
Data Structures and Algorithms

Revision

Core materials:

Course Notes (espec. pseudo-code algorithms)

Goodrich & Tamassia sections as listed

Tutorial exercises

Past exam papers

Skills tested:

Explain concepts and code

Exercise algorithms

Code simple examples

Complexity analysis

1

Course Overview

String Processing Algorithms

• Compression

• Encryption

Graphs

• Definition, motivation & implementations

• Searching

• Weighted

• Topological Order & Task Networks

Algorithm Design

• Greedy, D&C, brute force, backtracking

2

Revision Suggestions

Read

• Lecture notes

• Goodrich & Tamassia Sections

Do exercises in

• Tutorials

• Lecture notes

• Goodrich & Tamassia Sections

Do past papers

3

Compression

Understand the principles and applications of

compression.

Be able to perform and describe the following

techniques:

• Pattern-based compression, e.g.

run-length, LZW

• Frequency-based compression, e.g.

Huffmann encoding

Understand lossy techniques

Be aware of techniques used in image, video

and audio standards (JPEG, MPEG3 & MP3)

4



Cryptography

Scenario, terminology & methods

Symmetric

Be able to perform:

• Transposition

• Substitution (Caesar, Vigenere, Vernam)

• Simple Cryptanalysis

Understand:

• DES/AES

• Java cryptography engine

Asymmetric

Understand RSA, web use, ethical issues

5

Introducing Graphs

Concepts & their use to model problems

Be able to manipulate and describe

implementations:

• Adjacency matrix

• Adjacency list

• Java class hierarchy

You should be able to develop, manipulate and

describe algorithms and data structures

• abstractly, e.g. ADT, diagram

• concretely, implement/extend/use Java

classes

6

Graph Searching

• Depth First

• Breadth First

Weighted Graphs

• Implementation

• Shortest Path (Dijkstra)

Topological Order

• Definition

• Algorithm to find

Task Networks & PERT Charts

• Formulation

• Compute critical path

• Analyse implications

7

Algorithm Design

Be aware of a range of common algorithm

design techniques

Be able to formulate and interpret optimisation

problems

Be able to formulate and trace algorithms

using the following methods:

• Greedy, with optimality proof

• Divide & Conquer

• Brute Force

• Backtracking

• Branch & Bound

• Dynamic Programming

8


