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Pseudocode

 In this course, we will 
mostly use 
pseudocode to 
describe an algorithm

 Pseudocode is a high-
level description of an 
algorithm

 More structured than 
English prose

 Less detailed than a 
program

 Preferred notation for 
describing algorithms

 Hides program design 
issues

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax 

Example: find max 
element of an array
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Pseudocode Details

 Control flow
 if … then … [else …]
 while … do …
 repeat … until …
 for … do …
 Indentation replaces 

braces 

 Method declaration
Algorithm method (arg, arg…)

Input …
Output …

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax 



 Analysis of Algorithms 5

Pseudocode Details

 Method call
var.method (arg [, arg…])

 Return value
return expression

 Expressions
←  Assignment

(like =  in Java)
= Equality testing

(like = =  in Java)
n2  superscripts and 

other mathematical 
formatting allowed

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax 
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Comparing Algorithms

 Given 2 or more algorithms to solve the 
same problem, how do we select the best 
one?

 Some criteria for selecting an algorithm
1) Is it easy to implement, understand, modify?
2) How long does it take to run it to completion?
3) How much of computer memory does it use?

 Software engineering is primarily 
concerned with the first criteria

 In this course we are interested in the 
second and third criteria
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Comparing Algorithms

 Time complexity
 The amount of time that an algorithm needs to 

run to completion
 Space complexity

 The amount of memory an algorithm needs to 
run

 We will occasionally look at space 
complexity, but we are mostly interested 
in time complexity in this course

 Thus in this course the better algorithm is 
the one which runs faster (has smaller 
time complexity)
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How to Calculate Running time 

 Most algorithms transform input objects into 
output objects

 The running time of an algorithm typically 
grows with the input size
 idea: analyze running time as a function of input 

size

sorting
algorithm

5 13 2 1 32 5
input object output object
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How to Calculate Running Time

 Even on inputs of the same size, running time 
can be very different
 Example: algorithm that finds the first prime 

number in an array by scanning it left to right
 Idea: analyze running time in the 

 best case 
 worst case
 average case
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How to Calculate Running Time 

 Best case running 
time is usually 
useless

 Average case time is 
very useful but often 
difficult to determine

 We focus on the 
worst case running 
time
 Easier to analyze
 Crucial to applications 

such as games, 
finance and robotics
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Experimental Evaluation of Running Time

 Write a program 
implementing the 
algorithm

 Run the program with 
inputs of varying size and 
composition

 Use a method like 
System.currentTimeMillis(
) to get an accurate 
measure of the actual 
running time

 Plot the results
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Limitations of Experiments

 Experimental evaluation of running 
time is very useful but
 It is necessary to implement the 

algorithm, which may be difficult
 Results may not be indicative of the 

running time on other inputs not included 
in the experiment

 In order to compare two algorithms, the 
same hardware and software 
environments must be used
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Theoretical Analysis of Running Time

 Uses a pseudo-code description of 
the algorithm instead of an 
implementation

 Characterizes running time as a 
function of the input size, n

 Takes into account all possible 
inputs

 Allows us to evaluate the speed of 
an algorithm independent of the 
hardware/software environment
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RAM: The Random Access Machine

 For theoretical analysis, we  assume RAM 
model for our “theoretical” computer

 Our RAM model consists of:
 a CPU
 a potentially unbounded bank of 

memory cells, each of which can hold an 
arbitrary number or character

 memory cells are numbered and 
accessing any cell in memory takes unit 
time.

1 2 3 ……………………………………
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Primitive Operations

 For theoretical analysis, we will count 
primitive or basic operations, which are 
simple computations performed by an 
algorithm

 Basic operations are:
 Identifiable in pseudocode
 Largely independent from the programming 

language
 Exact definition not important (we will see 

why later)
 Assumed to take a constant amount of time 

in the RAM model
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Primitive Operations

 Examples of primitive operations:
 Evaluating an expression               x2+ey

 Assigning a value to a variable      cnt ← cnt+1
 Indexing into an array       A[5]
 Calling a method       mySort(A,n)
 Returning from a method       return(cnt)



 Analysis of Algorithms 17

Counting Primitive Operations
 By inspecting the pseudocode, we can determine 

the maximum number of primitive operations 
executed by an algorithm, as a function of the 
input size
Algorithm arrayMax(A, n)

     # operations

currentMax ← A[0]      2
for i ← 1 to n − 1 do     2+n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax       1

Total  7n − 1
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Estimating Running Time

 Algorithm arrayMax executes 7n − 1 primitive 
operations in the worst case.  Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive 

operation
 Let T(n) be worst-case time of arrayMax. 

Then
a (7n − 1) ≤  T(n) ≤  b(7n − 1)

 Hence, the running time T(n) is bounded by 
two linear functions
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Growth Rate of Running Time

 Changing the hardware/ software 
environment 
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 Thus we focus on the big-picture which is 
the growth rate of an algorithm

 The linear growth rate of the running time 
T(n) is an intrinsic property of algorithm 
arrayMax
 algorithm arrayMax grows proportionally with n, 

with its true running time being n times a 
constant factor that depends on the specific 
computer
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Constant Factors

 The growth rate is not affected by
 constant factors or 
 lower-order terms

 Examples
 102n +  105 is a linear function
 105n2 +  108n is a quadratic function

 How do we get rid of the constant factors to 
focus on the essential part of the running 
time?
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Big-Oh Notation Motivation

 The big-Oh notation is used widely to 
characterize running times and space 
bounds 

 The big-Oh notation allows us to ignore 
constant factors and lower order terms 
and focus on the main components of a 
function which affect its growth
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Big-Oh Notation Definition

 Given functions f(n) 
and g(n), we say that 
f(n) is O(g(n)) if there 
are positive 
constants
c and n0 such that

f(n) ≤  cg(n)  for n ≥  n0

 Example: 2n + 10 is 
O(n)

 2n + 10 ≤  cn
 (c − 2) n ≥  10
 n ≥  10/(c − 2)
 Pick c =  3 and n0 =  10
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Big-Oh Example

 Example: the 
function n2 is not 
O(n)

 n2 ≤  cn
 n ≤  c
 The above 

inequality cannot be 
satisfied since c 
must be a constant 0 100 200 300 400 500
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More Big-Oh Examples
 7n-2

7n-2 is O(n)
need c > 0 and n0 ≥  1 such that 7n-2 ≤  c•n for n ≥  n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥  1 s.t. 3n3 + 20n2 + 5 ≤  c•n3 for n ≥  n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥  1 s.t. 3 log n + 5 ≤  c•log n for n ≥  n0

this is true for c = 8 and n0 = 2
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Big-Oh and Growth Rate

 The big-Oh notation gives an upper bound on 
the growth rate of a function

 The statement “f(n) is O(g(n))” means that the 
growth rate of f(n) is no more than the growth 
rate of g(n)

 We can use the big-Oh notation to rank 
functions according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows 
more

Yes No

f(n) grows more No Yes

Same growth Yes Yes
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Big-Oh Rules

 If is f(n) a polynomial of degree d, then 
f(n) is O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of 
functions

 Say “2n is O(n)” instead of “2n is O(n2)”
 Use the simplest expression of the class

 Say “3n + 5 is O(n)” instead of “3n + 5 is 
O(3n)”
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Big-Oh Rules

 If is f(n) a polynomial of degree d, then 
f(n) is O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of 
functions

 Say “2n is O(n)” instead of “2n is O(n2)”
 Use the simplest expression of the class

 Say “3n + 5 is O(n)” instead of “3n + 5 is 
O(3n)”
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Asymptotic Algorithm Analysis

 The asymptotic analysis of an algorithm 
determines the running time in big-Oh notation

 To perform the asymptotic analysis
 We find the worst-case number of primitive 

operations executed as a function of the input size
 We express this function with big-Oh notation

 Example:
 We determine that algorithm arrayMax executes at 

most    7n − 1 primitive operations
 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms 
are eventually dropped anyhow, we can 
disregard them when counting primitive 
operations
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Seven Important Functions

 Seven functions 
that often appear in 
algorithm analysis:

 Constant ≈  1
 Logarithmic ≈  log n
 Linear ≈  n
 N-Log-N ≈  n log n
 Quadratic ≈  n2

 Cubic ≈  n3

 Exponential ≈  2n
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Computing Prefix Averages

 We further illustrate 
asymptotic analysis with 
two algorithms for prefix 
averages

 The i-th prefix average 
of an array X is average 
of the first (i + 1) 
elements of X:

A[i] =  (X[0] + X[1] + … + X[i])/
(i+1)

 Computing the array A 
of prefix averages of 
another array X has 
applications to financial 
analysis
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Prefix Averages (Quadratic)
 The following algorithm computes prefix averages in quadratic time by 

applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

#operations

A ← new array of n integers      n
for i ← 0 to n − 1 do      n

s ← X[0]      n
for j ← 1 to i do     1 + 2 + …+ (n − 1)

s ← s + X[j]     1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1)      n

return A            1
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Arithmetic Progression

 The running time of 
prefixAverages1 is
O(1 + 2 + …+ n)

 The sum of the first n 
integers is n(n + 1) /  2

 There is a simple 
visual proof of this fact

 Thus, algorithm 
prefixAverages1 runs in 
O(n2) time 0
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Prefix Averages (Linear)
 The following algorithm computes prefix averages in linear time by 

keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X     

   #operations

A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A       1

 Algorithm prefixAverages2 runs in O(n) time 
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More Examples

Algorithm SumTripleArray(X, n)
Input triple array X[ ][ ][ ] of n by n by n integers
Output sum of elements of X     #operations

s ← 0 1
for i ← 0 to n − 1 do n

for j ← 0 to n − 1 do n+n+…+n=n2                 
for k ← 0 to n − 1 do n2+n2+…+n2 = n3

s ← s + X[i][j][k]      n2+n2+…+n2 = n3

return s       1

 Algorithm SumTripleArray runs in O(n3) time 
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Useful Big-Oh Rules
 If is f(n) a polynomial of degree d, then 

f(n) is O(nd)

f (n )=a0+a1 n+a2 n2
+. ..+ad nd

 If d(n) is O(f(n)) and e(n) is O(g(n)) then 
  d(n)+e(n) is O(f(n)+g(n)) 
  d(n)e(n) is O(f(n) g(n)) 

 If d(n) is O(f(n)) and f(n) is O(g(n)) then d(n) 
is O(g(n))

 If p(n) is a polynomial in n then log p(n) is 
O(log(n)) 
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Relatives of Big-Oh

 big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0 

and an integer constant n0 ≥  1 such that 

f(n) ≥  c•g(n) for n ≥  n0

 big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 

and c’’ > 0 and an integer constant n0 ≥  1 
such that c’•g(n) ≤  f(n) ≤  c’’•g(n) for n ≥  n0
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Intuition for Asymptotic Notation

Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically less than or 

equal to g(n)
big-Omega
 f(n) is Ω(g(n)) if f(n) is asymptotically greater than 

or equal to g(n)
 Note that f(n) is Ω(g(n)) if and only if g(n) is O(f(n)) 

big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)
 Note that f(n) is Θ(g(n)) if and only if if g(n) is O(f(n)) 

and if f(n) is O(g(n)) 



 Analysis of Algorithms 38

Example Uses of the Relatives of Big-Oh

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and 
an integer constant n0 ≥  1 such that f(n) < c•g(n) for n ≥  n0 

Let c = 5 and n0 = 1

 5n2 is Θ(n2)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥  1 
such that f(n) ≥  c•g(n) for n ≥  n0

let c = 1 and n0 = 1

 5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥  1 
such that f(n) ≥  c•g(n) for n ≥  n0

let c = 5 and n0 = 1

 5n2 is Ω(n2)
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 properties of 
logarithms:
logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb
 properties of 

exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b

 Summations
 Logarithms and Exponents

Math you need to Review
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Final Notes
 Even though in this course we focus 

on the asymptotic growth using big-Oh 
notation, practitioners do care about 
constant factors occasionally

 Suppose we have 2 algorithms
 Algorithm A has running time 30000n
 Algorithm B has running time 3n2

 Asymptotically, algorithm A is better 
than algorithm B

 However, if the problem size you deal 
with is always less than 10000, then 
the quadratic one is faster

B

A

problem size

Running time
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