
F28DA11
Command Line Java Survival

GuideGuide

Phil Trinder and David H. Marwick

Java with BlueJ

• “BlueJ is a Java development environment
explicitly for teaching introductory object-
oriented programming”
– Java has a steep learning curve

2

– Java has a steep learning curve

• BlueJ allows easy piecemeal testing of methods
– very useful for development

• Running a Java program means allowing it to
control what is happening

F28DA1: Data Structs & Algs

Java without BlueJ (App E)

• BlueJ hides functionality needed to run Java
programs
– thus, easing the learning process

• To progress, you must learn some of this

3

• To progress, you must learn some of this
hidden functionality

• You must write code
– to create objects of your classes, and
– to create appropriate interaction between these

objects

F28DA1: Data Structs & Algs

Java Execution

• In BlueJ, to execute a program, typically you
create an object of a control class. For example,
in the address book programs (Ch 12)
– an AddressBookDemo object is created, and

4

– an AddressBookDemo object is created, and

– an appropriate method is invoked from that object

• This is eased by right-clicks within the BlueJ
environment

• But what is actually happening?

F28DA1: Data Structs & Algs

Java Execution
• An object is created by invoking a constructor of the

class. The hidden code is:
addressB1 = new AddressBookDemo();

• Then we invoke the method showInterface() by
right clicking on the object addressB1. The hidden
code is

5

code is
addressB1.showInterface();

• How can we execute this code if BlueJ does not exist?
– We have to tell the Java SDK where to start

– As no object can exist before the program starts execution,
we must point to a class method in the control class

F28DA1: Data Structs & Algs

Control Class
• A control class is used to start and control the

operation of the program

• Typically, it is a small class containing class
variables and methods

F28DA1: Data Structs & Algs 6

• It must include the method main with the
signature:
public static void main(String[] args);

• There will be no created object of this class
– What is a class method? class variable?

AddressBookDemo

• The control class for the address book
projects is AddressBookDemo

• The contents of this class is now
public class AddressBookDemo{

F28DA1: Data Structs & Algs 7

public class AddressBookDemo{

private static AddressBook book;

private static AddressBookTextInterface
interaction;

public static void main(String[] args);

} //Note all variables and methods are static

• The program starts by executingmain

main()
• main contains the code to start the program, including creating

any objects necessary – for example:
public static void main(String[] args) {
ContactDetails[] sampleDetails = {

new ContactDetails("david", "08459 100000", "address 1"),
...

new ContactDetails("ruth", "08459 800000", "address 8"),
};
book = new AddressBook();

F28DA1: Data Structs & Algs 8

book = new AddressBook();
for(ContactDetails details : sampleDetails) {

book.addDetails(details);
}
interaction = new AddressBookTextInterface(book);
interaction.run();

}

• Compare this with the existing code of the class
AddressBookDemo using the text-based interface

Executing using main
• This can all be achieved within BlueJ
• After compilation, execution is simply right

clicking on AddressBookDemo and
invoking the method main
– No object creation of AddressBookDemo is

F28DA1: Data Structs & Algs 9

– No object creation of AddressBookDemo is
necessary

• Other objects are created within the program itself

– No parameters are necessary

• However, Java programs must be able to run
without using the BlueJ environment

Command line execution
• A (compiled) Java program can be run from a

command line (in both Unix and Windows) by typing
the command:
java AddressBookDemo

– This causes the Java virtual machine to start executing the
method main in the control class AddressBookDemo

F28DA1: Data Structs & Algs 10

method main in the control class AddressBookDemo

– if main is not found, you get the error
Exception in thread "main" java.lang.NoSuchMethodError: main

i.e. you can run only the control class

• The parameter of main enables data to be passed in
the command (Command Line Arguments)

Compiling a Java program

• The Java compiler expects to find a text file of
Java source code

• This can be created using any text editor
– Notepad, Emacs, vi, etc (or even BlueJ)

F28DA1: Data Structs & Algs 11

– Notepad, Emacs, vi, etc (or even BlueJ)

– Beware, do not use a word processor

• To compile using a command line:
javac AddressBookDemo.java

Java Files

• The Java source code must be stored in a text
file with the name of the class and the
extension .java

• The Java compiler creates code files with the

F28DA1: Data Structs & Algs 12

• The Java compiler creates code files with the
extension .class – one for each class

• Note that
– to compile, the .java extension is used
– to run, the .class extension is not used

• BlueJ has other files used only within BlueJ

Summary

• The control class is a separate class which
must have a class method main
– main must exist

– main must be public

F28DA1: Data Structs & Algs 13

– main must be public

– main must be static (class method)

– main must have a String array parameter

– To run, only main can be invoked

Class diagram for address-book
• Note that

– the class diagram does not change
– main creates objects and invokes the run method in the

interface class

F28DA1: Data Structs & Algs 14

Simple I/O in Java

• In BlueJ, input and output are often done using
the interface

• Stand alone Java programs must use the Java
classes to achieve appropriate i/o

F28DA1: Data Structs & Algs 15

classes to achieve appropriate i/o

• We will now look at how to read data from the
keyboard and display data on the screen

Java Input/Output

• In Java, data is read from & written to streams

• A stream is an abstraction that produces or consumes data

• To access real data, it is attached to a physical device

• It always behaves in the same manner regardless of the

F28DA1: Data Structs & Algs 16

• It always behaves in the same manner regardless of the
physical device used:

– Keyboard
– Disc file
– Network socket

• Thus, stream classes (and methods) apply to all devices

Types of Stream
• There are two types of stream
• Character streams read and write Unicode

characters
– they are used for handling character data

• Byte streams read and write bytes (an 8-bit

F28DA1: Data Structs & Algs 17

• Byte streams read and write bytes (an 8-bit
signed integer
– they are used for handling binary data

• As all input is byte-oriented, the character
stream classes convert bytes to characters
automatically

Stream Hierarchy
Object

OutputStream ReaderInputStream Writer

byte streams char streams

F28DA1: Data Structs & Algs 18

• InputStream and OutputStream are the
abstract superclasses for all byte I/O streams

• Reader and Writer are the abstract
superclasses for all character I/O streams

• The standard streams are:
– the standard input stream, normally the keyboard
– the standard output stream, normally the screen
– the standard error stream, normally the screen

Standard Streams

F28DA1: Data Structs & Algs 19

– the standard error stream, normally the screen

• The standard streams are based on the basic
streams
– System.in – an InputStream object
– System.out PrintStream objects, a
– System.err a subclass ofOutputStream

Example: Sum 10 numbers
int sum, i, number;
sum = 0;
for (i = 0; i<10; i=i+1){

number =
Integer.parseInt(System.in.readln());

sum = sum + number;

F28DA1: Data Structs & Algs 20

sum = sum + number;
}
System.out.println("Sum = "+sum);

• This code would not work because System.in is
an InputStream object and does not recognise
line terminators
– It reads bytes only

Character Streams - Reader

is the main class

Reader

BufferedReaderInputStreamReader

F28DA1: Data Structs & Algs 21

• InputStreamReader is the main class
underlying the reading of character data

• BufferedReader is the class usually used
for reading character data

• The main constructors of these classes are:
public InputStreamReader(InputStream input);

public BufferedReader(Reader input);

• Note that System.in is an InputStream
object – reading bytes

Reading Characters

F28DA1: Data Structs & Algs 22

object – reading bytes
• InputStreamReader has methods which

takes bytes and converts them to characters
• So a BufferedReader object normally

builds on an InputStreamReader object

Reading from System.in

InputStreamReader keys =

new InputStreamReader(System.in)

BufferedReader keyboard =

new BufferedReader(keys)

F28DA1: Data Structs & Algs 23

new BufferedReader(keys)

OR
BufferedReader keyboard =

new BufferedReader(new

InputStreamReader(System.in))

BufferedReader

• The reason for using a BufferedReader
object is to use the method

public String readLine() throws IOException

• This reads a line of characters from the input

F28DA1: Data Structs & Algs 24

• This reads a line of characters from the input
stream (excluding the line terminator)

• A line is a structure within a character stream

Example: Sum 10 numbers
int sum, i, number;

BufferedReader keyboard =

new BufferedReader(new

InputStreamReader(System.in));

sum = 0;
for (i = 0; i<10; i=i+1){

F28DA1: Data Structs & Algs 25

for (i = 0; i<10; i=i+1){
number = Integer.parseInt

(keyboard.readLine().trim());
sum = sum + number;

}

System.out.println("Sum = "+sum);

System.out

• System.out is a PrintStream object
• PrintStream is a subclass of
OutputStream, a byte stream
– PrintStream permits output of characters

F28DA1: Data Structs & Algs 26

– PrintStream permits output of characters
– The statement
System.out.println("Sum = "+sum);
– causes sum to be converted to a String and the

whole parameter is output to the screen on one line

Writer
Writer

PrintWriter

F28DA1: Data Structs & Algs 27

• The main constructors are:
public PrintWriter(OutputStream output,

boolean flush);

public PrintWriter(Writer output,
boolean flush);

PrintWriter Methods

• println()buffers and displays the
parameter followed by a new line

• print() buffers without a new line (and so,
does not display)

F28DA1: Data Structs & Algs 28

does not display)

• flush() causes the buffer to be flushed (and
so, displayed)

– the second parameter in the constructor specifies if
the stream is flushed after println

Output

• Note that System.out is an
OutputStream object – writing bytes

• So a PrintWriter object can be
connected to System.out (using the first

F28DA1: Data Structs & Algs 29

System.out
constructor on slide 32)
PrintWriter screen =

new PrintWriter(System.out, true);

• Note that the PrintWriter methods can also be
used withSystem.out

Output

• We can invoke the methods of this stream to
display our output - for example
screen.print("Enter an integer: ");
screen.flush();

F28DA1: Data Structs & Algs 30

• Output values are buffered prior to output

• In order to display the data, the buffer must be
flushed

– a new line also flushes the buffer

Example with keyboard & screen

public static void main(String[] args) throws IOException{
int sum, i, number;
BufferedReader keyboard =
new BufferedReader(new InputStreamReader(System.in));

PrintWriter screen = new PrintWriter(System.out, true);
sum = 0;
for (i = 0; i<10; i=i+1){

F28DA1: Data Structs & Algs 31

for (i = 0; i<10; i=i+1){
screen.print("Enter an integer: ");
screen.flush();
number = Integer.parseInt(keyboard.readLine().trim());
sum = sum + number;

}
screen.println("Sum = "+sum);

}

Wrapper Classes

• Wrapper classes provide an object wrapper
around primitive data types

• They are used to provide methods to convert
from a String to a primitive type

F28DA1: Data Structs & Algs 32

from a String to a primitive type

• Strings that do not represent a value of a
primitive type throw an exception

Wrapper Classes (cont.)

• two Integer methods widely used are:
public static int parseInt(String s) throws
NumberFormatException;

public int intValue();

• parseInt is a method which does not operate on an

F28DA1: Data Structs & Algs 33

• parseInt is a method which does not operate on an
Integer object – a class method
n = Integer.parseInt(keyboard.readLine().trim());

• intValue does operate on an Integer object – an
instance method
n = new Integer(keyboard.readLine().trim()).intValue();

Wrapper Classes (cont.)

• Integer also has two public class constants
MAX_VALUE and MIN_VALUE, which give the
range of ints

• there are similar wrapper classes forDouble,

F28DA1: Data Structs & Algs 34

• there are similar wrapper classes forDouble,
Long, Float, Short, and Byte, e.g.
public static double parseDouble(String s)
throws NumberFormatException;

public double doubleValue();

Useful String methods

• String methods can be used to manipulate the input
string

• e.g.trim()removes all leading and trailing white
space in aString object. Thus,
keyboard.readLine().trim()

F28DA1: Data Structs & Algs 35

keyboard.readLine().trim()

returns a trimmedString object

• To access a singlechar value:
char ch = keyboard.readLine(). charAt(0);

which returns the character at position 0 (left-most) of
the trimmedString objecttrim().

Summary

• main method: public static void
main(String[] args);

• Compile: javac myprog.java

• Run: java myprog• Run: java myprog

• Java I/O:
– Streams, standard streams like System.in

– Reading from streams, e.g. keyboard

– Writing to streams, e.g. screen

2008-09 F28DA1: Data Struct & Algs 36

