
© 2004 Goodrich, Tamassia

Data Structures and Algorithms

Lecture 2: Analysis of Algorithms,
Asymptotic notation

Lilia Georgieva

 Analysis of Algorithms 2

Outline

 Pseudocode
 Theoretical Analysis of Running time

 Primitive Operations
 Counting primitive operations

 Asymptotic analysis of running time

 Analysis of Algorithms 3

Pseudocode

 In this course, we will
mostly use
pseudocode to
describe an algorithm

 Pseudocode is a high-
level description of an
algorithm

 More structured than
English prose

 Less detailed than a
program

 Preferred notation for
describing algorithms

 Hides program design
issues

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

Example: find max
element of an array

 Analysis of Algorithms 4

Pseudocode Details

 Control flow
 if … then … [else …]
 while … do …
 repeat … until …
 for … do …
 Indentation replaces

braces

 Method declaration
Algorithm method (arg, arg…)

Input …
Output …

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

 Analysis of Algorithms 5

Pseudocode Details

 Method call
var.method (arg [, arg…])

 Return value
return expression

 Expressions
← Assignment

(like = in Java)
= Equality testing

(like = = in Java)
n2 superscripts and

other mathematical
formatting allowed

Algorithm arrayMax(A, n)
Input: array A of n integers
Output: maximum element of A

currentMax ← A[0]
for i ← 1 to n − 1 do

if A[i] > currentMax then
currentMax ← A[i]

return currentMax

 Analysis of Algorithms 6

Comparing Algorithms

 Given 2 or more algorithms to solve the
same problem, how do we select the best
one?

 Some criteria for selecting an algorithm
1) Is it easy to implement, understand, modify?
2) How long does it take to run it to completion?
3) How much of computer memory does it use?

 Software engineering is primarily
concerned with the first criteria

 In this course we are interested in the
second and third criteria

 Analysis of Algorithms 7

Comparing Algorithms

 Time complexity
 The amount of time that an algorithm needs to

run to completion
 Space complexity

 The amount of memory an algorithm needs to
run

 We will occasionally look at space
complexity, but we are mostly interested
in time complexity in this course

 Thus in this course the better algorithm is
the one which runs faster (has smaller
time complexity)

 Analysis of Algorithms 8

How to Calculate Running time

 Most algorithms transform input objects into
output objects

 The running time of an algorithm typically
grows with the input size
 idea: analyze running time as a function of input

size

sorting
algorithm

5 13 2 1 32 5
input object output object

 Analysis of Algorithms 9

How to Calculate Running Time

 Even on inputs of the same size, running time
can be very different
 Example: algorithm that finds the first prime

number in an array by scanning it left to right
 Idea: analyze running time in the

 best case
 worst case
 average case

 Analysis of Algorithms 10

How to Calculate Running Time

 Best case running
time is usually
useless

 Average case time is
very useful but often
difficult to determine

 We focus on the
worst case running
time
 Easier to analyze
 Crucial to applications

such as games,
finance and robotics

0

20

40

60

80

100

120

R
u
n
n
in

g
 T

im
e

1000 2000 3000 4000

Input Size

best case
average case
worst case

 Analysis of Algorithms 11

Experimental Evaluation of Running Time

 Write a program
implementing the
algorithm

 Run the program with
inputs of varying size and
composition

 Use a method like
System.currentTimeMillis(
) to get an accurate
measure of the actual
running time

 Plot the results

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

Input Size

T
im

e
 (

m
s)

 Analysis of Algorithms 12

Limitations of Experiments

 Experimental evaluation of running
time is very useful but
 It is necessary to implement the

algorithm, which may be difficult
 Results may not be indicative of the

running time on other inputs not included
in the experiment

 In order to compare two algorithms, the
same hardware and software
environments must be used

 Analysis of Algorithms 13

Theoretical Analysis of Running Time

 Uses a pseudo-code description of
the algorithm instead of an
implementation

 Characterizes running time as a
function of the input size, n

 Takes into account all possible
inputs

 Allows us to evaluate the speed of
an algorithm independent of the
hardware/software environment

 Analysis of Algorithms 14

RAM: The Random Access Machine

 For theoretical analysis, we assume RAM
model for our “theoretical” computer

 Our RAM model consists of:
 a CPU
 a potentially unbounded bank of

memory cells, each of which can hold an
arbitrary number or character

 memory cells are numbered and
accessing any cell in memory takes unit
time.

1 2 3 ……………………………………

 Analysis of Algorithms 15

Primitive Operations

 For theoretical analysis, we will count
primitive or basic operations, which are
simple computations performed by an
algorithm

 Basic operations are:
 Identifiable in pseudocode
 Largely independent from the programming

language
 Exact definition not important (we will see

why later)
 Assumed to take a constant amount of time

in the RAM model

 Analysis of Algorithms 16

Primitive Operations

 Examples of primitive operations:
 Evaluating an expression x2+ey

 Assigning a value to a variable cnt ← cnt+1
 Indexing into an array A[5]
 Calling a method mySort(A,n)
 Returning from a method return(cnt)

 Analysis of Algorithms 17

Counting Primitive Operations
 By inspecting the pseudocode, we can determine

the maximum number of primitive operations
executed by an algorithm, as a function of the
input size
Algorithm arrayMax(A, n)

 # operations

currentMax ← A[0] 2
for i ← 1 to n − 1 do 2+n

if A[i] > currentMax then 2(n − 1)
currentMax ← A[i] 2(n − 1)

{ increment counter i } 2(n − 1)
return currentMax 1

Total 7n − 1

 Analysis of Algorithms 18

Estimating Running Time

 Algorithm arrayMax executes 7n − 1 primitive
operations in the worst case. Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive

operation
 Let T(n) be worst-case time of arrayMax.

Then
a (7n − 1) ≤ T(n) ≤ b(7n − 1)

 Hence, the running time T(n) is bounded by
two linear functions

 Analysis of Algorithms 19

Growth Rate of Running Time

 Changing the hardware/ software
environment
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 Thus we focus on the big-picture which is
the growth rate of an algorithm

 The linear growth rate of the running time
T(n) is an intrinsic property of algorithm
arrayMax
 algorithm arrayMax grows proportionally with n,

with its true running time being n times a
constant factor that depends on the specific
computer

 Analysis of Algorithms 20

Constant Factors

 The growth rate is not affected by
 constant factors or
 lower-order terms

 Examples
 102n + 105 is a linear function
 105n2 + 108n is a quadratic function

 How do we get rid of the constant factors to
focus on the essential part of the running
time?

 Analysis of Algorithms 21

Big-Oh Notation Motivation

 The big-Oh notation is used widely to
characterize running times and space
bounds

 The big-Oh notation allows us to ignore
constant factors and lower order terms
and focus on the main components of a
function which affect its growth

 Analysis of Algorithms 22

Big-Oh Notation Definition

 Given functions f(n)
and g(n), we say that
f(n) is O(g(n)) if there
are positive
constants
c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

 Example: 2n + 10 is
O(n)

 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2)
 Pick c = 3 and n0 = 10

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

3n

2n+
10

n

n

 Analysis of Algorithms 23

Big-Oh Example

 Example: the
function n2 is not
O(n)

 n2 ≤ cn
 n ≤ c
 The above

inequality cannot be
satisfied since c
must be a constant 0 100 200 300 400 500

0
10,000
20,000
30,000
40,000
50,000
60,000
70,000
80,000
90,000

100,000
n^2

100n

10n

n

n

 Analysis of Algorithms 24

More Big-Oh Examples
 7n-2

7n-2 is O(n)
need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)
need c > 0 and n0 ≥ 1 s.t. 3n3 + 20n2 + 5 ≤ c•n3 for n ≥ n0

this is true for c = 4 and n0 = 21

 3 log n + 5
3 log n + 5 is O(log n)
need c > 0 and n0 ≥ 1 s.t. 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 8 and n0 = 2

 Analysis of Algorithms 25

Big-Oh and Growth Rate

 The big-Oh notation gives an upper bound on
the growth rate of a function

 The statement “f(n) is O(g(n))” means that the
growth rate of f(n) is no more than the growth
rate of g(n)

 We can use the big-Oh notation to rank
functions according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows
more

Yes No

f(n) grows more No Yes

Same growth Yes Yes

 Analysis of Algorithms 26

Big-Oh Rules

 If is f(n) a polynomial of degree d, then
f(n) is O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of
functions

 Say “2n is O(n)” instead of “2n is O(n2)”
 Use the simplest expression of the class

 Say “3n + 5 is O(n)” instead of “3n + 5 is
O(3n)”

 Analysis of Algorithms 27

Big-Oh Rules

 If is f(n) a polynomial of degree d, then
f(n) is O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of
functions

 Say “2n is O(n)” instead of “2n is O(n2)”
 Use the simplest expression of the class

 Say “3n + 5 is O(n)” instead of “3n + 5 is
O(3n)”

 Analysis of Algorithms 28

Asymptotic Algorithm Analysis

 The asymptotic analysis of an algorithm
determines the running time in big-Oh notation

 To perform the asymptotic analysis
 We find the worst-case number of primitive

operations executed as a function of the input size
 We express this function with big-Oh notation

 Example:
 We determine that algorithm arrayMax executes at

most 7n − 1 primitive operations
 We say that algorithm arrayMax “runs in O(n) time”

 Since constant factors and lower-order terms
are eventually dropped anyhow, we can
disregard them when counting primitive
operations

 Analysis of Algorithms 29

Seven Important Functions

 Seven functions
that often appear in
algorithm analysis:

 Constant ≈ 1
 Logarithmic ≈ log n
 Linear ≈ n
 N-Log-N ≈ n log n
 Quadratic ≈ n2

 Cubic ≈ n3

 Exponential ≈ 2n

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
1E+0

1E+3

1E+6

1E+9

1E+12

1E+15

1E+18

1E+21

1E+24

1E+27

1E+30

Cubic
Qua-
dratic
Linear

n

T
(n

)

 In a log-log chart,
the slope of the line
corresponds to the
growth rate of the
function

 Analysis of Algorithms 30

Computing Prefix Averages

 We further illustrate
asymptotic analysis with
two algorithms for prefix
averages

 The i-th prefix average
of an array X is average
of the first (i + 1)
elements of X:

A[i] = (X[0] + X[1] + … + X[i])/
(i+1)

 Computing the array A
of prefix averages of
another array X has
applications to financial
analysis

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

X
A

 Analysis of Algorithms 31

Prefix Averages (Quadratic)
 The following algorithm computes prefix averages in quadratic time by

applying the definition

Algorithm prefixAverages1(X, n)
Input array X of n integers
Output array A of prefix averages of X

#operations

A ← new array of n integers n
for i ← 0 to n − 1 do n

s ← X[0] n
for j ← 1 to i do 1 + 2 + …+ (n − 1)

s ← s + X[j] 1 + 2 + …+ (n − 1)
A[i] ← s / (i + 1) n

return A 1

 Analysis of Algorithms 32

Arithmetic Progression

 The running time of
prefixAverages1 is
O(1 + 2 + …+ n)

 The sum of the first n
integers is n(n + 1) / 2

 There is a simple
visual proof of this fact

 Thus, algorithm
prefixAverages1 runs in
O(n2) time 0

1

2

3

4

5

6

7

1 2 3 4 5 6

 Analysis of Algorithms 33

Prefix Averages (Linear)
 The following algorithm computes prefix averages in linear time by

keeping a running sum

Algorithm prefixAverages2(X, n)
Input array X of n integers
Output array A of prefix averages of X

 #operations

A ← new array of n integers n
s ← 0 1
for i ← 0 to n − 1 do n

s ← s + X[i] n
A[i] ← s / (i + 1) n

return A 1

 Algorithm prefixAverages2 runs in O(n) time

 Analysis of Algorithms 34

More Examples

Algorithm SumTripleArray(X, n)
Input triple array X[][][] of n by n by n integers
Output sum of elements of X #operations

s ← 0 1
for i ← 0 to n − 1 do n

for j ← 0 to n − 1 do n+n+…+n=n2
for k ← 0 to n − 1 do n2+n2+…+n2 = n3

s ← s + X[i][j][k] n2+n2+…+n2 = n3

return s 1

 Algorithm SumTripleArray runs in O(n3) time

 Analysis of Algorithms 35

Useful Big-Oh Rules
 If is f(n) a polynomial of degree d, then

f(n) is O(nd)

f (n)=a0+a1 n+a2 n2
+. ..+ad nd

 If d(n) is O(f(n)) and e(n) is O(g(n)) then
 d(n)+e(n) is O(f(n)+g(n))
 d(n)e(n) is O(f(n) g(n))

 If d(n) is O(f(n)) and f(n) is O(g(n)) then d(n)
is O(g(n))

 If p(n) is a polynomial in n then log p(n) is
O(log(n))

 Analysis of Algorithms 36

Relatives of Big-Oh

 big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that

f(n) ≥ c•g(n) for n ≥ n0

 big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0

and c’’ > 0 and an integer constant n0 ≥ 1
such that c’•g(n) ≤ f(n) ≤ c’’•g(n) for n ≥ n0

 Analysis of Algorithms 37

Intuition for Asymptotic Notation

Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically less than or

equal to g(n)
big-Omega
 f(n) is Ω(g(n)) if f(n) is asymptotically greater than

or equal to g(n)
 Note that f(n) is Ω(g(n)) if and only if g(n) is O(f(n))

big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)
 Note that f(n) is Θ(g(n)) if and only if if g(n) is O(f(n))

and if f(n) is O(g(n))

 Analysis of Algorithms 38

Example Uses of the Relatives of Big-Oh

f(n) is Θ(g(n)) if it is Ω(n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and
an integer constant n0 ≥ 1 such that f(n) < c•g(n) for n ≥ n0

Let c = 5 and n0 = 1

 5n2 is Θ(n2)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 1 and n0 = 1

 5n2 is Ω(n)

f(n) is Ω(g(n)) if there is a constant c > 0 and an integer constant n0 ≥ 1
such that f(n) ≥ c•g(n) for n ≥ n0

let c = 5 and n0 = 1

 5n2 is Ω(n2)

 Analysis of Algorithms 39

 properties of
logarithms:
logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb
 properties of

exponentials:
a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b

 Summations
 Logarithms and Exponents

Math you need to Review

 Analysis of Algorithms 40

Final Notes
 Even though in this course we focus

on the asymptotic growth using big-Oh
notation, practitioners do care about
constant factors occasionally

 Suppose we have 2 algorithms
 Algorithm A has running time 30000n
 Algorithm B has running time 3n2

 Asymptotically, algorithm A is better
than algorithm B

 However, if the problem size you deal
with is always less than 10000, then
the quadratic one is faster

B

A

problem size

Running time

	Data Structures and Algorithms Lecture 2: Analysis of Algorithms, Asymptotic notation
	Outline
	Pseudocode
	Pseudocode Details
	Slide 5
	Comparing Algorithms
	Slide 7
	How to Calculate Running time
	How to Calculate Running Time
	How to Calculate Running Time
	Experimental Evaluation of Running Time
	Limitations of Experiments
	Theoretical Analysis of Running Time
	The Random Access Machine (RAM) Model
	Primitive Operations
	Slide 16
	Counting Primitive Operations
	Estimating Running Time
	Growth Rate of Running Time
	Constant Factors
	Big-Oh Notation Motivation
	Big-Oh Notation Definition
	Big-Oh Example
	Slide 24
	Big-Oh and Growth Rate
	Big-Oh Rules
	Slide 27
	Asymptotic Algorithm Analysis
	Seven Important Functions
	Computing Prefix Averages
	Slide 30
	Arithmetic Progression
	Slide 32
	Slide 33
	Useful Big-Oh Rules
	Slide 35
	Intuition for Asymptotic Notation
	Slide 37
	Math you need to Review
	Slide 39

