F21SC Industrial Programming:
Python Introduction & Control Flow

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

ineh
EEWAT

UNIVERSITY

Semester 1 — 2021/22

HERIOT
0 GWATT
No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 1/76
Contents

e Python Overview

e Getting started with Python

e Control structures

e Functions
HERIOT
gwaLr

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 3/76

Outline

0 Python Overview
e Getting started with Python

e Control structures

© Functions
HERIOT
GwArT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 2/76

Online Resources

@ www.python.org: official website

@ Course mostly based on Guido van Rossum’s tutorial.

@ For textbooks in Python introductions see the end of this slideset.
@ Stable version: 3.8 (Oct 2019)

@ Latest version: 3.10 (Oct 2021)

@ Implemented in C (CPython)

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 4/76

Python

@ Python is named after Monty Python’s Flying Circus

@ Python is an object-oriented language focussing on rapid
prototyping

@ Python is a scripting language

@ Python features an elegant language design, is easy to learn and
comprehend

@ Open source

@ Highly portable

@ First version was made available 1990

@ Current stable version is 3.8 (Oct 2019)

Ij[ulil{TIQ:l“
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 5/76

Runtime behaviour

@ Python source code is compiled to byte-code, which is then
interpreted

@ Compilation is performed transparently

@ Automatic memory management using reference counting based
garbage collection

@ No uncontrolled crash (as in seg faults)

HERIOT
gwaLr

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 7176

Python 3 vs Python 2

We will use Python 3, which offers several important new concepts
over Python 2.

If you find Python 2 code samples, they might not run with python3.
There is a tool python3-2to3 which tells you what to change (and it
works in most cases). The most common issues are

@ In Python 3, print is treated as any other function, especially you
need to use parentheses as in write print (x) NOT print x

@ Focus on iterators: pattern-like functions (e.g. map) now return
iterators, i.e. a handle used to perform iteration, rather than a data
structure.

For details check:
https://www.python.org/downloads/release/python-363/

HERIOT
GwaATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 6/76

Language features

Everything is an object (pure object-oriented design)
Features classes and multiple inheritance
Higher-order functions (similar to Scheme)

Dynamic typing and polymorphism

Exceptions as in Java

Static scoping and modules

@ Operator overloading

@ Block structure with semantic-bearing indentation (“off-side rule”
as in Haskell)

HERIOT
EWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 8/76

https://www.python.org/downloads/release/python-363/

Data types

@ Numbers: int, long, float, complex

@ Strings (similar to Java)

@ Tuples, Lists, Dictionaries

@ Add-on modules can define new data-types

@ Can model arbitrary data-structures using classes

HERIOT
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 9/76

Python vs. other languages

@ Very active community

@ Alot of good libraries

@ Increasingly used in teaching (MIT, Berkeley, etc)

@ Good online teaching material, e.g. Online Python Tutor

@ Picks up many advanced language features from other languages
(e.g. Haskell)

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 11/76

Why Python?

@ Code 2 — 10x shorter than C#, C++, Java
@ Code is easy to comprehend

@ Encourages rapid prototyping

@ Good for web scripting

@ Scientific applications (numerical computation, natural language
processing, data visualisation, etc)

@ Python is increasingly used at US universities as a starting
language

@ Rich libraries for XML, Databases, Graphics, etc.

@ Web content management (Zope/Plone)

@ GNU Mailman
@ JPython HERIOT
GwaATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 10/76

Python Textbooks (Advanced)

¥ Mark Lutz, “Programming Python.”
O’Reilly Media; 4 edition (10 Jan 2011). ISBN-10: 0596158106.
Good texbook for more experienced programmers. Detailed coverage of
libraries.

® David M. Beazley, “Python Essential Reference.”
Addison Wesley; 4 edition (9 July 2009). ISBN-10: 0672329786.
Detailed reference guide to Python and libraries.

¥ Alex Martelli, Anna Ravenscroft, Steve Holden, “Python in a
Nutshell.”
O’Reilly Media; 3rd edition (May 2017). ISBN-13: 978-1449392925
Concise summary of Python language and libraries.

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 12/76

www.pythontutor.com

Python Textbooks (Beginner)

© Mark Lutz, “Learning Python.”,
5th edition, O’Reilly, 2013. ISBN-10: 1449355730
Introduction to Python, assuming little programming experience.

¥ John Guttag. “Introduction to Computation and Programming
Using Python.”, MIT Press, 2013. ISBN: 9780262519632.
Doesn’t assume any programming background.

¥ Timothy Budd. “Exploring Python.”,
McGraw-Hill Science, 2009. ISBN: 9780073523378.
Exploring Python provides an accessible and reliable introduction into
programming with the Python language.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 13/76

Python Textbooks (Beginner)

Online resources:
@ How to Think Like a Computer Scientist.
@ An Introduction to Python.
@ Dive into Python 3.
@ Google’s Python Class.
@ Main Python web page.
For this course:

@ Main course information page:
http://www.macs.hw.ac.uk/ hwloidl/Courses/F21SC/index_new.html.

@ Python sample code:

http://www.macs.hw.ac.uk/ hwloidl/Courses/F21SC/Samples/python_samples.html

@ FAQs:

http://www.macs.hw.ac.uk/ hwloidl/Courses/F21SC/faq.html#python %E\l\gl\(}}i

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 15/76

Python Textbooks (Beginner)

¥ Zed A. Shaw. “Learn Python the Hard Way.”,
Heavily exercise-based introduction to programming. Good on-line
material.

¥ Michael Dawson, “Python Programming for the Absolute
Beginner.”,
3rd edition, Cengage Learning PTR, 2010. ISBN-10: 1435455002
Good introduction for beginners. Slightly dated. Teaches the principles of
programming through simple game creation.

¥ Tony Gaddis, “Starting Out with Python.”,
Pearson New International Edition, 2013. ISBN-10: 1292025913
Good introduction for beginners..

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 14/76

Launching Python

Interactive Python shell: python

Exit with eof (Unix: Ctrl-D, Windows: Ctrl-Z)
Or: import sys; sys.exit ()

Execute a script: python myfile.py

python3 ..python-args.. script.py ..script-args..
@ Evaluate a Python expression

python3 —-c "print (5%6x7)"

python3 -c "import sys; print (sys.maxint)"

python3 —-c "import sys; print (sys.argv)" 1 2 3 4
@ Executable Python script

#!/usr/bin/env python3

—%— coding: 1s0-8859-15 —%-—

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 16/76

http://www.greenteapress.com/thinkpython/html/index.html
http://beastie.cs.ua.edu/cs150/book/index.html
http://getpython3.com/diveintopython3/
https://developers.google.com/edu/python
http://www.python.org/
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/index_new.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/python_samples.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/faq.html#python

Integer Arithmetic

@ >>> is the Python prompt, asking for input

>>> 2+2 # A comment on the same line as code.
4
>>> # A comment; Python asks for a continuation

.. 242
4
>>> (50-5%6) /4
5.0
>>> # Use // for integer division (returns floor):
... 7//3
2
>>> 7//-3
=3
HERIOT
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 17/76
Assignment
@ Variables don’t have to be declared (scripting language).
>>> width = 20
>>> height = 5%9
>>> width * height
900
@ Parallel assignments:
>>> width, height = height, width + height
@ Short-hand notation for parallel assignments:
>>> x =y =2z =0 # Zero x, y and z
>>> x
0
>>> 7
0 HERIOT
PWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 19/76

Arbitrary precision integers

@ int represents signed integers (32/64 Bit).

>>> import sys; sys.maxint
2147483647

@ long represents arbitrary precision integers.

>>> sys.maxint + 1

2147483648L

>>> 2 xx 100
1267650600228229401496703205376L

@ Conversion: [“_" is a place-holder for an absent value.]

>>> — 2 %% 31
-2147483648L
>>> int ()

-2147483648 HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 18/76

Floating-point numbers

@ Arithmetic operations are overloaded.
@ Integers will be converted on demand:

>>> 3 x 3.75 / .5
22.5

>>> 7. / 2

3.5

>>> float (7) / 2
3.5

@ Exponent notation: 1e0 1.0e+1 1le-1 .le-2
@ Typically with 53 bit precision (as double in C).

>>> 1e-323

9.8813129168249309e-324

>>> le—-324 T
0.0 PWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 20/76

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Further arithmetic operations

@ Remainder:

>>> 4 % 3

1
>>> -4 % 3
2
>>> 4 % -3
)
>>> -4 % -3
=1l

>>> 3.9 % 1.3
1.2999999999999998

Division and Floor:
>>> 7.0 // 4.4

HERIOT
1.0 BWATT

F20SC/F21SC — 2021/22 21/76

Bit-operations

@ Left- (<<) and right-shift (>>)

>>> 1 << 16

65536

Bitwise and (&), or (1), xor (*) and negation (7).
>>> 1000 & 0377

232

>>> 0x7531 | Ox8ace

65535

>>> 70

-1

>>> 0123 © 0123

0
ERIOT

HERIOT
PWALL

F20SC/F21SC — 2021/22 23/76

Complex Numbers

@ Imaginary numbers have the suffix j.
>>> 17 + complex(0,1)
(-1407)
>>> complex (-1,0) *x 0.5
(6.1230317691118863e-17+17)
@ Real- and imaginary components:
>>> a=1.5+0.57
>>> a.real + a.imag
2.0
@ Absolute value is also defined on complex.

>>> abs (3 + 47)
5.0

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22

Strings

@ Type: str.
@ Single- and double-quotes can be used
Input Output

"Python tutorial’
"doesn\’t’
"doesn’t"

""Yes," he said.’ ""Yes," he said.’
"\"Yes, \" he said." ""Yes," he said.’
'"Isn\’t," she said.’ ""Isn\’t," she said.’

"Python tutorial’
"doesn’t"
"doesn’t"

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22

HERIOT
GWATT

22/76

HERIOT
PWATT

24/76

A\ backslash
\’ single quote
\" double quote
\t tab
\n newline
\r carriage return
\b backspace
BWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 25/76

Escape-Sequences

Triple-quote

@ Multi-line string including line-breaks:

print (mman
Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to
mman)
@ gives
Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to
HERIOT
PWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 27176

Multi-line string constants

@ The expression

print ("This is a rather long string containing\n\
several lines of text as you would do in C.\n\
Whitespace at the beginning of the line is\
significant.")
@ displays this text

This is a rather long string containing
several lines of text as you would do in C.
Whitespace at the beginning of the line is signific

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 26/76

Raw strings

@ An r as prefix preserves all escape-sequences.
>>> print ("Hello! \n\"How are you?\"")
Hello!
"How are you?"
>>> print (r"Hello! \n\"How are you?\"")
Hello! \n\"How are you?\"
@ Raw strings also have type str.
>>> type ("\n")
<type ’'str’>
>>> type (r"\n")
<type ’'str’>
BTt

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 28/76

Unicode String operations

@ Unicode-strings (own type) start with u.
>>> print ("a\u0020b")

ab @ "hello"+"world" "helloworld" # concat.
>>> "\xf@E" "hello"x3 "hellohellohello" # repetition
ngn "hello"[0] Wi W # indexing
>>> type (_) "hello" [-1] "o" # (from end)
<type ’unicode’> "hello"[1:4] "ell" # slicing
@ Standard strings are converted to unicode-strings on demand: len("hello™) > v sdme
"hello" < "jello" True # comparison
" g " " " " "
>>> thls + \u00f6 + umlaut "e" lrl "hello" True # Search
"this & umlaut’
>>> print _
this 6 umlaut
HERIOT HERIOT
BWALT DL
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 29/76 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 30/76
Lists More list operations
@ Lists are mutable arrays.
n AL n n n n n n >>> a = range(5) # [0,1,2,3,4]
a T [99, .bottles of beér , ["on", "the", "wall"]] >>> a.append (5) # [0,1,2,3,4,5]
@ String operations also work on lists. >>> a.pop () # [0,1,2,3,4]
atb, ax3, al[0], al[-1]1, all:], len(a) 5
@ Elements and segments can be modified. >>> a.insert (0, 42) # [42,0,1,2,3,4]
al0] = 98 >>> a.pop (0) # [0,1,2,3,4]
42
al[l:2] = ["bottles", "of", "beer"]
—-> [98, "bottles", "of", "beer", >>> a.reverse() # [4,3,2,1,0]
["On", "the", "Wall"]] >>> a'sort() # [011121314]
del a[-1] # —> [98, "bottles", "of", "beer"] N.B.: Use append for push.
HERIOT HERIOT
YWATT YWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 31/76 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 32/76

While

@ Print all Fibonacci numbers up to 100 (interactive):

>>> a, b =20, 1
>>> while b <= 100:
print (b)

a, b =Db, atb

@ Comparison operators: == < > <= >= I=
@ NB: Indentation carries semantics in Python:

» Indentation starts a block
» De-indentation ends a block

@ Or:
>>> a, b =0, 1
>>> while b <= 100: print (b); a,b = b, atb

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 33/76

For

@ for iterates over a sequence (e.g. list, string)

Example
a = ['cat’, ’"window’, ’'defenestrate’]
for x in a:

print (x, len(x))

@ NB: The iterated sequence must not be modified in the body of
the loop! However, it’s possible to create a copy, e.g. using
segment notation.
for x in af[:]:

if len(x) > 6: a.insert (0,x)
print (a)

@ Results in
[’defenestrate’, 'cat’, ’'window’, ’defenestrat%%%%~

If
Example
x = int (input ("Please enter an integer: "))
if x < O:
x = -1

print (' Sign is Minus’)
elif x == 0:

print (' Sign is Zero’)
elif x > 0:

print (' Sign is Plus’)
else:

print (' Should never see that’)

@ NB:elifinstead od else if to avoid further indentations.
HERIOT
EWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 34/76

Range function

@ lteration over a sequence of numbers can be simplified using the
range () function
>>> range (10)
(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range (5, 10)
[5, 6, 7, 8, 91
>>> range (0, 10, 3)
[0, 3, &, 91
>>> range (=10, -100, -30)
[-10, -40, -70]
@ lteration over the indices of an array can be done like this:
a = ['Mary’, ’"had’, ’'a’, ’'little’, 'lamb’]
for i in range(len(a)):

print (i, aflil) %%ﬁgi

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 36/76

For-/While-loops: break, continue, else

@ break (as in C), terminates the enclosing loop immediately.

@ continue (asin C), jumps to the next iteration of the enclosing
loop.

@ The else-part of a loop will only be executed, if the loop hasn’t
been terminated using break construct.

Example
for n in range (2, 10):
for x in range (2, n):
if n % x ==
print (n, ’'equals’, x, '*', n//x)
break
else: # loop completed, no factor
print (n, ’is a prime number’)

& UNIVERSITY

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 37/76

Procedures

@ Procedures are defined using the key word deft.

def fib(n): # write Fibonacci series up to n
"""Print a Fibonacci series up to n."""
a, b=20,1
while b < n:
print (b)

a, b =D, atb
@ Variables n, a, b are local.

@ The return value is None (hence, it is a procedure rather than a
function).

print (£ib(10))

HERIOT
PWALL

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 39/76

The empty expression

@ The expression pass does nothing.

while True:

pass # Busy-wait for keyboard interrupt

@ This construct can be used, if an expression is syntactically
required, but doesn’t have to perform any work.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2021/22

A procedure as an object

@ Procedures are values in-themselves.

>>> fib

<function fib at 10042ed0>
>>> £ = fib

>>> £(100)

112358 13 21 34 55 89

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2021/22

HERIOT
GWATT

38/76

H
@

ERIOT

W

40/76

Call-by-value

@ When passing arguments to functions, a Call-by-value discipline
is used (as in C, C++, or C#).
@ Assignment to parameters of a function are local.
def bla(l):
1 =1]

1 = ["not’, 'empty']
bla (1)
print (1)
@ 1 is a reference to an object.
@ The referenced object can be modified:
def exclamate (1) :
l.append(’!")

exclamate (1)
print (1)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 41/76

Return values

@ The return construct immediately terminates the procedure.

@ The return ...value... construct also returns a concrete
result value.
def fib2(n):
"""Return the Fibonacci series up to n."""
result = []
a, b=20, 1
while b < n:
result.append (b) # see below
a, b =Db, atb
return result

£f100 = £ib2(100) # call it
£100 # write the result

HERIOT
GWATT

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 43/76

Global Variables

@ The access to a global variable has to be explicitly declared.

def clear_1():
global 1
1 =11

1 = ["not’, ’'empty’]
clear_1()
print (1)

@ ...prints the empty list.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 42/76

Default values for function parameters

@ In a function definition, default values can be specified for
parameters:
def ask (prompt, retries=4, complaint=’'Yes/no?’):
while True:
ok = raw_input (prompt)
if ok in ('y', 'ye’, ’'yes’): return True
if ok in ('n’, ’'no’): return False
retries —= 1
if retries < 0: raise IOError, 'refused’
print (complaint)

@ When calling the function, some arguments can be omitted.

ask ("Continue (y/n)?", 3, "Yes or no, please!")

ask ("Continue (y/n)?2", 3)

ask ("Continue (y/n)?2") %%ﬁ%i
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 44/76

Default values for function parameters (cont'd) Evaluation of default values:

@ Default values will be evaluated only once, when the function is
defined:

i=25

@ Wrong:

ask ("Continue (y/n)?", "Yes or no, please!")
ask ()

@ Named arguments (keyword arg) are useful when using

def f =il) ¢
arguments with and without default values: c larg=1)

print (arg)
ask ("Continue (y/n)?", complaint="Yes or no?")

ask (prompt="Continue (y/n)?2") i =6
@ Wrong: £0

ask (prompt="Continue (y/n)?", 5) @ Which number will be printed?

ask ("Yes/no?", prompt="Continue (y/n)?2?") @ ...prints 5.
HERIOT HERIOT
GWATT GwaATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 45/76 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 46/76
Evaluation of default values Argument lists

@ Beware of mutable objects!

def f(a, L=[]):
L.append(a)

@ Prefixing a paramter with « declares a paramter that can take an
return L

arbitrary number of values.
def fprintf(file, format, =*args):

[

file.write (format % args)
@ A list can be passed as individual arguments using = notation:

print (£(1))
print (£(2))

@ ...prints [1] and [1, 2]. However:

def f(a, L=None): >>> args = [3, 6]
if L is None: >>> range (*args)
[3, 4, 5]

L =1]
L.append(a)
return L

@ ...prints [1] and [2]. %E\ﬂ?} %’5&&?}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 47/76 Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 48/76

Doc-strings

@ The first expression in a function can be a string (as in elisp).

def my_function() :
"""Do nothing, but document it.

No, really, it doesn’t do anything.
pass
@ The first line typically contains usage information (starting with an
upper-case letter, and terminated with a full stop).
@ After that several more paragraphs can be added, explaining
details of the usage information.
@ This information can be accessed using .__doc__ or help
constructs.

my_function._ _doc_ # return doc string }£&@¥
help (my_function) # print doc string PWL
Exercises

@ Implement Euclid’s greatest common divisor algorithm as a
function over 2 int parameters.

@ Implement matrix multiplication as a function taking 2
2-dimensional arrays as arguments.

ERIOT

HERIOT
PWALL

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 51/76

Anonymous Functions

@ A function can be passed as an expression to another function:
>>> lambda x, y: X
<function <lambda> at 0xb77900d4>

@ This is a factory-pattern for a function incrementing a value:

def make_incrementor (n) :
return lambda X: X + n

f = make_incrementor (42)
£(0)
£(1)
@ Functions are compared using the address of their representation
in memory:

>>> (lambda x: x) == (lambda x: x) o
HERIOT

False WWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 50/76

More list operations
@ Modifiers:
» 1l.extend(1l2) means 1[len(l):] = 12,i.e.add 12 tothe end
of the list 1.

» 1.remove (x) removes the first instance of x in 1. Error, if
X not in 1.

@ Read-only:

1.index (x) returns the position of x in 1. Error, if x not in 1.
1.count (x) returns the number of occurrences of x in 1.
sorted (1) returns a new list, which is the sorted version of 1.
reversed (1) returns an iterator, which lists the elements in 1 in
reverse order.

vV YyVvyy

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 52/76

Usage of lists

@ Lists can be used to model a stack: append and pop ().
@ Lists can be used to model a queue: append und pop (0) .

HERIOT
GWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 53/76
List comprehensions
@ More readable notation for combinations of map and filter.
@ Motivated by set comprehensions in mathematical notation.
@ [e(x,y) for x in seqgl if p(x) for y in seg2]
>>> vec = [2, 4, 6]
>>> [3xx for x in vec]
[6, 12, 18]
>>> [3xx for x in vec 1if x > 3]
[12, 18]
>>> [(x, x*%x2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vecl = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [xxy for x in vecl for y in vec2]
(s, 6, -18, 16, 12, -36, 24, 18, -54] %’%‘gi{?

Higher-order functions on lists

filter (test, sequence) returns a sequence, whose
elements are those of sequence that fulfill the predicate test.
E.g.

filter(lambda x: x % 2 == 0, range (10))

map (f, sequence) applies the function £ to every element of
sequence and returns it as a new sequence.

map (lambda x: x*xxx, range(10))
map (lambda x,y: xt+y, range(l,51), range(100,50,-1))

reduce [al,a2,a3,...,an]) computes
f(. (al a2),a3),...,an)

(f
f(f
reduce (lambda x,y:x*y, range(l,11))
(f
f(f

reduce [al,a2,...,an], e) computes
(. (e,al),a2),...,an) %ﬁ%&{
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 54/76
Deletion
@ Deletion of (parts of) a list:
>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del al0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del al[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del al:]
>>> a
[]
Deletion of variables:
>>> del a T
HERIOT
YWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 56/76

Tuples

@ >>> t = 12345, 54321, ’'hello!’
>>> t[0]
12345
>>> t
(12345, 54321, ’"hello!’)
>>> # Tuples may be nested:
u==¢t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’"hello!’), (1, 2, 3, 4, 5))
>>> x, y, z =t

>>> empty = ()

>>> singleton = "hello’, # trailing comma
HERIOT
GWATT

Dictionaries

@ Dictionaries are finite maps, hash maps, associative arrays.
@ The represent unordered sets of (key, value) pairs.
@ Every key may only occur once.

@ Generated using the notation:
{ keyl : valuel, ..., keyn : valuen } oOr

>>> tel = dict ([(’guido’, 4127), (’'jack’, 4098)1)
{’jack’: 4098, ’'guido’: 4127}
@ Access to elements is always through the key: tel [’ jack’].

@ Insertion and substitution is done using assignment notation:
tel['me’] = 1234.

@ Deletion: del tel[’'me’].
@ tel.keys () returns all key values. tel.has_key (' guido’)

returns a boolean, indicating whether the key exists. %E\lgg}

Sets

@ set (1) generates a set, formed out of the elements in the list 1.
@ list (s) generates a list, formed out of the elements in the set s.
@ x in s tests for set membership

@ Operations: - (difference), | (union), & (intersection), ~ (xor).

@ for v in s iterates over the set (sorted!).

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 58/76

Dictionaries

@ The Python implementation uses dictionaries internally, e.g. to list
all names exported by a module, or for the symbol table of the
interpreter.

@ lteration over a dictionary:
for k, v in tel.items{() :
print (k, wv)
@ Named arguments:
def fun(arg, =xargs, =*xkeyArgs):

fun (1, 2, 3, optl=4, opt2=5H)

@ This binds arg = 1 and args = [2,3] and
keyArgs = {optl:4, opt2:5}.

HERIOT
YWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 60/76

Loop techniques

@ Here are some useful patterns involving loops over dictionaries.
@ Simultaneous iteration over both keys and elements of a
dictionary:
1 = ["tic’, "tac’, 'toe’]
for i, v in enumerate(l):
print (i, wv)
@ Simultaneous iteration over two or more sequences:
for i, v in zip(range(len(l)), 1):
print (i, wv)
@ lteration in sorted and reversed order:
for v in reversed(sorted(l)):
print (v)

HERIOT
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 61/76

Comparison of sequences and other types

@ Sequences are compared lexicographically, and in a nested way:
() < ("\x00",)
("a’, (5, 3), 'c") < ("a'", (6,) , 'a")

@ NB: The comparison of values of different types doesn’t produce
an error but returns an arbitrary value!
>>> "1" < 2

False
>>> () < ("\x00")
False
>>> [0] < (0,)
True
BWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 63/76

Booleans

@ 0,’’,[], None, etc. are interpreted as False.
@ All other values are interpreted as True (also functions!).

@ is checks for object identity: [] == [] istrue,but [] is []
isn't. 5 is 5 istrue.
@ Comparisons can be chained like this: a < b == ¢ > d.

@ The boolean operators not, and, or are short-cutting.

def noisy(x): print (x); return x

a = noisy(True) or noisy (False)
@ This technique can also be used with non-Boolean values:

>>> '’ or ’'you’ or ’'me’

14 y ou 14
HERIOT
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 62/76

Modules

@ Every Python file is a module.

@ import myMod imports module myMod.

@ The system searches in the current directory and in the
PYTHONPATH environment variable.

@ Access to the module-identifier x is done with myMod. x (both
read and write access!).

@ The code in the module is evaluated, when the module is
imported the first time.

@ Import into the main name-space can be done by

Example

from myMod import myFun
from yourMod import yourValue as myValue

myFun (myValue) # qualification not necessary

@ NB: In general it is not advisable to do from myMod import“#i

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 64/76

Executing modules as scripts

@ Using _ _name___ the name of the module can be accessed.
@ Thenameis’__main__’ for main program:

Example

def fib (n) :

if _ name_ == '__main__':
import sys
fib (int (sys.argv[1l]))

@ Typical application: unittests.

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 65/76

Standard- und built-in modules

@ See Python Library Reference, e.g. module sys.

@ sys.psl and sys.ps2 contain the prompts.

@ sys.path contains the module search-path.

@ With import _ _builtin___it's possible to obtain the list of all
built-in identifiers.
>>> import _ _builtin_
>>> dir(__builtin_)

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 67/76

Modules as values

@ A module is an object.

>>> fib = _ import__ (/' fibonacci’)

>>> fib

<module ’fibonacci’ from ’fibonacci.py’>
>>> fib.fib (10)

11235828

@ fib. name__ is the name of the module.
@ fib._ dict__ contains the defined names in the module.
@ dir (fib) isthesame as fib._ dict__ .keys ().

HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 66/76

Packages

@ A directory, that contains a (possibly empty) file __init_ .py,is
a package.

@ Packages form a tree structure. Access is performed using the
notation packetl.packet2.modul.

Example

import packet.subpacket.module
print (packet.subpacket.module._ name_)

from packet.subpacket import module
print (module._ _name_)

@ If a package packet/subpacket/__init__.py contains the
expression __all__ = ["modulel", "module2"],thenit’s
possible to import both modules using

HERIOT
from packet.subpacket import = YLt
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 68/76

Output formatting

@ str (v) generates a “machine-readable” string representation of
v

@ repr (v) generates a representation that is readable to the
interpreter. Strings are escaped where necessary.

@ s.rjust (n) fills the string, from the left hand side, with space
characters to the total size of n.

@ s.ljust (n) and s.center (n), analogously.

@ s.zfill (n) inserts zeros to the number s in its string
representation.

@ '-3.14".zfil1(8) yields "%08.2f" % -3.14.
@ Dictionary-Formating:
>>> table = {’Sjoerd’: 4127, ’'Jack’: 4098 }

>>> print (’Jack: % (Jack)d; Sjoerd: %(Sjoerd)qhkéntable)

Jack: 4098; Sjoerd: 4127 BWALT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 69/76

Writing and moving

@ f.write (s) writes the string s.

@ f.seek (offset, 0) moves to position seek (counting from the
start of the file).

@ f.seek (offset, 1) moves to position seek (counting from the
current position).

@ f.seek (offset,2) moves to position seek (counting from the
end of the file).

@ f.close () closes the file.

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 71/76

File 1/0

@ Standard-output is sys.stdout.

@ f = open(filename, mode) creates a file-object £, referring to
filename.

Access modiare: "'r’, ’'w’, ’'a’, 'r+’ (read, write, append,
read-write) plus suffix b (binary).

f.read () returns the entire contents of the file as a string.
f.read (n) reads the next n bytes.

f.readline () reads the next line, terminated with 7 \n’. Empty
string if at the end of the file.

@ f.readlines () returns a list of all lines.
@ lteration over all lines:
for line in f: print (1)
HERIOT
WWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 70/76

Pickling

@ Arbitrary objects can be written to a file.

@ This involves serialisation, or “pickling”, of the data in memory.
@ Module pickle provides this functionality.

@ pickle.dump (x, f) turns x into a string and writes it to file f.
@ x = pickle.load(f) reads x from the file £.

HERIOT
gwarr
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 72/76

Saving structured data with JSON

@ JSON (JavaScript Object Notation) is a popular, light-weight data
exchange format.

@ Many languages support this format, thus it's useful for data
exchange across systems.

@ It is much ligher weight than XML, and thus easier to use.

@ json.dump (x, f) turns x into a string in JSON format and
writes it to file £.

@ x = json.load(f) reads x from the file £, assuming JSON
format.

@ For detail on the JSON format see: http://json.org/

HERIOT
GWATT
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 73/76

Numerical Computation using the numpy library

@ numpy provides a powerful library of mathematical/scientific
operations

@ Specifically it provides

a powerful N-dimensional array object

sophisticated (broadcasting) functions

tools for integrating C/C++ and Fortran code

useful linear algebra, Fourier transform, and random number

capabilities

@ For details see: http://www.numpy.org/

vV vYyVvYy

HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 75/76

JSON Example

Example
tel = dict ([('guido’, 4127), (’jack’, 4098)1)
ppTelDict (tel)

write dictionary to a file in JSON format
Jjson.dump (tel, fp=open(jfile,’w’), indent=2)
print ("Data has been written to file ", jfile);

read file in JSON format and turn it into a dictionary
tel _new = json.loads (open(jfile,’r’) .read())
ppTelDict (tel_new)
test a lookup
the_name = "Billy"
printNoOf (the_name, tel_new) ;
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 74/76
Numerical Computation Example: numpy
Example
import numpy as np
ml = np.array ([[1,2,3],
[7,3,4] 1); # fixed test input
ml = np.zeros((4,3),int); # initialise a matrix
rl = np.ndim(ml); # get the number of dimensions for
m, p = np.shape(ml); # no. of rows in ml and no. 9f cols
use range(0,4) to generate all indices
use ml[i][J] to lookup a matrix element
print ("Matrix ml is an ", rl, "-dimensional matrix, 9f shar
HERIOT
PWALT

http://json.org/
http://www.numpy.org/

	Python Overview
	Getting started with Python
	Control structures
	Functions

