F21SC Industrial Programming:
Python Introduction & Control Flow

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

HERIOT
@WAT'1

UNIVERSITY
Semester 1 — 2021/22

HERIOT
GwarT

°No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 1/76

Outline

G Python Overview
e Getting started with Python
0 Control structures

° Functions

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Contents

o Python Overview
e Getting started with Python
e Control structures

o Functions

HERIOT
T

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Online Resources

@ www.python.org: official website

@ Course mostly based on Guido van Rossum'’s tutorial.

@ For textbooks in Python introductions see the end of this slideset.
@ Stable version: 3.8 (Oct 2019)

@ Latest version: 3.10 (Oct 2021)

@ Implemented in C (CPython)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 4/76

Python

@ Python is named after Monty Python’s Flying Circus

@ Python is an object-oriented language focussing on rapid
prototyping

@ Python is a scripting language

@ Python features an elegant language design, is easy to learn and
comprehend

@ Open source

@ Highly portable

@ First version was made available 1990

@ Current stable version is 3.8 (Oct 2019)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 5/76

Python 3 vs Python 2

We will use Python 3, which offers several important new concepts
over Python 2.

If you find Python 2 code samples, they might not run with python3.
There is a tool python3-2to3 which tells you what to change (and it
works in most cases). The most common issues are

@ In Python 3, print is treated as any other function, especially you
need to use parentheses as in write print (x) NOT print x

@ Focus on iterators: pattern-like functions (e.g. map) now return
iterators, i.e. a handle used to perform iteration, rather than a data
structure.

For details check:
https://www.python.org/downloads/release/python-363/

HE Rl() I
GIWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 6/76

https://www.python.org/downloads/release/python-363/

Runtime behaviour

@ Python source code is compiled to byte-code, which is then
interpreted

@ Compilation is performed transparently

@ Automatic memory management using reference counting based
garbage collection

@ No uncontrolled crash (as in seg faults)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 7176

Language features

Everything is an object (pure object-oriented design)
Features classes and multiple inheritance
Higher-order functions (similar to Scheme)

Dynamic typing and polymorphism

Exceptions as in Java

Static scoping and modules
@ Operator overloading

@ Block structure with semantic-bearing indentation (“off-side rule”
as in Haskell)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 8/76

Data types

@ Numbers: int, long, float, complex

@ Strings (similar to Java)

@ Tuples, Lists, Dictionaries

@ Add-on modules can define new data-types

@ Can model arbitrary data-structures using classes

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 9/76

Why Python?

@ Code 2 — 10x shorter than C#, C++, Java
@ Code is easy to comprehend

@ Encourages rapid prototyping

@ Good for web scripting

Scientific applications (numerical computation, natural language
processing, data visualisation, etc)

@ Python is increasingly used at US universities as a starting
language

Rich libraries for XML, Databases, Graphics, etc.

@ Web content management (Zope/Plone)

@ GNU Mailman

@ JPython HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 10/76

Python vs. other languages

@ Very active community

@ A lot of good libraries

@ Increasingly used in teaching (MIT, Berkeley, etc)

@ Good online teaching material, e.g. Online Python Tutor

@ Picks up many advanced language features from other languages
(e.g. Haskell)

ERIOT
'WAI T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 11/76

www.pythontutor.com

Python Textbooks (Advanced)

¥ Mark Lutz, “Programming Python.”
O’Reilly Media; 4 edition (10 Jan 2011). ISBN-10: 0596158106.
Good texbook for more experienced programmers. Detailed coverage of
libraries.

¥ David M. Beazley, “Python Essential Reference.”
Addison Wesley; 4 edition (9 July 2009). ISBN-10: 0672329786.
Detailed reference guide to Python and libraries.

¥ Alex Martelli, Anna Ravenscroft, Steve Holden, “Python in a
Nutshell.”
O’Reilly Media; 3rd edition (May 2017). ISBN-13: 978-1449392925
Concise summary of Python language and libraries.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 12/76

Python Textbooks (Beginner)

@ Mark Lutz, “Learning Python.”,
5th edition, O’Reilly, 2013. ISBN-10: 1449355730
Introduction to Python, assuming little programming experience.

¥ John Guttag. “Introduction to Computation and Programming
Using Python.”, MIT Press, 2013. ISBN: 9780262519632.
Doesn’'t assume any programming background.

@ Timothy Budd. “Exploring Python.”,
McGraw-Hill Science, 2009. ISBN: 9780073523378.
Exploring Python provides an accessible and reliable introduction into
programming with the Python language.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 13/76

Python Textbooks (Beginner)

@ Zed A. Shaw. “Learn Python the Hard Way.”,
Heavily exercise-based introduction to programming. Good on-line
material.

¥ Michael Dawson, “Python Programming for the Absolute
Beginner.”,
3rd edition, Cengage Learning PTR, 2010. ISBN-10: 1435455002
Good introduction for beginners. Slightly dated. Teaches the principles of
programming through simple game creation.

® Tony Gaddis, “Starting Out with Python.”,
Pearson New International Edition, 2013. ISBN-10: 1292025913
Good introduction for beginners..

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 14/76

Python Textbooks (Beginner)

Online resources:
@ How to Think Like a Computer Scientist.
@ An Introduction to Python.
@ Dive into Python 3.
@ Google’s Python Class.
@ Main Python web page.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 15/76

http://www.greenteapress.com/thinkpython/html/index.html
http://beastie.cs.ua.edu/cs150/book/index.html
http://getpython3.com/diveintopython3/
https://developers.google.com/edu/python
http://www.python.org/
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/index_new.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/python_samples.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/faq.html#python

Python Textbooks (Beginner)

Online resources:
@ How to Think Like a Computer Scientist.
@ An Introduction to Python.
@ Dive into Python 3.
@ Google’s Python Class.
@ Main Python web page.
For this course:

@ Main course information page:
http://www.macs.hw.ac.uk/ hwloidl/Courses/F21SC/index_new.html.

@ Python sample code:
http://www.macs.hw.ac.uk/ hwloidl/Courses/F21SC/Samples/python_sample

@ FAQs: HERIOT
http://www.macs.hw.ac.uk/ hwloidl/Courses/F21SC/faq.html#python & WATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 15/76

http://www.greenteapress.com/thinkpython/html/index.html
http://beastie.cs.ua.edu/cs150/book/index.html
http://getpython3.com/diveintopython3/
https://developers.google.com/edu/python
http://www.python.org/
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/index_new.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/Samples/python_samples.html
http://www.macs.hw.ac.uk/~hwloidl/Courses/F21SC/faq.html#python

Launching Python

Interactive Python shell: python
Exit with eof (Unix: Ctrl-D, Windows: Ctrl-Z)
Or: import sys; sys.exit ()

Execute a script: python myfile.py
python3 ..python-args.. script.py ..script-args..
@ Evaluate a Python expression

python3 -c "print (5x6%7)"

python3 -c "import sys; print (sys.maxint)"

python3 -c "import sys; print (sys.argv)" 1 2 3 4
@ Executable Python script
#!/usr/bin/env python3
—+— coding: 1s0-8859-15 —x-

ERIOT
'WAI T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 16/76

Integer Arithmetic

@ >>> is the Python prompt, asking for input

>>> 2+2 # A comment on the same line as code.

4

>>> # A comment; Python asks for a continuation
2+2

>>> (50-5%6) /4
5.0
>>> # Use // for integer division (returns floor):

7//3
>>> 7//-3
HERIOT
GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 17/76

Arbitrary precision integers

@ int represents signed integers (32/64 Bit).

>>> import sys; sys.maxint
2147483647

@ long represents arbitrary precision integers.

>>> sys.maxint + 1
2147483648L
>>> 2 *x 100
1267650600228229401496703205376L
@ Conversion: [“_" is a place-holder for an absent value.]
>>> — 2 %% 31
-2147483648L
>>> int (_)

-2147483648 HERIOT
Pwarl

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 18/76

Assignment

@ Variables don’t have to be declared (scripting language).
>>> width = 20
>>> height = 5x9
>>> width * height
900
@ Parallel assignments:
>>> width, height = height, width + height
@ Short-hand notation for parallel assignments:
>>> x =y =2z =0 # Zero x, y and z
>>> X
0
>>> 7z
0 HERIOT
PWALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 19/76

Floating-point numbers

@ Arithmetic operations are overloaded.
@ Integers will be converted on demand:
>>> 3 % 3.75 / .5

22.5

>>> 7. / 2

3.5

>>> float(7) / 2
3.5

@ Exponent notation: 1e0 1.0e+1 1le-1 .le-2
@ Typically with 53 bit precision (as double in C).

>>> 1e—-323
9.8813129168249309e-324
>>> le-324

0.0

Hans-Wolfgang Loidl (Heriot-Watt Univ)

HERIOT
GwarT

F20SC/F21SC — 2021/22 20/76

Further arithmetic operations

@ Remainder:
>>> 4 % 3

1
>>> -4 % 3
2
>>> 4 % -3
-2
>>> -4 % -3
-1

>>> 3,9 % 1.3
1.2999999999999998

@ Division and Floor:
>>> 7.0 // 4.4
1.0

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22

21/76

Complex Numbers

@ Imaginary numbers have the suffix j.
>>> 19 % complex(0,1)
(=1+073)
>>> complex (=1,0) *x 0.5
(6.1230317691118863e—-17+17)

@ Real- and imaginary components:

>>> a=1.5+0.5]
>>> a.real + a.imag
2.0
@ Absolute value is also defined on complex.

>>> abs (3 + 47)
5.0

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 22/76

Bit-operations

@ Left- (<<) and right-shift (>>)
>>> 1 << 16
65536
@ Bitwise and (&), or (1), xor (~) and negation (~).
>>> 1000 & 0377
232
>>> 0x7531 | Ox8ace
65535
>>> 70
-1
>>> 0123 ~ 0123
0

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 23/76

Strings

@ Type: str.

@ Single- and double-quotes can be used

Input

"Python tutorial’
"doesn\’'t’
"doesn’t"

""Yes," he said.’
"\"Yes, \" he said."

""Isn\’'t," she said.’

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Output
"Python tutorial’
"doesn’t"
"doesn’t"
""Yes," he
""Yes," he
""Isn\"t,"

said.”’
said.’
she said.’

HERIOT
GwarT

F20SC/F21SC — 2021/22 24/76

Escape-Sequences

AR backslash

\’ single quote

\" double gquote

\t tab

\n newline

\r carriage return
\b backspace

Hans-Wolfgang Loidl (Heriot-Watt Univ)

Multi-line string constants

@ The expression

print ("This is a rather long string containing\n\

several lines of text
Whitespace at the
significant.")
@ displays this text
This is a rather long
several lines of text
Whitespace at the

Hans-Wolfgang Loidl (Heriot-Watt Univ)

as you would do in C.\n\
beginning of the line is\

string containing
as you would do in C.
beginning of the line is sigr

HERIOT
GwarT

F20SC/F21SC — 2021/22 26/76

Triple-quote

@ Multi-line string including line-breaks:

print (mmon

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

mman)

@ gives

Usage: thingy [OPTIONS]
-h Display this usage message
—-H hostname Hostname to connect to

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 27/76

Raw strings

@ An r as prefix preserves all escape-sequences.
>>> print ("Hello! \n\"How are you?\"")
Hello!
"How are you?"
>>> print (r"Hello! \n\"How are you?\"")
Hello! \n\"How are you?\"
@ Raw strings also have type str.
>>> type (] \H")
<type ’str’>
>>> type (I‘" \I'l")
<type ’str’>

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 28/76

Unicode

@ Unicode-strings (own type) start with u.

>>> print ("a\u0020b")
ab
>>> "\xfo"
" (')' "
>>> type (_)
<type ’unicode’>
@ Standard strings are converted to unicode-strings on demand:
>>> "this " + "\uOOf6" + " umlaut"
"this 6 umlaut’
>>> print _
this 6 umlaut

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 29/76

String operations

@ "hello"+"world"
"hello"x3
"hello"[0]
"hello"[-1]
"hello"[1:4]
len("hello")
"hello" < "jello"
"e" in "hello"

Hans-Wolfgang Loidl (Heriot-Watt Univ)

"helloworld" # concat.

"hellohellohello" # repetition

"h" # indexing

"o" # (from end)

"ell" # slicing

5 # size

True # comparison

True # search
EATT

F20SC/F21SC — 2021/22 30/76

Lists

@ Lists are mutable arrays.

a = [99, "bottles of beer", ["on", "the", "wall"]]
@ String operations also work on lists.

atb, a*3, af[0], al[-1]1, all:], len(a)
@ Elements and segments can be modified.

al0] = 98
all:2] = ["bottles", "of", "beer"]
—> [98, "bottles", "of", "beer",
["on", "the", "wall"]]
del al[-1] # —-> [98, "bottles", "of", "beer"]

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 31/76

More list operations

>>>
>>>

Q

= range (5)
.append(5)
>>> a.pop ()

o))

>>> a.insert (0, 42)
>>> a.pop(0)

42

>>> a.reverse ()

>>> a.sort ()

N.B.: Use append for push.

Hans-Wolfgang Loidl (Heriot-Watt Univ)

=

~
~
~
~

,_,
o o o
~ =
o e
~ ~
N NN
~ N
w W w
<SS
NG NI
o~

[42,0,1,2,3,4]
(0,1,2,3,4]

~

~
= W
~
~
S O

~
NN
~
w
~

HERIOT
WALT

WA

F20SC/F21SC — 2021/22 32/76

While

@ Print all Fibonacci numbers up to 100 (interactive):

>>> a, b =20, 1
>>> while b <= 100:
print (b)

a, b =Db, atb

@ Comparison operators: == < > <= >= |=
@ NB: Indentation carries semantics in Python:
» Indentation starts a block
» De-indentation ends a block
@ Or:

>>> a, b =0, 1
>>> while b <= 100: print (b); a,b = b, atb HERIOT
gwalT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 33/76

Example

x = int (input ("Please enter an integer: "))
if x < 0:
x = -1
print (/' Sign is Minus’)
elif == 0:
print (' Sign is Zero’)
elif x > 0:
print (" Sign is Plus’)
else:
print (' Should never see that’)

@ NB: elif instead od else 1if to avoid further indentations.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22

HERIOT
GwarT

34/76

For

@ for iterates over a sequence (e.g. list, string)

Example
a = ['cat’, "window’, ’'defenestrate’]
for x in a:

print (x, len(x))

@ NB: The iterated sequence must not be modified in the body of
the loop! However, it’s possible to create a copy, e.g. using
segment notation.
for x in af:]:

if len(x) > 6: a.insert (0, x)
print (a)

@ Results in HERIOT
["defenestrate’, ’cat’, ’‘window’, ’defenestrateWill

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 35/76

Range function

@ lteration over a sequence of numbers can be simplified using the
range () function:
>>> range (10)
[OI 1/ 2/ 3’ 4’ 5’ 6/ 7/ 8/ 9]
>>> range (5, 10)
[5, 6, 7, 8, 9]
>>> range (0, 10, 3)
(0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]
@ lteration over the indices of an array can be done like this:
a = ['Mary’, "had’, "a’, ’'little’, ’'lamb’]
for i %n raége(lén(a)): HERIOT
print (i, alil) WATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 36/76

For-/While-loops: break, continue, else

@ break (asin C), terminates the enclosing loop immediately.

@ continue (asin C), jumps to the next iteration of the enclosing
loop.

@ The else-part of a loop will only be executed, if the loop hasn’t
been terminated using break construct.

Example

for n in range (2, 10):
for x in range (2, n):
if n % x == 0:
print (n, ’'equals’, x, %', n//x)
break
else: # loop completed, no factor

print (n, ’"is a prime number’)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 37/76

The empty expression

@ The expression pass does nothing.

while True:
pass # Busy-wait for keyboard interrupt

@ This construct can be used, if an expression is syntactically
required, but doesn’t have to perform any work.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 38/76

Procedures

@ Procedures are defined using the key word def.

def fib(n): # write Fibonacci series up to n
"""Print a Fibonacci series up to n."""
a, b=20, 1
while b < n:
print (b)

a, b = b, atb
@ Variables n, a, b are local.
@ The return value is None (hence, it is a procedure rather than a
function).
print (fib (10))

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 39/76

A procedure as an object

@ Procedures are values in-themselves.

>>> fib

<function fib at 10042ed0>
>>> f = fib

>>> £(100)

112 358 13 21 34 55 89

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2021/22

40/76

Call-by-value

@ When passing arguments to functions, a Call-by-value discipline
is used (as in C, C++, or C#).
@ Assignment to parameters of a function are local.
def bla(l):
1 =1

1l = ['not’, "empty’]
bla(l)
print (1)
@ 1 is a reference to an object.
@ The referenced object can be modified:
def exclamate(1l) :
l.append (" !7)

exclamate (1) '\[«}}x(l)f

print (1)
Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 41/76

Global Variables

@ The access to a global variable has to be explicitly declared.

def clear_1():
global 1
1 =1]

1l = ['not’, "empty’]
clear_1()
print (1)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 42/76

Global Variables

@ The access to a global variable has to be explicitly declared.

def clear_1():
global 1
1 =1]

1l = ['not’, "empty’]
clear_1()
print (1)

@ ...prints the empty list.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 42/76

Return values

@ The return construct immediately terminates the procedure.

@ The return ...value... construct also returns a concrete
result value.
def fib2 (n):
"""Return the Fibonacci series up to n."""
result = []

a, b=20,1

while b < n:
result.append (b) # see below
a, b =b, atb

return result

£100 = £ib2(100) # call it
£100 # write the result %ﬁ%@f

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 43/76

Default values for function parameters

@ In a function definition, default values can be specified for
parameters:

def ask (prompt, retries=4, complaint=’Yes/no?’):
while True:

ok = raw_input (prompt)

if ok in ('y’, ’'ye’, 'yes’): return True
if ok in ('n’, ’'no’): return False
retries -= 1

if retries < 0: raise IOError, ’"refused’
print (complaint)

@ When calling the function, some arguments can be omitted.

ask ("Continue (y/n)?", 3, "Yes or no, please!")
ask ("Continue (y/n)?2?", 3) LRIOT
ask ("Continue (y/n)?2?") 'WMF

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 44/76

Default values for function parameters (cont’d)

@ Wrong:
ask ("Continue (y/n)?", "Yes or no, please!")
ask ()

@ Named arguments (keyword arg) are useful when using
arguments with and without default values:

ask ("Continue (y/n)?", complaint="Yes or no?")
ask (prompt="Continue (y/n)?2")
@ Wrong:

ask (prompt="Continue (y/n)?2", 5)
ask ("Yes/no?", prompt="Continue (y/n)?")

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 45/76

Evaluation of default values:

@ Default values will be evaluated only once, when the function is
defined:

i=25

def f(arg=i):
print (arg)

i=6
£0

@ Which number will be printed?
°

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 46/76

Evaluation of default values:

@ Default values will be evaluated only once, when the function is
defined:

i=25

def f(arg=i):
print (arg)

i=6
£0

@ Which number will be printed?
@ ...prints 5.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 46/76

Evaluation of default values

@ Beware of mutable objects!
def f(a, L=[]):
L.append (a)
return L

print (£(1))
print (£(2))
@ ...prints [1] and [1, 2].However:

def f (a, L=None):
if L is None:
L =[]
L.append (a)
return L

. HERIOT
@ ...prints [1] and [2]. GWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 47/76

Argument lists

@ Prefixing a paramter with « declares a paramter that can take an

arbitrary number of values.
def fprintf(file, format, xargs):

file.write (format % args)

@ A list can be passed as individual arguments using notation:

>>> args = [3, 6]
>>> range (*args)
[3, 4, 5]

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 48/76

Doc-strings

@ The first expression in a function can be a string (as in elisp).

def my_function() :
"""Do nothing, but document it.

No, really, it doesn’t do anything.

pass
@ The first line typically contains usage information (starting with an
upper-case letter, and terminated with a full stop).
@ After that several more paragraphs can be added, explaining
details of the usage information.
@ This information can be accessed using .__doc___or help

constructs.
my_function._ doc_ # return doc string iﬁﬁﬁ$
help (my_function) # print doc string G

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 49/76

Anonymous Functions

@ A function can be passed as an expression to another function:

>>> lambda x, y: X
<function <lambda> at 0xb77900d4>

@ This is a factory-pattern for a function incrementing a value:

def make_incrementor (n) :
return lambda x: x + n

f = make_incrementor (42)

£(0)

£(1)
@ Functions are compared using the address of their representation

in memory:

>>> (lambda x: x) == (lambda x: x) HERIOT
GWATT
False L

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 50/76

Exercises

@ Implement Euclid’s greatest common divisor algorithm as a
function over 2 int parameters.

@ Implement matrix multiplication as a function taking 2
2-dimensional arrays as arguments.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 51/76

More list operations

@ Modifiers:
» 1l.extend(1l2) means1l[len(l):] = 12,i.e.add 12 tothe end
of the list 1.
» 1.remove (x) removes the first instance of x in 1. Error, if
x not in 1.

@ Read-only:

1.index (x) returns the position of x in 1. Error, if x not in 1.
1.count (x) returns the number of occurrences of x in 1.
sorted (1) returns a new list, which is the sorted version of 1.
reversed (1) returns an iterator, which lists the elements in 1 in
reverse order.

vV vy VvYyy

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 52/76

Usage of lists

@ Lists can be used to model a stack: append and pop ().
@ Lists can be used to model a queue: append und pop (0) .

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 53/76

Higher-order functions on lists

@ filter (test, sequence) returns a sequence, whose
elements are those of sequence that fulfill the predicate test.
E.g.
filter(lambda x: x % 2 == 0, range(10))
@ map (f, sequence) applies the function f to every element of
sequence and returns it as a new sequence.
map (lambda x: xx*xxx, range(10))
map (lambda x,y: xt+y, range(l,51), range(100,50,-1)

@ reduce(f, [al,a2,a3,...,an]) computes
f(. f(f (al a2),a3),...,an)
reduce (lambda x,y:xxy, range(l,11))
@ reduce(f, [al,a2,...,an], e) computes
f(...f(f (e,al),a2),...,an) &g(f{

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 54/76

List comprehensions

@ More readable notation for combinations of map and filter.
@ Motivated by set comprehensions in mathematical notation.
@ [e(x,y) for x in seqgl if p(x) for y in seqg2]
>>> vec = [2, 4, 6]
>>> [3+x for x in vec]
[6, 12, 18]
>>> [3+«x for x in vec if x > 3]
[12, 18]
>>> [(x, x*x*x2) for x in vec]
[((2, 4), (4, 16), (6, 36)]

>>> vecl = [2, 4, 6]

>>> vec2 = [4, 3, -9]

>>> [xxy for x in vecl for y in vec2] .
HERIOT

[8, 6, —-18, 16, 12, -36, 24, 18, -54] Pwall

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 55/76

Deletion

@ Deletion of (parts of) a list:

>>>
>>>
>>>
(1,
>>>
>>>
[l’
>>>
>>>

(]

a = [-1, 1, 66.25, 333, 333, 1234.5]
del al[0]

a

66.25, 333, 333, 1234.5]

del a[2:4]

a

66.25, 1234.5]

del al:]

a

@ Deletion of variables:

>>>

del a
HERIOT
PWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 56/76

Tuples

@ >>> t = 12345, 54321, ’"hello!l’
>>> t[0]
12345
>>> ¢
(12345, 54321, 'hello!’)
>>> # Tuples may be nested:
u=1¢t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, ’'hello!'’), (1, 2, 3, 4, 5))
>>> x, y, z =t
>>> empty = ()
>>> singleton = "hello’, # trailing comma

HERIOT
WALT

WA

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 57/76

Sets

@ set (1) generates a set, formed out of the elements in the list 1.
@ list (s) generates a list, formed out of the elements in the set s.
@ x in s tests for set membership

@ Operations: - (difference), | (union), & (intersection), ~ (xor).

@ for v in s iterates over the set (sorted!).

ERIOT
'WAI T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 58/76

Dictionaries

@ Dictionaries are finite maps, hash maps, associative arrays.
@ The represent unordered sets of (key, value) pairs.
@ Every key may only occur once.

@ Generated using the notation:
{ keyl : wvaluel, ..., keyn : valuen } Or

>>> tel = dict ([(’guido’, 4127), (’jack’, 4098)1])
{’jack’: 4098, ’'guido’: 4127}
@ Access to elements is always through the key: tel [jack’].

@ Insertion and substitution is done using assignment notation:
tel[’me’] = 1234.

@ Deletion: del tel[’'me’].

returns a boolean, indicating whether the key exists. EWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 59/76

Dictionaries

@ The Python implementation uses dictionaries internally, e.g. to list
all names exported by a module, or for the symbol table of the
interpreter.

@ lteration over a dictionary:

for k, v in tel.items():
print (k, v)

@ Named arguments:
def fun(arg, =*args, =*xkeyArgs):

fun (1, 2, 3, optl=4, opt2=5H)
@ This binds arg = 1 and args = [2,3] and
keyArgs = {optl:4, opt2:5}.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 60/76

Loop techniques

@ Here are some useful patterns involving loops over dictionaries.
@ Simultaneous iteration over both keys and elements of a
dictionary:
1 = ["tic’, 'tac’, "toe’]
for i, v 1in enumerate(l):
print (i, wv)
@ Simultaneous iteration over two or more sequences:
for i, v in zip(range(len(l)), 1):
print (i, wv)
@ lteration in sorted and reversed order:

for v in reversed(sorted(l)):

print (v)

HERIOT
WALT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 61/76

Booleans

@ 0,’’, [], None, etc. are interpreted as False.
@ All other values are interpreted as True (also functions!).

@ is checks for object identity: [] == [] istrue,but []1 is []
isn't. 5 is 5 is true.
@ Comparisons can be chained like this: a < b == ¢ > d.

@ The boolean operators not, and, or are short-cutting.

def noisy(x): print (x); return x

a = noisy(True) or noisy (False)

@ This technigue can also be used with non-Boolean values:
>>> "7 or ’'you’ or ’'me’
ryou’

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 62/76

Comparison of sequences and other types

@ Sequences are compared lexicographically, and in a nested way:
() < ("\x00",)
("a’, (5, 3), 'c") < (fa', (6,) , "a’)

@ NB: The comparison of values of different types doesn’t produce
an error but returns an arbitrary value!
>>> "1 < 2

False

>>> () < ("\x00")
False

>>> [0] < (0,)
True

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 63/76

Modules

@ Every Python file is a module.

@ import myMod imports module myMod.

@ The system searches in the current directory and in the
PYTHONPATH environment variable.

@ Access to the module-identifier x is done with myMod. x (both
read and write access!).

@ The code in the module is evaluated, when the module is
imported the first time.

@ Import into the main name-space can be done by

Example

from myMod import myFun
from yourMod import yourValue as myValue

myFun (myValue) # qualification not necessary

. . . aﬂ%ﬂf
@ NB: In general it is not advisable to do from myMod import .

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 64/76

Executing modules as scripts

@ Using __name___ the name of the module can be accessed.
@ Thenameis’__main__ ' for main program:

Example
def fib(n):
if _ _name_ == '_main__ ':
import sys
fib (int (sys.argv[1l])) y

@ Typical application: unittests.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 65/76

Modules as values

@ A module is an object.

>>> fib = __ _import__ (' fibonacci’)

>>> fib

<module ’"fibonacci’ from ’fibonacci.py’>
>>> fib.fib (10)

112358

@ fib._name__ is the name of the module.
@ fib.__ dict__ contains the defined names in the module.
@ dir (fib) isthesame as fib._ dict__ .keys().

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 66/76

Standard- und built-in modules

@ See Python Library Reference, e.g. module sys.
@ sys.psl and sys.ps2 contain the prompts.
@ sys.path contains the module search-path.

@ With import __builtin___it's possible to obtain the list of all
built-in identifiers.

>>> import _ builtin_
>>> dir(__builtin_)

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 67/76

Packages

@ A directory, that contains a (possibly empty) file __init__ .py,is
a package.

@ Packages form a tree structure. Access is performed using the
notation packetl.packet2.modul.

Example

import packet.subpacket.module
print (packet.subpacket.module._ name_)

from packet.subpacket import module
print (module.__ _name_)

@ If a package packet/subpacket/__init__.py contains the
expression __all___ = ["modulel", "module2"],thenit’s
possible to import both modules using g\[v{[&oy
from packet.subpacket import = "

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 68/76

Output formatting

@ str (v) generates a “machine-readable” string representation of
Y

@ repr (v) generates a representation that is readable to the
interpreter. Strings are escaped where necessary.

@ s.rjust (n) fills the string, from the left hand side, with space
characters to the total size of n.

@ s.ljust (n) and s.center (n), analogously.

@ s.zfill (n) inserts zeros to the number s in its string
representation.

@ ’-3.14" .zfi11(8) yields 7%08.2f’ % -3.14.

@ Dictionary-Formating:
>>> table = {’Sjoerd’: 4127, ’'Jack’: 4098 }
>>> print (’Jack: % (Jack)d; Sjoerd: % (Sjoerd) dirrfor
Jack: 4098; Sjoerd: 4127 GUWEL

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 69/76

File 1/0

@ Standard-output is sys.stdout.

@ f = open(filename, mode) creates a file-object £, referring to
filename.

Access modiare: 'r’, 'w’, "a’, ’'r+’ (read, write, append,
read-write) plus suffix b (binary).

f.read () returns the entire contents of the file as a string.
f.read (n) reads the next n bytes.

f.readline () reads the next line, terminated with * \n’. Empty
string if at the end of the file.

@ f.readlines () returns a list of all lines.
@ lteration over all lines:
for line in f: print (1)
HERIOT
GIWATT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 70/76

Writing and moving

@ f.write (s) writes the string s.

@ f.seek (offset, 0) moves to position seek (counting from the
start of the file).

@ f.seek (offset, 1) moves to position seek (counting from the
current position).

@ f.seek (offset,2) moves to position seek (counting from the
end of the file).

@ f.close () closes the file.

ERIOT
'WAI T

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 71/76

Pickling

@ Arbitrary objects can be written to a file.

@ This involves serialisation, or “pickling”, of the data in memory.
@ Module pickle provides this functionality.

@ pickle.dump (x, f) turns x into a string and writes it to file £.
@ x = pickle.load (f) reads x from the file £.

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 72/76

Saving structured data with JSON

@ JSON (JavaScript Object Notation) is a popular, light-weight data
exchange format.

@ Many languages support this format, thus it’s useful for data
exchange across systems.

@ It is much ligher weight than XML, and thus easier to use.

@ json.dump (x, f) turns x into a string in JSON format and
writes it to file f.

@ x = json.load(f) reads x from the file £, assuming JSON
format.

@ For detail on the JSON format see: http://json.org/

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 73/76

http://json.org/

JSON Example

Example

tel = dict ([(’guido’, 4127), (’jack’, 4098)1])
ppTelDict (tel)

write dictionary to a file in JSON format
json.dump (tel, fp=open(jfile,’w’), indent=2)
print ("Data has been written to file ", Jjfile);

read file in JSON format and turn it into a dicti
tel_new = json.loads (open(jfile,’r’) .read())
ppTelDict (tel_new)

test a lookup
the_name = "Billy"
printNoOf (the_name, tel_ new) ;

v

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 74/76

Numerical Computation using the numpy library

@ numpy provides a powerful library of mathematical/scientific
operations

@ Specifically it provides

a powerful N-dimensional array object

sophisticated (broadcasting) functions

tools for integrating C/C++ and Fortran code

useful linear algebra, Fourier transform, and random number

capabilities

@ For details see: http://www.numpy.org/

v vy VvYy

HERIOT
GwarT

Hans-Wolfgang Loidl (Heriot-Watt Univ) F20SC/F21SC — 2021/22 75/76

http://www.numpy.org/

Numerical Computation Example: numpy

Example

import numpy as np

ml = np.array([[1,2,3],
[7,3,4] 1); #

ml = np.zeros((4,3),1int);

rl = np.ndim(ml) ; # get

m, p = np.shape(ml); # no.

use range (0, 4)
use ml[i][]]

print ("Matrix ml is an ",

rl,

fixed test
initialise
the number
of rows in

to generate all indices
to lookup a matrix element

"-dimensional matrix, of
v

input

a matrix
of dimensions
ml and no. of

Hans-Wolfgang Loidl (Heriot-Watt Univ)

F20SC/F21SC — 2021/22

HERIOT
GwarT

76/76

	Python Overview
	Getting started with Python
	Control structures
	Functions

