F21SC Industrial Programming:
Python Classes & Exceptions

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
GWATT

UNIVERSITY

Semester 1 — 2021/22

HERIOT
EWATT
%No proprietary software has been used in producing these slides pEt
Class definition
@ Class definition uses familiar syntax:
class ClassName (SuperClass_1, ..., SuperClass_n):

statement_1

statement_m

@ Executing the class definition generates a class object, which can
be referenced as ClassName.

@ The expression statement_1i generates class attributes (fields).

@ Additionally, attributes of parent classes SuperClass_i are
inherited,

@ Class objects can be called just like functions (they are callable).

@ Calling a class-object generates an instance of this object (no
new necessary!).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 3/31

HERIOT
PWATT

Outline

Python Overview

Getting started with Python
Control structures

Functions

Classes

Exceptions

Iterators and Generators
Overloading

More about Types and Classes
Decorating Functions
Interpretation and Compilation
Functional Programming in Python
Libraries %h\lﬂu\(l)}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 2/31

Class attributes

@ The following example generates a class with 2 attributes, one is a
variable classvarl and one is a method methodl.

Example
class C:
"Purpose—-free demo class."
classVarl = 42
def methodl (self):
"Just a random method."

print ("classVarl = %d" % C.classVarl)
X = C # alias the class object
x = X{() # create an instance of C
X.methodl (x) # call method (class view)
x.methodl () # call method (instance view)
———T

@ NB: dir (C) lists all attributes of a class. A

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 4/31

Post-facto setting of class attributes

@ A class is just a dictionary containing its attributes.

@ Attributes can be added or modified after having created the
instance (post-facto).

@ NB: this is usually considered bad style!

Example

class D: pass # empty class object

def method(self) : # just a function
print (D.classVar) # not-yet existing attribute
print (D.__dict_ [’"classVar’]) # same effect
print (self.classVar) # ditto

d = D() # create an instance

D.method = method # add new class attributes

D.classVar = 42

d.method () # prints 42 (thrice)

Instance attributes

@ Instance attributes can be set post-facto:

Example

x = C()

x.counter = 1

while x.counter < 10:
X.counter = x.counter x 2

print (x.counter)

del x.counter

@ x.__class___ refers to the class-object of x.
@ x._ dict__ lists all attributes in x.

@ dir (x) lists the namespace of x.

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 7/31

Instance variables

@ The following example defines a binary search tree:

Example

class BinTree:
"Binary trees."
def _ _init__ (self, label, left=None, right=None) :
self.left = left
self.label = label

self.right = right

def inorder (self):
if self.left != None: self.left.inorder ()
if self.label !'= None: print (self.label)
if self.right != None: self.right.inorder ()

@ _ init__ is aconstructor that initialises its instance attributes.
HERIOT
@ Within a method always use a qualified access as in self.attril!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 6/31

Method objects

@ Bound methods know the instances they are working on.

>>> ¢ = C{()

>>> c.methodl

<bound method C.methodl of <_ main__ .C instance at O0xb7
>>> c.methodl ()

@ Unbound methods need the instance as an additional, first
argument.

>>> C.methodl
<unbound method C.methodl>
>>> C.methodl (c)

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 8/31

Inheritance

@ Single inheritance:

Example
class EmptyTree (BinTree) :
def _ init__ (self):
BinTree._ init__ (self, None)

class Leaf (BinTree) :
def _ init_ (self, label):
BinTree._ _init_ (self, label)

11 = Leaf (06)
1l.printinorder ()

v

@ The constructor of the parent class has to be called explicitly. %%ﬂg?;{;

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 9/31

Overloading

@ Attributes in sub-classes can be over-loaded.

@ In this example, if the tree is sorted, search is possible in
logarithmic time:

Example

class SearchTree (MemberTree) :
"""Ordered binary tree."""
def member (self, x):
return bool (self.label == x or

(self.label > x and
self.left and self.left.member (x)) or
(self.label < x and
self.right and self.right.member (x)))

4

Ul

PWALL

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 11/31

Inheritance

@ Sub-classes can add attributes.

Example

class MemberTree (BinTree) :
def member (self, x):
return bool (self.label == x or
(self.left and self.left.member (x)) or
(self.right and self.right.member (x)))

@ The constructor __init _ isinherited.

@ Multiple inheritance is possible in Python: Using
class C(C1,C2,...,Cn) class attributes are first searched for
in C itself, then recursively in C1,...,Cn doing a deep search.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 10/31

Private Variables

@ Attributes of the form __ident are local to the class (private).
@ Internally they are renamed into the form _ClassName___ident.

Example

class Bla():
__privateVar = 4
def method(self) :
print (self._ privateVar)
print (self._ class_ ._ dict_ [
' _Bla__privateVar’])

b = Bla()
b.method () # prints 4 (twice)
w
HERIOT
PWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 12/31

Example: Bank Account

Example

class BankAccount:
"Plain bank account."
__latestAccountNo 1000;
def _ init_ (self, name,

accountNo 0, balance

def Deposit (self, x):
self.balance += x;
Withdraw (self, x):
if self.balance >= x:
self.balance
else:
raise InsufficientBalance,

def

X7

NB: this init is done too 1
0):

"Balance too low: %d'

def ShowBalance (self) :
print ("Current Balance: ", self.balance); ‘
gLl
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 13/31
Example: Bank Account
Example
class Tester:
"""Tester ClaSS."""
def RunTrans (self,acct):
"""Run a sequence of transactions."""
if (isinstance (acct,ProperBankAccount)): # test clas

acct.overdraft 200
acct.ShowAccount () ;
acct.ShowBalance () ;
try:

acct.Withdraw (y) ;
except InsufficientBalance:

print ("InsufficientBalance ",

if ProperB4g

acct.GetBalance (), '

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2021/22

J
wuaLl

15/31

ate,

when e:

% self.bal:

s membershij
nkAccount,

for withdr:

Example: Bank Account

Example
class ProperBankAccount (BankAccount) :
"""Bank account with overdraft."""
def _ init__ (self, name, accountNo = 0, balance = 0):
def Withdraw(self, x):
"""Withdrawing money from a ProperBankAccount account."""
if self.balance+self.overdraft >= x:
self.balance —= x;
else:
raise InsufficientBalance, "Balance (incl overdnaft) t
def ShowAccount (self) :
"""Display details of the BankAccount."""
BankAccount .ShowAccount (self)
print ("\t with an overdraft of ", self.overdraft)
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 14/31
Example: Bank Account
Example
main:
if _ _name_ == ’_ _main_ ’': # check whether this module is the m
t = Tester(); # generate a tester instance
create a basic and a propoer account; NB: no ’"new’ needed
mine = BankAccount ("MyAccount") ;
mineOvdft = ProperBankAccount ("MyProperAccount") ;
put both accounts into a list; NB: polymorphic
accts = [mine, mineOvdft]
iterate over the list
for acct in accts:
run transactions on the current account
t.RunTrans (acct) ‘
WAL
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 16/31

Exceptions

@ Exceptions can be caught usinga try...except...
expression.

Example

while True:
try:
x = 1int (raw_input ("Please enter a number: "))
break
except ValueError:
print ("Not a valid number. Try again...")

@ It is possible to catch several exceptions in one except block:

except (RuntimeError, TypeError, NameError) :

pass HERIOT
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 17/31
Exceptions: else
@ If no exception was raised, the optional e1se block will be
executed.
Example
for arg in sys.argv([l:]:
try:
f = open(arg, ’'r’)
except IOError:
print (’cannot open’, arg)
else:
print (arg, 'has’, len(f.readlines()), ’lines’)
f.close ()
HERIOT
PWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 19/31

Exceptions

@ Several exception handling routines

Example

import sys

try:
f = open('myfile.txt’)
s = f.readline ()
i = int(s.strip())

except IOError, (errno, strerror):
print ("I/O error(%s): %s" % (errno, strerror))
except ValueError:

print ("Could not convert data to an integer.")

except:
print ("Unexpected error:", sys.exc_info () [0])
raise)
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 18/31

Raising Exceptions

@ raise Ex[, info] triggers an exception.

@ raise triggers the most recently caught exception again and
passes it up the dynamic call hierarchy.

>>> try:
raise NameError, ’'HiThere’
except NameError:
print (’An exception flew by!’)
raise

An exception flew by!
Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere)
HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 20/31

Clean-up

@ The code in the finally block will be executed at the end of the

current t ry block, no matter whether execution has finished
successfully or raised an exception.
>>> try:
raise KeyboardInterrupt
finally:
print (’Goodbye, world!’)

Goodbye, world!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22

Pre-defined clean-up

@ with triggers automatic clean-up if an exception is raised
@ In the example below, the file is automatically closed.

Example
with open("myfile.txt") as f:
for line in f:
print (line)

HERIOT
GWALT

21/31

@ Using with is good style, because it guarantees that there are no

unnecessary, open file handles around.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22

HERIOT
PWATT

23/31

Exceptions: All Elements

@ Here is an example of an try constructs with all features:

Example
def divide(x, vy):
try:
result = x / y
except ZeroDivisionError:
print ("division by zero!")
else:
print ("result is", result)
finally:
print ("executing finally clause"))

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
GWATT

F20SC/F21SC — 2021/22 22/31

User-defined Exceptions

@ The user can define a hierarchy of exceptions.

@ Exceptions are classes, which inherit (indirectly) from the class
BaseException.

@ By default,the __init__ method stores its arguments to args.

@ To raise an exception, use raise Class, instance
(instance is an instance of (a sub-class of) Class).

@ Oruse raise instance as a short-hand for:

raise instance._ _class_ , instance

@ Depending on context, instance can be interpreted as
instance.args, €.J. print instance.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
PWATT

F20SC/F21SC — 2021/22 24/31

User-defined Excpetions User-defined Exceptions

@ The default usage of arguments can be modified.

@ In this example: use the attribute value instead of args.]]
@ The following code prints B, B, D (because except B also

Example applies to the sub-class c of B.
class MyError (Exception) : Examole
def __init_ (self, value): P
self . value = value class B (BaseException) : pass

class C(B): pass
class D(C): pass

def _ str (self):
return repr(self.value)

for ¢ in [B, C, D]:
try: raise c{()
except D: print ("D")
except B: print ("B")
except C: print ("C")

try:
raise MyError (2x2)
except MyError, e:
print (’'My exception occurred, value:’, e.value)A

W

@ Together with the constructor, the representation function HERIOT HERIOT
__str__ needs to be modified, too. GWATT EWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 25/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 26/31
lterators in detail Do-it-yourself Iterator

@ To define an iterable class, you have to definean __iter_ ()
method, which returns the next element whenever the next ()
method is called.

Example

class Reverse:

@ it = iter (obj) returns an iterator for the object ob j. "Iterator for looping over sequence backwards"

@ it.next () returns the next element def Lot (gelf, deta) s
@ orraises a StopIteration exception. self.data = data
self.index = len (data)

def iter (self):
return self
def next (self):

if self.index == 0: raise Stoplteration
self.index = self.index - 1

HERIOT

EEWATT return self.data[self.index])

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 27/31 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 28/31

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Generators

@ A method, containing a yield expression, is a generator.

def reverse (data) :
for index in range(len(data)-1, -1, -1):
yield data[index]

@ Generators can be iterated like this.

>>> for char in reverse('golf’): print (char)

f1log

Exercises

F20SC/F21SC — 2021/22

HE
]

SRIOT
MY

29/31

@ Go to the Python Online Tutor web page, www.pythontutor.com,
and do the object-oriented programming exercises (OOP1, OOP2,

OOP3).

@ Implement the data structure of binary search trees, using
classes, with operations for inserting and finding an element.

F20SC/F21SC — 2021/22

H
@

ERIOT
WA

31/81

Generator Expressions

@ Similar to list-comprehensions:

>>>
285
>>>
>>>
>>>
260
>>>

Hans-Wolfgang Loidl (Heriot-Watt Univ)

sum(i*i for i in range(10))

xvec = [10, 20, 30]
yvec = [7, 5, 3]
sum(x*y for x,y in zip(xvec, yvec))

unigque_words = set (word
for line in page
for word in line.split())

HERIOT
GWATT

F20SC/F21SC — 2021/22 30/31

www.pythontutor.com

	Classes
	Exceptions
	Iterators and Generators

