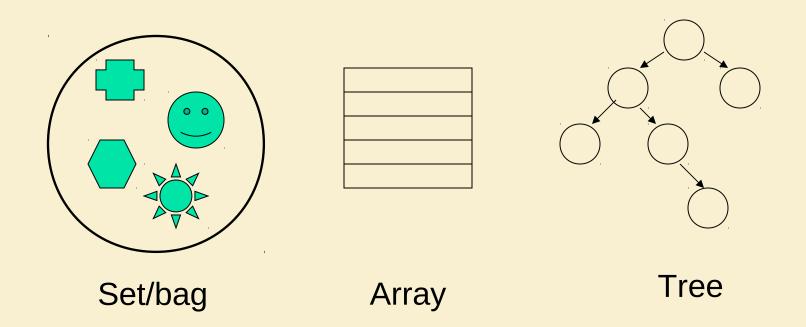

Data Structures and Algorithms

Lecture 1: Course Overview

Lilia Georgieva



What is this course about?

- We will study moderately complex data structures and algorithms that are essential in core areas of computer science
 - Compilers
 - Operating Systems
 - Database Systems
 - Search Engines
 - etc.
- This is one of the most important (and fun) courses you will take
 - Prerequisite for almost all other upper year courses

seen

Data structure = representation and operations associated with a data type

Simple algorithms you have seen

- Binary search
- Bubble sort
- Quick sort

Knowledge Assumed

- We assume you know basic data structures
 - Arrays, bags, lists, stacks, queues, linked lists
 - Functions, logarithms, exponents, sets, series, derivatives, limits
 - Abstract Data types
 - Basic object oriented design concepts
 - abstraction, encapsulation, modularity

Skills Assumed

- We assume you know how to program in Java
 - can design, implement, test, debug, and document simple Java programs
 - can read and understand moderate size Java programs
 - can write and understand simple recursive code
- This is **not** a course on Java. If you don't know Java, start learning it now, before the programming assignments are due!
 - Books, tutorials on the web, etc.
 - Chapter 1 of our text book (Goodrich&Tamassia) gives a good introduction to Java

What will you learn?

- Analysis of moderately complex algorithms
 - How to predict algorithm's performance
 - time and space complexity
 - Algorithm correctness
- Moderately complex data structures that let us efficiently store, access, manage data
- How to solve practical problems efficiently by choosing the appropriate data structures and algorithms

Topics Covered

- Analysis of algorithms
 - Time and space complexity
 - Correctness
- Data Structures
 - Dictionaries, hash tables
 - Priority queues and heaps
 - Trees, binary search trees, multi-way search trees
 - Graphs
- Algorithms
 - Binary Search, sorting, algorithms on trees and graphs
- Java Interfaces, Java exceptions

Contact Info

- Information
 - Lecturers: Lilia Geprgieva and Phil Trinder
 - Lectures: Mon 12:15-13:15, Tue 12:15-13:15,Fri 9:15-10:15
 - Labs: Fri 13:15-15:15pm
 - Office hours: Tue 9:15-10:15am or by appointment
- Lecture Notes
 - Will be available on the course web site

Contact Info

- Course Web Page
- Check the course web page frequently
- I will post any important announcements on the web page (about homework, exams, etc.)

Textbook

Main: Data Structures and Algorithms in Java, forth edition, Goodrich and Tamassia, John Wiley & Sons, 2006

Supplementary:

- Data Structures and Algorithms with Object Oriented Design Patterns in Java, Bruno R. Preiss, Wiley, 2000
- The Java Programming Language, Arnold and Gosling, Addison-Wesley, 1996.
- Java, an Object Oriented Approach, Arnow and Weiss, Addison-Wesley, 1999.
- Other books listed on the course web site

Class Attendance

- Not required, but strongly encouraged
 - Lecture notes is only a summary of things happening in class, will not contain many examples
 - Students who attend lectures tend to do better
 - Attending lecture is most efficient way to learn the required material

Late Policy

- Assignment extensions may be granted only by the course lecturers
- If you have serious medical or compassionate grounds for an extension, take the supporting documentation to the school's office.

Ethical Conduct

- All assignments are to be done individually
- Assignments judged to be the result of academic dishonesty will,
 - First offence = -assignment weight
 - Second offence = failing mark
- We have sophisticated software which will examine your code against everyone else in class

Email Contact

If you send email to lecturers or lab helpers form another account, send a carbon copy (cc) to your university email address. The tutors will respond to your university address.