Data Structures and Algorithms

Lecture 2: Analysis of Algorithms, Asymptotic notation

Lilia Georgieva

© 2004 Goodrich, Tamassia

Outline

- Pseudocode
- Theoretical Analysis of Running time - Primitive Operations
- Counting primitive operations
- Asymptotic analysis of running time

Pseudocode

- In this course, we will mostly use pseudocode to describe an algorithm
- Pseudocode is a highlevel description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for

Example: find max
 element of an array

Algorithm $\operatorname{arrayMax}(A, n)$
Input: array \boldsymbol{A} of \boldsymbol{n} integers
Output: maximum element of \boldsymbol{A}
currentMax $\leftarrow A[0]$ for $\boldsymbol{i} \leftarrow 1$ to $\boldsymbol{n}-1$ do
if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$
return currentMax describing algorithms

- Hides program design
issues
Analysis of Algorithms

Pseudocode Details

- Control flow
- if ... then ... [else ...]
- while ... do ...
- repeat ... until ...
- for ... do ...
- Indentation replaces braces
- Method declaration

Algorithm method (arg, arg...)
Input ...
Output ...

Algorithm $\operatorname{arrayMax}(A, n)$ Input: array \boldsymbol{A} of \boldsymbol{n} integers
Output: maximum element of \boldsymbol{A}

```
currentMax \leftarrowA[0]
for i}\leftarrow1\mathrm{ to n-1 do
    if A[]] > currentMax then
        currentMax \leftarrowA[i]
    return currentMax
```


Pseudocode Details

- Method call
var.method (arg [, arg...])
- Return value
return expression
- Expressions
\leftarrow Assignment (like = in Java)

Algorithm $\operatorname{arrayMax}(A, n)$

 Input: array \boldsymbol{A} of \boldsymbol{n} integersOutput: maximum element of \boldsymbol{A}
currentMax $\leftarrow A[0]$ for $i \leftarrow 1$ to $\boldsymbol{n}-1$ do if $A[i]>$ currentMax then currentMax $\leftarrow A[i]$ return currentMax
= Equality testing (like = = in Java)
n^{2} superscripts and other mathematical formatting allowed

Comparing Algorithms

- Given 2 or more algorithms to solve the same problem, how do we select the best one?
- Some criteria for selecting an algorithm ${ }^{1)}$ Is it easy to implement, understand, modify?

2) How long does it take to run it to completion?
3) How much of computer memory does it use?

- Software engineering is primarily concerned with the first criteria
- In this course we are interested in the second and third criteria

Comparing Algorithms

- Time complexity
- The amount of time that an algorithm needs to run to completion
- Space complexity
- The amount of memory an algorithm needs to run
- We will occasionally look at space complexity, but we are mostly interested in time complexity in this course
- Thus in this course the better algorithm is the one which runs faster (has smaller time complexity)

Analysis of Algorithms

How to Calculate Running time

- Most algorithms transform input objects into output objects

$$
\begin{array}{|l|l|l|l|}
\hline 5 & 3 & 1 & 2 \\
\hline \begin{array}{l}
\text { input object }
\end{array}
\end{array} \longrightarrow
$$

sorting algorithm

\author{

1	2	3	5
output object			

}

- The running time of an algorithm typically grows with the input size
- idea: analyze running time as a function of input size

How to Calculate Running Time

- Even on inputs of the same size, running time can be very different
- Example: algorithm that finds the first prime number in an array by scanning it left to right
- Idea: analyze running time in the
- best case
- worst case
- average case

How to Calculate Running Time

- Best case running time is usually useless
- Average case time is very useful but often difficult to determine
- We focus on the worst case running time
- Easier to analyze
- Crucial to applications such as games, finance and robptidqssis of Algorithms

Experimental Evaluation of Running Time

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis(
) to get an accurate measure of the actual running time

- Plot the results

Limitations of Experiments

- Experimental evaluation of running time is very useful but
- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis of Running Time

- Uses a pseudo-code description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

RAM: The Random Access Machine

- For theoretical analysis, we assume RAM model for our "theoretical" computer
- Our RAM model consists of:
- a CPU
- a potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- memory cells are numbered and accessing any cell in memory takes unit time.

Analysis of Algorithms
14

Primitive Operations

- For theoretical analysis, we will count primitive or basic operations, which are simple computations performed by an algorithm
- Basic operations are:
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Analysis of Algorithms 15

Primitive Operations

- Examples of primitive operations:
- Evaluating an expression $x^{2}+e^{y}$
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
cnt \leftarrow cnt +1 A[5]
mySort(A,n)
return(cnt)

Counting Primitive Operations

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size
Algorithm $\operatorname{arrayMax}(A, n)$
currentMax $\leftarrow A[0]$ 2 for $i \leftarrow 1$ to $n-1$ do $\quad 2+n$
if $A[7]>$ currentMax then currentMax $\leftarrow A[i]$ \{ increment counter \boldsymbol{i} \} return currentMax

Total $7 \boldsymbol{n}$-1

Estimating Running Time

- Algorithm arrayMax executes 7n-1 primitive operations in the worst case. Define: $a=$ Time taken by the fastest primitive operation $\boldsymbol{b}=$ Time taken by the slowest primitive operation
- Let $\boldsymbol{T}(\boldsymbol{n})$ be worst-case time of arrayMax. Then

$$
\boldsymbol{a}(7 \boldsymbol{n}-1) \leq \boldsymbol{T}(\boldsymbol{n}) \leq \boldsymbol{b}(7 \boldsymbol{n}-1)
$$

- Hence, the running time $\boldsymbol{T}(\boldsymbol{n})$ is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
- Affects $T(n)$ by a constant factor, but
- Does not alter the growth rate of $\boldsymbol{T}(\boldsymbol{n})$
- Thus we focus on the big-picture which is the growth rate of an algorithm
- The linear growth rate of the running time $\boldsymbol{T}(\boldsymbol{n})$ is an intrinsic property of algorithm arrayMax
- algorithm arrayMax grows proportionally with n, with its true running time being n times a constant factornthyatsof pegod Bhons the ispecific

Constant Factors

- The growth rate is not affected by
- constant factors or
- lower-order terms
- Examples
- $10^{2} \boldsymbol{n}+10^{5}$ is a linear function
- $10^{5} \boldsymbol{n}^{2}+10^{8} \boldsymbol{n}$ is a quadratic function
- How do we get rid of the constant factors to focus on the essential part of the running time?

Big-Oh Notation Motivation

- The big-Oh notation is used widely to characterize running times and space bounds
- The big-Oh notation allows us to ignore constant factors and lower order terms and focus on the main components of a function which affect its growth

Big-Oh Notation Definition

- Given functions $\boldsymbol{f}(\boldsymbol{n})$ and $\boldsymbol{g}(\boldsymbol{n})$, we say that $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$) if there are positive constants
\boldsymbol{c} and \boldsymbol{n}_{0} such that
$\boldsymbol{f}(\boldsymbol{n}) \leq \boldsymbol{c g}(\boldsymbol{n})$ for $\boldsymbol{n} \geq \boldsymbol{n}_{0}$
- Example: $2 \boldsymbol{n}+10$ is

O(n)

- $2 \boldsymbol{n}+10 \leq \boldsymbol{c n}$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$
- Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{0}=10$

Big-Oh Example

- Example: the function \boldsymbol{n}^{2} is not O(n)
- $\boldsymbol{n}^{2} \leq \boldsymbol{c} \boldsymbol{n}$
- $\boldsymbol{n} \leq \boldsymbol{c}$
- The above inequality cannot be satisfied since c must be a constant

More Big-Oh Examples

- 7n-2
$7 n-2$ is $O(n)$
need $c>0$ and $n_{0} \geq 1$ such that $7 n-2 \leq c \bullet n$ for $n \geq n_{0}$
this is true for $\mathrm{c}=7$ and $\mathrm{n}_{0}=1$
- $3 n^{3}+20 n^{2}+5$
$3 n^{3}+20 n^{2}+5$ is $O\left(n^{3}\right)$ need $c>0$ and $n_{0} \geq 1$ s.t. $3 n^{3}+20 n^{2}+5 \leq c \cdot n^{3}$ for $n \geq n_{0}$
this is true for $\mathrm{c}=4$ and $\mathrm{n}_{0}=21$
- $3 \log n+5$
$3 \log n+5$ is $O(\log n)$
need $c>0$ and $n_{0} \geq 1$ s.t. $3 \log n+5 \leq c \cdot \log n$ for $n \geq n_{0}$ this is true for $\mathrm{c}=8$ and $\mathrm{n}_{0}=2$

Analysis of Algorithms 24

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement " $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $f(n)$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
- We can use the big-Oh notation to rank functions according to their growth rate

$$
f(n) \text { is } O(g(n)) \quad g(n) \text { is } O(f(n))
$$

$\boldsymbol{g}(\boldsymbol{n})$ grows
Yes
No
more
$\boldsymbol{f}(\boldsymbol{n})$ grows more
Same growth

No
Yes
Analysis of Algorithms

Yes
Yes

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $O\left(n^{r}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions

- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is O(3n)"

Analysis of Algorithms 26

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $O\left(n^{r}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions

- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
- We find the worst-case number of primitive operations executed as a function of the input size
- We express this function with big-Oh notation
- Example:
- We determine that algorithm arrayMax executes at most $7 \boldsymbol{n}-1$ primitive operations
- We say that algorithm arrayMax "runs in $\boldsymbol{O}(\boldsymbol{n})$ time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

Analysis of Algorithms $\quad 28$

Seven Important Functions

- Seven functions that often appear in algorithm analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- N -Log-N $\approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx \mathbf{2}^{n}$
- In a log-log chart,
 the slope of the line corresponds to the growth rate of the function

Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages
- The i-th prefix average of an array \boldsymbol{X} is average of the first $(\boldsymbol{i}+1)$ elements of X :

$$
A[i]=(X[0]+\underset{(i+1)}{X[1]}+\ldots+X[i]) /
$$

- Computing the array A of prefix averages of another array \boldsymbol{X} has
 applications to financial analysis Analysis of Algorithms 30

Prefix Averages (Quadratic)

- The following algorithm computes prefix averages in quadratic time by applying the definition

Algorithm prefixAverages1(X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X}
\#operations
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers
for $\boldsymbol{i} \leftarrow 0$ to $\boldsymbol{n}-1$ do $s \leftarrow X[0]$ for $j \leftarrow 1$ to i do $\mathbf{s} \leftarrow \mathbf{s}+\boldsymbol{X}[j]$ $A[i] \leftarrow s /(i+1)$
return A

Analysis of Algorithms 31

Arithmetic Progression

- The running time of prefixAverages1 is
$\boldsymbol{O}(1+2+\ldots+\boldsymbol{n})$
- The sum of the first n integers is $\boldsymbol{n}(\boldsymbol{n}+1) / 2$
- There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ time

Prefix Averages (Linear)

- The following algorithm computes prefix averages in linear time by keeping a running sum

Algorithm prefixAverages2(X, n)
Input array \boldsymbol{X} of \boldsymbol{n} integers
Output array \boldsymbol{A} of prefix averages of \boldsymbol{X}
\#operations
$\boldsymbol{A} \leftarrow$ new array of \boldsymbol{n} integers
$s \leftarrow 0 \quad 1$
for $\boldsymbol{i} \leftarrow 0$ to $\boldsymbol{n}-1$ do
n
$s \leftarrow s+X[i] \quad n$
$A[i] \leftarrow s /(i+1) \quad n$
return $A \quad 1$

- Algorithm prefixAverages2 runs in $\boldsymbol{O (n)}$ time Analysis of Algorithms 33

More Examples

Algorithm SumTripleArray (X, n)
Input triple array $\boldsymbol{X [] [] [] ~ o f ~} \boldsymbol{n}$ by \boldsymbol{n} by \boldsymbol{n} integers
Output sum of elements of X
\#operations
$s \leftarrow 0$
for $\boldsymbol{i} \leftarrow 0$ to $\boldsymbol{n}-1$ do
1
for $\boldsymbol{j} \leftarrow 0$ to $n-1$ do $\quad n+n+\ldots+n=n^{2}$
for $k \leftarrow 0$ to $n-1$ do $\quad n^{2}+n^{2}+\ldots+n^{2}=n^{3}$
$\boldsymbol{s} \leftarrow \boldsymbol{s}+X[i][]][k] \quad n^{2}+n^{2}+\ldots+n^{2}=n^{3}$

- Algorithm SumTripleArray runs in $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$ time Analysis of Algorithms 34

Useful Big-Oh Rules

- If is $f(n)$ a polynomial of degree \boldsymbol{d}, then $\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}\left(\boldsymbol{n}^{\mathbf{d}}\right)$

$$
f(n)=a_{0}+a_{1} n+a_{2} n^{2}+\ldots+a_{d} n^{d}
$$

- If $\mathbf{d}(\mathbf{n})$ is $\boldsymbol{O}(\mathbf{f}(\mathbf{n}))$ and $\boldsymbol{e}(\mathbf{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\mathbf{n})$) then
- $\mathbf{d}(\mathbf{n})+\boldsymbol{e}(\mathbf{n})$ is $\boldsymbol{O}(\mathbf{f}(\mathbf{n})+\mathbf{g}(\mathbf{n}))$
- $\mathbf{d}(\mathbf{n}) e(\mathbf{n})$ is $O(f(n) g(n))$
- If $\mathbf{d}(\mathbf{n})$ is $\mathbf{O}(\mathbf{f}(\mathbf{n})$) and $\mathbf{f}(\mathbf{n})$ is $\mathbf{O}(\mathbf{g}(\mathbf{n}))$ then $\mathbf{d}(\mathbf{n})$ is $\mathbf{O}(\mathrm{g}(\mathrm{n})$)
- If $\boldsymbol{p}(\boldsymbol{n})$ is a polynomial in \boldsymbol{n} then $\log \boldsymbol{p}(\boldsymbol{n})$ is $O(\log (n))$

Relatives of Big-Oh

- big-Omega
- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
- big-Theta
- $\mathrm{f}(\mathrm{n})$ is $\Theta(\mathrm{g}(\mathrm{n}))$ if there are constants $\mathrm{c}^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $\mathrm{n}_{0} \geq 1$ such that $\mathrm{c}^{\prime} \cdot \mathrm{g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}^{\prime \prime} \cdot \mathrm{g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$

Intuition for Asymptotic Notation

Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $g(n)$
- Note that $f(n)$ is $\Omega(g(n))$ if and only if $g(n)$ is $O(f(n)$) big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
- Note that $f(n)$ is $\Theta(g(n))$ if and only if if $g(n)$ is $O(f(n))$ and if $f(n)$ is $\mathrm{O}(\mathrm{g}(\mathrm{n})$)

Example Uses of the Relatives of Big-Oh

- $5 n^{2}$ is $\Omega\left(n^{2}\right)$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \bullet g(n)$ for $n \geq n_{0}$
let $c=5$ and $n_{0}=1$
- $5 \boldsymbol{n}^{2}$ is $\boldsymbol{\Omega}(\boldsymbol{n})$
$f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \geq \operatorname{c} \cdot g(n)$ for $n \geq n_{0}$
let $c=1$ and $n_{0}=1$
- $5 n^{2}$ is $\Theta\left(n^{2}\right)$
$f(n)$ is $\Theta(g(n))$ if it is $\Omega\left(n^{2}\right)$ and $O\left(n^{2}\right)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $\mathrm{f}(n) \leq c \bullet g(n)$ for $n \geq n_{0}$
Let $c=5$ and $n_{0}=1$

Math you need to Review

- Summations
- Logarithms and Exponents
- properties of
logarithms:

$$
\begin{aligned}
& \log _{b}(x y)=\log _{b} x+\log _{b} y \\
& \log _{b}(x / y)=\log _{b} x-\log _{b} y \\
& \log _{b} x a=a \log _{b} x \\
& \log _{b} a=\log _{x} a \log _{x} b
\end{aligned}
$$

- properties of
exponentials:

$$
\begin{aligned}
& a^{(b+c)}=a^{b} a^{c} \\
& a^{b c}=\left(a^{b}\right)^{c} \\
& a^{b} / a^{c}=a^{(b-c)} \\
& b=a^{\log _{b} b} \\
& b^{c}=a^{c+100_{a}^{b}}
\end{aligned}
$$

Final Notes

- Even though in this course we focus on the asymptotic growth using big-Oh notation, practitioners do care about constant factors occasionally
- Suppose we have 2 algorithms
- Algorithm A has running time 30000n
- Algorithm B has running time $3 n^{2}$
- Asymptotically, algorithm A is better than algorithm B
- However, if the problem size you deal with is always less than 10000, then the quadratic one is faster

Analysis of Algorithms

