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Class definition
@ Class definition uses familiar syntax:
class ClassName (SuperClass_1, ..., SuperClass_n):

statement_1

statement_m

@ Executing the class definition generates a class object, which can
be referenced as ClassName.

@ The expression statement_1i generates class attributes (fields).

@ Additionally, attributes of parent classes SuperClass_i are
inherited,

@ Class objects can be called just like functions (they are callable).

@ Calling a class-object generates an instance of this object (no
new necessary!).
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Class attributes

@ The following example generates a class with 2 attributes, one is a
variable classvarl and one is a method methodl.

Example
class C:
"Purpose—-free demo class."
classVarl = 42
def methodl (self):
"Just a random method."

print ("classVarl = %d" % C.classVarl)
X = C # alias the class object
x = X{() # create an instance of C
X.methodl (x) # call method (class view)
x.methodl () # call method (instance view)
———T

@ NB: dir (C) lists all attributes of a class. A

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 4/31



Post-facto setting of class attributes

@ A class is just a dictionary containing its attributes.

@ Attributes can be added or modified after having created the
instance (post-facto).

@ NB: this is usually considered bad style!

Example

class D: pass # empty class object

def method(self) : # just a function
print (D.classVar) # not-yet existing attribute
print (D.__dict_ [’"classVar’]) # same effect
print (self.classVar) # ditto

d = D() # create an instance

D.method = method # add new class attributes

D.classVar = 42

d.method () # prints 42 (thrice)

Instance attributes

@ Instance attributes can be set post-facto:

Example

x = C()

x.counter = 1

while x.counter < 10:
X.counter = x.counter x 2

print (x.counter)

del x.counter

@ x.__class___ refers to the class-object of x.
@ x._ dict__ lists all attributes in x.

@ dir (x) lists the namespace of x.

HERIOT
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Instance variables

@ The following example defines a binary search tree:

Example

class BinTree:
"Binary trees."
def _ _init__ (self, label, left=None, right=None) :
self.left = left
self.label = label

self.right = right

def inorder (self):
if self.left != None: self.left.inorder ()
if self.label !'= None: print (self.label)
if self.right != None: self.right.inorder ()

@ _ init__ is aconstructor that initialises its instance attributes.
HERIOT
@ Within a method always use a qualified access as in self.attril!
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Method objects

@ Bound methods know the instances they are working on.

>>> ¢ = C{()

>>> c.methodl

<bound method C.methodl of <_ main__ .C instance at O0xb7
>>> c.methodl ()

@ Unbound methods need the instance as an additional, first
argument.

>>> C.methodl
<unbound method C.methodl>
>>> C.methodl (c)
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Inheritance

@ Single inheritance:

Example
class EmptyTree (BinTree) :
def _ init__ (self):
BinTree._ init__ (self, None)

class Leaf (BinTree) :
def _ init_ (self, label):
BinTree._ _init_ (self, label)

11 = Leaf (06)
1l.printinorder ()

v

@ The constructor of the parent class has to be called explicitly. %%ﬂg?;{;
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Overloading

@ Attributes in sub-classes can be over-loaded.

@ In this example, if the tree is sorted, search is possible in
logarithmic time:

Example

class SearchTree (MemberTree) :
"""Ordered binary tree."""
def member (self, x):
return bool (self.label == x or

(self.label > x and
self.left and self.left.member (x)) or
(self.label < x and
self.right and self.right.member (x)))

4
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Inheritance

@ Sub-classes can add attributes.

Example

class MemberTree (BinTree) :
def member (self, x):
return bool (self.label == x or
(self.left and self.left.member (x)) or
(self.right and self.right.member (x)))

@ The constructor __init _ isinherited.

@ Multiple inheritance is possible in Python: Using
class C(C1,C2,...,Cn) class attributes are first searched for
in C itself, then recursively in C1,...,Cn doing a deep search.

HERIOT
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Private Variables

@ Attributes of the form __ident are local to the class (private).
@ Internally they are renamed into the form _ClassName___ident.

Example

class Bla():
__privateVar = 4
def method(self) :
print (self._ privateVar)
print (self._ class_ ._ dict_ [
' _Bla__privateVar’])

b = Bla()
b.method () # prints 4 (twice)
w
HERIOT
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Example: Bank Account

Example

class BankAccount:
"Plain bank account."
__latestAccountNo 1000;
def _ init_ (self, name,

accountNo 0, balance

def Deposit (self, x):
self.balance += x;
Withdraw (self, x):
if self.balance >= x:
self.balance
else:
raise InsufficientBalance,

def

X7

# NB: this init is done too 1
0):

"Balance too low: %d'

def ShowBalance (self) :
print ("Current Balance: ", self.balance); ‘
gLl
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Example: Bank Account
Example
class Tester:
"""Tester ClaSS."""
def RunTrans (self,acct):
"""Run a sequence of transactions."""
if (isinstance (acct,ProperBankAccount)): # test clas

acct.overdraft 200
acct.ShowAccount () ;
acct.ShowBalance () ;
try:

acct.Withdraw (y) ;
except InsufficientBalance:

print ("InsufficientBalance ",

# if ProperB4g

acct.GetBalance (), '
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Example: Bank Account

Example
class ProperBankAccount (BankAccount) :
"""Bank account with overdraft."""
def _ init__ (self, name, accountNo = 0, balance = 0):
def Withdraw(self, x):
"""Withdrawing money from a ProperBankAccount account."""
if self.balance+self.overdraft >= x:
self.balance —= x;
else:
raise InsufficientBalance, "Balance (incl overdnaft) t
def ShowAccount (self) :
"""Display details of the BankAccount."""
BankAccount .ShowAccount (self)
print ("\t with an overdraft of ", self.overdraft)
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 14/31
Example: Bank Account
Example
# main:
if _ _name_ == ’_ _main_ ’': # check whether this module is the m
t = Tester(); # generate a tester instance
# create a basic and a propoer account; NB: no ’"new’ needed
mine = BankAccount ("MyAccount") ;
mineOvdft = ProperBankAccount ("MyProperAccount") ;
# put both accounts into a list; NB: polymorphic
accts = [ mine, mineOvdft ]
# iterate over the list
for acct in accts:
# run transactions on the current account
t.RunTrans (acct) ‘
WAL
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Exceptions

@ Exceptions can be caught usinga try...except...
expression.

Example

while True:
try:
x = 1int (raw_input ("Please enter a number: "))
break
except ValueError:
print ("Not a valid number. Try again...")

@ It is possible to catch several exceptions in one except block:

except (RuntimeError, TypeError, NameError) :

pass HERIOT
GWATT
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Exceptions: else
@ If no exception was raised, the optional e1se block will be
executed.
Example
for arg in sys.argv([l:]:
try:
f = open(arg, ’'r’)
except IOError:
print (’cannot open’, arg)
else:
print (arg, 'has’, len(f.readlines()), ’lines’)
f.close ()
HERIOT
PWALT
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Exceptions

@ Several exception handling routines

Example

import sys

try:
f = open('myfile.txt’)
s = f.readline ()
i = int(s.strip())

except IOError, (errno, strerror):
print ("I/O error(%s): %s" % (errno, strerror))
except ValueError:

print ("Could not convert data to an integer.")

except:
print ("Unexpected error:", sys.exc_info () [0])
raise )
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Raising Exceptions

@ raise Ex[, info] triggers an exception.

@ raise triggers the most recently caught exception again and
passes it up the dynamic call hierarchy.

>>> try:
raise NameError, ’'HiThere’
except NameError:
print (’An exception flew by!’)
raise

An exception flew by!
Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere )
HERIOT
PWATT
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Clean-up

@ The code in the finally block will be executed at the end of the

current t ry block, no matter whether execution has finished
successfully or raised an exception.
>>> try:
raise KeyboardInterrupt
finally:
print (’Goodbye, world!’)

Goodbye, world!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt
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Pre-defined clean-up

@ with triggers automatic clean-up if an exception is raised
@ In the example below, the file is automatically closed.

Example
with open("myfile.txt") as f:
for line in f:
print (line)

HERIOT
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@ Using with is good style, because it guarantees that there are no

unnecessary, open file handles around.
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Exceptions: All Elements

@ Here is an example of an try constructs with all features:

Example
def divide(x, vy):
try:
result = x / y
except ZeroDivisionError:
print ("division by zero!")
else:
print ("result is", result)
finally:
print ("executing finally clause") )
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User-defined Exceptions

@ The user can define a hierarchy of exceptions.

@ Exceptions are classes, which inherit (indirectly) from the class
BaseException.

@ By default,the __init__ method stores its arguments to args.

@ To raise an exception, use raise Class, instance
(instance is an instance of (a sub-class of) Class).

@ Oruse raise instance as a short-hand for:

raise instance._ _class_ , instance

@ Depending on context, instance can be interpreted as
instance.args, €.J. print instance.
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User-defined Excpetions User-defined Exceptions

@ The default usage of arguments can be modified.

@ In this example: use the attribute value instead of args. ] ]
@ The following code prints B, B, D (because except B also

Example applies to the sub-class c of B.
class MyError (Exception) : Examole
def __init_ (self, value): P
self . value = value class B (BaseException) : pass

class C(B): pass
class D(C): pass

def _ str (self):
return repr(self.value)

for ¢ in [B, C, D]:
try: raise c{()
except D: print ("D")
except B: print ("B")
except C: print ("C")

try:
raise MyError (2x2)
except MyError, e:
print (’'My exception occurred, value:’, e.value)A

W

@ Together with the constructor, the representation function HERIOT HERIOT
__str__ needs to be modified, too. GWATT EWATT
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lterators in detail Do-it-yourself Iterator

@ To define an iterable class, you have to definean __iter_ ()
method, which returns the next element whenever the next ()
method is called.

Example

class Reverse:

@ it = iter (obj) returns an iterator for the object ob j. "Iterator for looping over sequence backwards"

@ it.next () returns the next element def Lot (gelf, deta) s
@ orraises a StopIteration exception. self.data = data
self.index = len (data)

def  iter (self):
return self
def next (self):

if self.index == 0: raise Stoplteration
self.index = self.index - 1

HERIOT

EEWATT return self.data[self.index] )
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Generators

@ A method, containing a yield expression, is a generator.

def reverse (data) :
for index in range(len(data)-1, -1, -1):
yield data[index]

@ Generators can be iterated like this.

>>> for char in reverse('golf’): print (char)

f1log

Exercises
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@ Go to the Python Online Tutor web page, www.pythontutor.com,
and do the object-oriented programming exercises (OOP1, OOP2,

OOP3).

@ Implement the data structure of binary search trees, using
classes, with operations for inserting and finding an element.
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Generator Expressions

@ Similar to list-comprehensions:

>>>
285
>>>
>>>
>>>
260
>>>
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sum(i*i for i in range(10))

xvec = [10, 20, 30]
yvec = [7, 5, 3]
sum(x*y for x,y in zip(xvec, yvec))

unigque_words = set (word
for line in page
for word in line.split())

HERIOT
GWATT

F20SC/F21SC — 2021/22 30/31


www.pythontutor.com

	Classes
	Exceptions
	Iterators and Generators

