
Data Structures and Algorithms

Introducing Graphs

Goodrich & Tamassia, Sections 13.1 & 13.2

Sahni, Sections 17.1 – 17.5

• Motivation

• Concepts

• Graph Abstract Data Type

• Graph Implementations

1

Motivation

Many problems can be formulated in terms of

• a set of entities;

• relationships between them.

Examples:

• Route finding:

objects = towns

relationships = road/rail links.

• Course planning:

objects = courses

relationships = prerequisites.

• Circuit analysis:

objects = components

relationships = wire connections.

• Game playing:

objects = board state

relationships = moves.

2

These can all be graphically represented:

• Graph 1: Routes

Glasgow

|

|

|

Edinburgh ----- London

• Graph 2: Course Precedences

F27SG -----> F28DA -----> F29SO

(Soft Dev) \ (Soft Eng)

\

\> F29PD

(Group Project)

3

• Graph 3: Game Moves

|x| _|x|_ x|x|_

||_ -----> _|o|_ -----> _|o|_

| | \ | | | |

\

\

\> _|x|_

o|_|_

| |

Each of these is a graph structure.

4

Definition

A graph is a data structure consisting of:

• a set of vertices (or nodes).

• a set of edges (or arcs) connecting the

vertices.

i.e, G = (V, E) where V is a set of vertices, E is

a set of edges, and each edge is formed from a

pair of distinct vertices in V.

If we represent our problem data using a graph

data structure, we can use standard graph

algorithms (often available from code libraries)

to solve it.

5

Example Graphs

• V1 = {E,G,L}

E1 = {(E,G),(E,L)}

• V2 = {F27SG,F28DA,F29SO,F29PD}

E2 = {(F27SG,F28DA), (F28DA,F29SO),

(F28DA,F29PD)}

6

Graph Algorithms

Graph algorithms that we will look at include:

• Searching for a path between two nodes.

- Can be used in game playing, AI, route

finding, ..

• Finding shortest path between two nodes.

• Finding a possible ordering of nodes given

some constraints.

- e.g., finding order of modules to take;

order of actions to complete a task.

7

Graph Concepts

Directed and Undirected

Vertices i and j are adjacent if (i, j) is an edge

in the graph. The edge (i, j) is incident on

vertices i and j.

E.g. in Graph 1 Glasgow is adjacent to

Edinburgh, but not to London.

Exercise: Which nodes are adjacent in Graph 2?

If the edges are undirected (the order of the

pair of vertices doesn’t matter) the graph is

undirected e.g. Graph 1 is undirected.

If the edges are directed (the order of the pair

of vertices matters) the graph is directed,

sometimes called a digraph e.g. Graph 2 is

directed.

Exercise: Is graph 3 directed or undirected?

8

In a directed graph we say edge (i, j) is

incident from i and incident to j; i is

adjacent to j and j is adjacent from i.

In an undirected graph the degree of a vertex

i is the number of edges incident on i. In a

directed graph the in-degree of a vertex i is

the number of edges incident to i, and the

out-degree is the number of edges incident

from i.

E.g. in Graph 1 the degree of Glasgow is 1

E.g. in Graph 2 the out-degree of F28DA is 2,

and its in-degree is 1

9

Paths

A path (i1, i2, ...ik) is a sequence of vertices

such that (ij , ij+1) is an edge for 1 ≤ j ≤ k.

E.g. Paths from Glasgow (G) to London(L)

Exercise: How many paths are there from

Glasgow (G) to London(L)?

In a simple path all vertices, except perhaps

the first and last, are different

Exercise: Give a simple path from F27SG to

F29PD in graph 2.

10

Cyclic and Connected Graphs

A directed graph is cyclic if there is a path

from a vertex to itself, and acyclic otherwise.

E.g. graph 2 is acyclic.

Exercise: Is Graph 3 cyclic or acyclic?

A graph is connected if there is a path

between every pair of vertices

E.g. Graph 1 is connected.

Exercise: Show that graph 2 is unconnected.

11

Weights, Labels and Trees

A weighted graph assigns costs to edges.

E.g. Costs are time, money, distance:

Similarly a labelled graph adds names to

vertices.

Graphs are more general than trees. (Trees are

a special kind of connected graph, with no

cycles and a distinguished vertex(node), the

“root”).

12

A Graph Abstract Data Type

AbstractDataType Graph

{

instances

a set of vertices and a set E of edges

operations

vertices(): return the set of all vertices in graph

edges(): return the set of all edges in the graph

existsEdge(vi, vj): return true if there is an edge

from vi to vj ; false otherwise

putEdge(vi, vj): add edge e to the graph

removeEdge(vi, vj): remove the edge from vi to vj

degreeOf(vi): return the degree of vertex vi,

defined only for undirected graphs

inDegree(vi): return in-degree of vertex vi

outDegree(vi): return out-degree of vertex vi

}

13

Graph ADT Exercises

Exercise: What is the result of each of the

following abstract operations on Graph 1?

• vertices()

• edges()

• existsEdge(E,L)

• existsEdge(G,L)

• putEdge(G,L)

• inDegree(E)

Exercise: What is the result of each of the

following abstract operations on Graph 2?

• vertices()

• edges()

• existsEdge(F27SG,F29SO)

• putEdge(F29SO,F29PD)

• inDegree(F27SG)

• outDegree(F27SG)

14

ADT Reflection

An ADT is an abstract specification that is

independent of any

• any specific implementation, e.g. adjacency

list/matrices

• any specific programming language, e.g.

C#, SML, ...

Although you haven’t seen any code specifying

how the graph is implemented, the exercises

show that you can reason about the expected

program behaviour.

This is crucial for building software in large

teams: you don’t need to know details of how

other components are implemented, just how

they will work.

15

Implementing Graph Varieties

There are many varieties of graphs: un/directed,

un/weighted etc.

Clearly we want to reduce implementation effort by

deriving as much of each graph class as possible.

However there’s no single obvious class structure to

provide these varieties and this probably explains

why there are no Graphs in the JDK Collections

We will use an Open Source Java Graph Library,

jgrapht (googleable)

jgrapht uses both interfaces to specify

functionality and abstract classes to ensure

complete and consistent implementations.

As a production library the jgrapht is more

complex than is ideal for teaching, but that’s OK

as it’s abstract so you don’t need to understand all

the details.

16

jgrapht Interface Hierarchy

G r a p h (Interface)

^ ^ ^

/ \ \

/ \ \

Undirected Directed Weighted ...

Graph(I) Graph(I) Graph(I)

^ ^ ^ ^

/ / \ /

/ / \ /

Simple SimpleDirected SimpleDirected ...

Graph Graph WeightedGraph

17

Abstract Class Refresher

jgrapht also uses abstract classes to ensure

complete and consistent implementations.

Recall that Java has both abstract and

nonabstract(default) classes.

Abstract classes

• contain abstract methods (no

implementation provided)

• cannot be instantiated

Making every ADT implementation derive from

an abstract class ensures a complete and

consistent implementation of the ADT.

18

jgrapht Abstract Classes

As a production library jgrapht provides a

complex hierarchy of abstract classes, rooted at

AbstractGraph

Part of the hierarchy includes:

AbstractGraph

^

|

|

AbstractBaseGraph ...

^ ^

/ \

/ \

SimpleGraph SimpleDirectedGraph ...

^

|

|

SimpleDirectedWeightedGraph ...

19

Graph ADT Implementations

What built in or user defined datatype can we

use to represent a graph?

• Adjacency matrices

• Adjacency lists

An adjacency matrix is for a graph with N

vertices is an N x N array of boolean values

e.g. for Graph 2:

F27SG F28DA F29SO F29PD

F27SG F T F F

F28DA F F T T

F29SO F F F F

F29PD F F F F

If array name is G, then G[n][m] = T if edge

exists between node n and node m.

Exercise: Can you suggest a way to reduce the

space requirements for undirected graphs?

20

Alternative Graph Class Structure

An alternative Graph class structure uses the

notion that there are 4 possible types of graph:

unweighted undirected, weighted undirected,

unweighted digraphs, weighted digraphs;

Each can be implemented as an adjacency list or

adjacency matrix.

G r a p h (Abstract Class)

^ ^ ^

/ / \

/ / \

AdjWDi- AdjDi- Linked

Graph Graph DiGraph

^ ^ ^ ^

| | | \

AdjW- Adj- LinkedW Linked

Graph Graph DiGraph Graph

^

|

LinkedW

Graph

21

Adjacency Matrix Digraph in Java

The relatively simple Java graph

implementations and algorithms in the

following lectures come from

Sartaj Sahni, Data Structures Algorithms

and Applications in Java, McGraw Hill,

2nd edition, 2004, ISBN: 0-92-930633-3.

By all means view the jgrapht implementation

classes, but they are far more complex.

A simple edge class:

public class Edge

{

int vertex1; // one end point of the edge

int vertex2; // other end point of the edge

public Edge(int theVertex1, int theVertex2)

{

vertex1 = theVertex1;

vertex2 = theVertex2;

}

}

22

public abstract class Graph

{

// ADT methods

public abstract int vertices();

public abstract int edges();

public abstract boolean existsEdge(int i, int j);

public abstract void putEdge(Object theEdge);

public abstract void removeEdge(int i, int j);

public abstract int degree(int i);

public abstract int inDegree(int i);

public abstract int outDegree(int i);

...

}

23

public class AdjacencyDigraph extends Graph

{

int n; // number of vertices

int e; // number of edges

boolean [][] a; // adjacency array

// constructors

public AdjacencyDigraph(int theVertices)

{

// validate theVertices

if (theVertices < 0)

throw new IllegalArgumentException

("number of vertices must be >= 0");

n = theVertices;

a = new boolean [n + 1] [n + 1];

// default values are e = 0 and a[i][j] = false

}

// default is a 0 vertex graph

public AdjacencyDigraph()

{this(0);}

24

public int vertices()

{return n;}

public int edges()

{return e;}

public void putEdge(Object theEdge)

{

Edge edge = (Edge) theEdge;

int v1 = edge.vertex1;

int v2 = edge.vertex2;

if (v1 < 1 || v2 < 1 ||

v1 > n || v2 > n || v1 == v2)

throw new IllegalArgumentException

("(" + v1 + "," + v2 + ") not a valid edge");

if (!a[v1][v2]) // new edge

{a[v1][v2] = true;

e++; }

}

25

public void removeEdge(int i, int j)

{

if (i >= 1 && j >= 1 &&

i <= n && j <= n && a[i][j])

{a[i][j] = false;

e--;}

}

/* undefined for directed graphs */

public int degree(int i)

{throw new NoSuchMethodError

("AdjacencyDigraph:degree");}

public int outDegree(int i)

{

if (i < 1 || i > n)

throw new IllegalArgumentException

("no vertex " + i);

// count out edges from vertex i

int sum = 0;

for (int j = 1; j <= n; j++)

if (a[i][j]) sum++;

return sum;

}

26

Exercise: Write the boolean existsEdge(int i,

int j) method for this class. Hint: Check that i

and j are valid vertices.

Exercise: Write the int inDegree(int i)

method for this class.

27

Adjacency Lists

An adjacency list for a vertex i is a list of

verticies adjacent to i.

An adjacency list representation of a graph is

an array of adjacency lists, one for each vertex.

F27SG [F28DA]

F28DA [F29SO, F29PD]

F29SO []

F29PD []

28

Adjacency List Digraph in Java

The adjacency list may be implemented using a

list or an array.

The following implementation uses a linked list

class, GraphChain, with familiar methods:

• add an element at a specified position to

the list

• indexOf search for an element and return

its index

• remove the i-th element

• removeElement to remove a given element

The elements in the linked list are instances of

EdgeNode, with only one field int vertex.

29

public class LinkedDigraph extends Graph

{

int n; // number of vertices

int e; // number of edges

GraphChain [] aList; // an array of adjacency lists

public LinkedDigraph(int theVertices)

{

// validate theVertices

if (theVertices < 0)

throw new IllegalArgumentException

("number of vertices must be >= 0");

n = theVertices;

aList = new GraphChain [n + 1];

for (int i = 1; i <= n; i++)

aList[i] = new GraphChain();

// default value of e is 0

}

public boolean existsEdge(int i, int j)

{

if (i < 1 || j < 1 || i > n || j > n

|| aList[i].indexOf(new EdgeNode(j)) == -1)

return false;

else

30

return true;

}

public void putEdge(Object theEdge)

{

Edge edge = (Edge) theEdge;

int v1 = edge.vertex1;

int v2 = edge.vertex2;

if (v1 < 1 || v2 < 1 ||

v1 > n || v2 > n || v1 == v2)

throw new IllegalArgumentException

("(" + v1 + "," + v2 +

") is not a permissible edge");

// new edge

if (aList[v1].indexOf(new EdgeNode(v2)) == -1)

{

// put v2 at front of chain aList[v1]

aList[v1].add(0, new EdgeNode(v2));

e++;

}

}

Exercise: Write the int outDegree(int i) and

int inDegree(int i) methods for this class.

31

Comparison

Adjacency matrix is:

• Easy to implement

• Most operations are efficient.

but it uses a large array, and inefficient for

sparse graphs.

Edge lists are:

• A little harder to implement.

• Some operations are less efficient, as

require list traversal.

but it is much more efficient in terms of space,

especially for sparse graphs.

32

Summary

• Graphs are used for problems where data

consists of objects and relationships

between objects.

• Graph = set of vertices (nodes) and set of

edges between vertices.

• There are many different types of graphs:

e.g. digraphs, weighted graphs.

• ADT needs operations to modify and

inspect edges.

• Two main implementations: adjacency lists

and adjacency matrix.

33

