(5)
> rrr, 'pseudo’, ’'exec’)
HERIOT >>> exec c2 HERIOT
GWALT 25 GWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 21/22 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2020/21 22/22

	Overloading
	More about Types and Classes
	Decorating Functions
	Interpretation and Compilation

