
Data Structures and Algorithms

Graph Search Algorithms

Goodrich & Tamassia Sections 13.3 & 13.4

Sahni, Sections 17.8

• Breadth first and depth first search

• Search algorithms

• Returning path information

1

Graph Searching

We often need to find all vertices reachable from a

given vertex, e.g. to find a path from one node to

another, or to prove that no path exists.

3 6

^ \ ^

/ \ /

/ v /

1 ---> 4 ---> 5 ---> 9

\ ^

\ /

v /

2 7 ---> 8

Need methods to systematically explore all possible

paths.

Exercise: Is there a path from vertices 3 to 9?

Exercise: Is there a path from vertices 2 to 7?

Exercise: How many paths are there from vertex

1 to vertex 6?

Exercise: List the vertices visited by

- a DFS starting from vertex 1

- a BFS starting from vertex 1

2

Breadth First vs Depth First

Search

Two main search methods:

Depth First (DFS): Continue down current

path until no more options. Then backup

and try alternatives.

Children of current node explored before

siblings.

A backtracking algorithm.

Breadth First (BFS): Explore paths of

length M before paths of length M+1.

A greedy algorithm.

Easiest illustrated by considering how they

apply to searching trees:

3

Searching Graphs

1

/ \

/ \

v v

2 3

\ /

\ /

v v

4 ----> 5

BFS Order:

DFS Order:

N.B: BFS and DFS find the same vertices, just

in different orders.

4

Implementing Breadth First

Search

For BFS we keep the vertices still to be

searched in a queue.

bfs(vertex v)

{

mark v as visited

initialise Q to be a queue containing only v

while (Q isn’t empty)

{

delete vertex w from Q

for each u adjacent to w

if (u not visited)

{ add u to Q;

mark u as visited }

}

}

5

Example:

bfs(1)

1 Queue :

/ \

/ \

v v

2 3

\ /

\ /

v v

4 ----> 5

6

Java BFS of an Adjacency-Matrix

Graph

Java 1.4 implementation from Sahni.

Sets reach[i] to label for all vertices reachable

from vertex v.

public void bfs(int v, int [] reach, int label)

{

ArrayQueue q = new ArrayQueue(10);

reach[v] = label;

q.put(new Integer(v));

while (!q.isEmpty())

{ // remove a labeled vertex from the queue

int w = ((Integer) q.remove()).intValue();

// mark unreached vertices adjacent from w

for (int u = 1; u <= n; u++) {

if (a[w][u] && reach[u] == 0)

{// u is an unreached vertex

q.put(new Integer(u));

reach[u] = label;

}

}

}

}

7

Java BFS of an Adjacency-List

Graph

public void bfs(int v, int [] reach, int label)

{

ArrayQueue q = new ArrayQueue(10);

reach[v] = label;

q.put(new Integer(v));

while (!q.isEmpty())

{ // remove a labeled vertex from the queue

int w = ((Integer) q.remove()).intValue();

// mark unreached vertices adjacent from w

for (ChainNode p = aList[w].firstNode;

p != null; p = p.next)

{

int u = ((EdgeNode) p.element).vertex;

if (reach[u] == 0)

{// u is an unreached vertex

q.put(new Integer(u));

reach[u] = label;

}

}

}

}

8

A Generic BFS

Note that the code on the previous slide

explicitly uses the list-implementation when

traversing the adjacency list: p = p.next

Such implementation dependencies are not

desirably, since any change in the

representation requires a change of the code.

Make the bfs method

implementation-independent by writing it as a

member of the Graph class, and without

reference to the representation.

Use an iterator to visit each adjacent vertex.

9

A Generic BFS

public void bfs(int v, int [] reach, int label)

{

ArrayQueue q = new ArrayQueue(10);

reach[v] = label;

q.put(new Integer(v));

while (!q.isEmpty())

{ // remove a labeled vertex from the queue

int w = ((Integer) q.remove()).intValue();

// mark all unreached vertices adjacent from w

Iterator it = aList[w].iterator();

while (it.hasNext())

{ // visit an adjacent vertex of w

EdgeNode e = (EdgeNode) it.next();

int u = e.vertex;

if (reach[u] == 0)

{ // u is an unreached vertex

q.put(new Integer(u));

reach[u] = label; // mark reached

}

}

}

}

10

Costs and Benefits of Generic Code

Advantages of Generic Code:

• Reduces coding effort: write a single bfs

method, rather than many, e.g. one for

adjacency-list, one for adjacency-matrix,

etc.

• If efficiency is important you can always

override with a implementation-specific

method.

Disadvantages of Generic Code:

• May reduce time or space performance, e.g.

100-vertex graph Graph.bfs 29ms, where

AdjacencyDigraph.bfs took 0.9ms

Slogan: Try to write generic code, unless

there’s a very good reason.

11

Depth First Search

For DFS we hold the vertices to be searched in

a stack, and can produce an elegant solution

using Java’s recursion stack.

dfs(Vertex v)

{

mark v as visited

for each w adjacent to v

if (w not visited)

dfs(w);

}

Example:

dfs(1)

1 dfs(2) dfs(3)

/ \

/ \

v v

2 3

\ /

\ /

v v

4 ----> 5

12

Java Generic DFS

Assumes reach and label are data members of the

Graph class. Sets reach[i] to label for all

vertices reachable from vertex v.

public void dfs(int v, int [] reach, int label)

{

Graph.reach = reach;

Graph.label = label;

rDfs(v);

}

/** recursive dfs method */

private void rDfs(int v)

{

reach[v] = label;

Iterator iv = iterator(v);

while (iv.hasNext())

{// visit an adjacent vertex of v

int u = ((EdgeNode) iv.next()).vertex;

if (reach[u] == 0)

// u is an unreached vertex

rDfs(u);

}

}

13

Summary

• Many applications require you to find all

nodes reachable from a node.

• Standard systematic methods are BFS and

DFS.

• BFS and DFS are very similar but the

former uses a queue, and the latter uses a

stack.

• Generic programming reduces

programming effort.

14

