
Data Structures and Algorithms

Weighted Graphs & Algorithms

Goodrich & Tamassia Sections 13.5 & 13.6

• Weighted Graphs

• Shortest Path Problems

• A Greedy Algorithm

1

Weighted Graphs

Sometimes want to associate some value with

the edges in graph.

20

1 -------> 2

/ \ /

50/ \50 /20

/ \ /

v 10 v v 20

5 ------> 3 -----> 4

So.. label all the edges with a number. That

number (called the weight) could represent:

• Distances between two locations (cities;

computers on network)

• Time taken to get from one node to another

(stations; states in schedule or plan).

• Cost of traversing the edge (train fares; cost of

wires)

2

Weighted graphs can be directed or undirected,

cyclic or acyclic etc as unweighted graphs.

3

Weighted Graph ADT

• Easy to modify the graph ADT(s)

representations to accommodate weights

• Also need to add operations to

modify/inspect weights.

For example we can modify adjacency matrix

representation so entries in array are now

numbers (int or float) rather than true/false.

You can travel from a node to itself at zero

cost, and if there is no connection between two

nodes then the “weight” is ‘null’ (sometimes

called ‘infinity’): typically a large number in

simple implementations

1 2 3 4 5

1 0 20 50 null 50

2 null 0 20 null null

3 null null 0 20 null

4 null null null 0 null

5 null null 10 null 0

4

Weighted Edge Class

Introduce a WeightedEdge subclass, derived

from the Edge class.

For genericity the weight is an Object it can

take different classes of weights, e.g. Integer,

MyInteger, MyFloat

public class WeightedEdge extends Edge

{

// data member

Object weight;

// constructor

public WeightedEdge(int theVertex1,

int theVertex2,

Object theWeight)

{

super(theVertex1, theVertex2);

weight = theWeight;

}

}

5

Weighted Graph Class

Introduce a WeightedGraph subclass, derived

from Sahni’s Graph class.

public class AdjacencyWDigraph extends Graph

{

int n; // number of vertices

int e; // number of edges

Object [][] a; // adjacency array

// constructors

public AdjacencyWDigraph(int theVertices)

{

// validate theVertices

if (theVertices < 0

throw new IllegalArgumentException

("number of vertices must be >= 0");

n = theVertices;

a = new Object [n + 1] [n + 1];

// default values are e = 0 and a[i][j] = null

}

6

/*put edge e into the digraph;

if the edge is already

there, update its weight to e.weight */

public void putEdge(Object theEdge)

{

WeightedEdge edge = (WeightedEdge) theEdge;

int v1 = edge.vertex1;

int v2 = edge.vertex2;

if (v1 < 1 || v2 < 1 || v1 > n || v2 > n || v1 ==

throw new IllegalArgumentException

("(" + v1 + "," + v2 +

") is not a permissible edge");

if (a[v1][v2] == null) // new edge

e++;

a[v1][v2] = edge.weight;

}

7

Shortest Path Problems

Many problems can be solved using weighted

graphs. For example finding the ‘shortest path’

between two nodes, e.g.,:

• shortest distance between two cities by

road links.

• fastest train journey

• cheapest plane journey

• lowest cost plan

‘length’ of path is just sum of weights on

relevant edges. e.g.,:

N.B. the shortest path may visit more nodes!

8

A Shortest Path Algorithm

There are several possible shortest path

problems, we consider the single source, all

destinations version.

If all the weights are the same, then breadth

first search finds shortest path first:

Explores paths of length N before

paths of length N+1

But for arbitrary weights we need a slightly

more complex algorithm developed by

E.Dijkstra. My intuition is “how far can you go

for your money”.

More formally, the key is

From the vertices to which a shortest

path has not been generated, select the

one that results in the least path length

9

Shortest Path Algorithm

Path Length

20

1 -------> 2 0

/ \ /

50/ \50 /20 20

/ \ /

v 10 v v 20 40

5 ------> 3 -----> 4

50

60

See Weiss Section 9.3.2 for another example.

10

Recording Paths and Path Lengths

Observe that

• the 2nd path is a 1-edge extension of the 1st;

• the 3rd path is a 1-edge extension of the 2nd;

• the 4th path is a 1-edge extension of the 1st;

• the 5th path is a 1-edge extension of the 3rd;

So we can represent a path by recording the

immediate predecessor for each vertex as a

data member path.

11

Similarly the length of the shortest path to

each vertex found so far can be recorded as a

data member dist.

We also need to record whether we’ve seen this

visitor before known

class Vertex

{

public boolean known;

// Disttype is probably int or Double

public DistType dist;

// preceding vertex on path

public Vertex path;

... // Other fields and methods

The last thing we require is a function

Weight getWeight(Vertex v,Vertex w)

that returns the weight on the edge between v

and w.

12

Shortest Path Pseudocode

Based on Weiss Chapter 9

dijkstraShortestPath(Vertex s)

{

for each vertex v {

v.dist = INFINITY

v.known = false

}

s.dist = 0

newReachables = {s}

while newReachables is not empty {

delete from newReachables the v with

smallest dist

v.known = true

for each vertex w adjacent to v

if (!w.known) {

add w to newReachables

if (v.dist + getWeight(v,w) < w.dist) {

w.dist = v.dist + getWeight(v,w)

w.path = v

}

}

}

}

13

Walkthrough: Initialisation

1 2

0 INF

U 20 U

null -----> null

/ \ /

50/ \50 /20

/ \ /

v 10 v v 20

5 ------> 3 -----> 4

INF INF INF

U U U

null null null

newReachables = 1

14

Walkthrough: First Iteration

Chose vertex 1

1 2

0 20

K 20 U

null -----> 1

/ \ /

50/ \50 /20

/ \ /

v 10 v v 20

5 ------> 3 -----> 4

50 50 INF

U U U

1 1 null

newReachables = 2, 3, 5

15

Walkthrough: Second Iteration

Chose vertex 2

1 2

0 20

K 20 K

null -----> 1

/ \ /

50/ \50 /20

/ \ /

v 10 v v 20

5 ------> 3 -----> 4

50 40 INF

U U U

1 2 null

newReachables = 3, 5

16

Walkthrough: Final Graph

1 2

0 20

K 20 K

null -----> 1

/ \ /

50/ \50 /20

/ \ /

v 10 v v 20

5 ------> 3 -----> 4

50 40 INF

K K 60

1 2 3

newReachables = {}

17

Tip: Performing walkthroughs of complex

algorithms operating on a simple set of data

aids understanding.

Exercise: Complete the walkthrough for the

graph above, and check your results with the final

graph above.

Exercise: Weiss Exercise 9.5

18

jgrapht Implementation

public final class DijkstraShortestPath<V, E>

{

//~ Constructors ----------------------

/*Create & execute a new DijkstraShortestPath alg.

*instance. An instance is only good for a single

*search; after construction, it can be accessed

*to retrieve information about the path found.

*/

public DijkstraShortestPath(Graph<V, E> graph,

V startVertex,

V endVertex)

...

//~ Methods ---------------------------

/* Return the edges making up the path found.

*/

public List<E> getPathEdgeList()

{ return edgeList; }

19

/* Return the length of the path found,

* or Double.POSITIVE_INFINITY if no path exists

*/

public double getPathLength()

{ return pathLength; }

...

}

20

Priority Queue Refresher

Used to retrieve items in a priority order. Uses

include:

• Sorting

• Task scheduling

Can be implemented as a list or tree.

Example where small numbers have priority:

• Insert 10, 30, 20, 5

• Dequeue:

• Dequeue:

• Insert 15, 40

• Dequeue:

• Dequeue:

Exercise: Rework this exercise assuming large

numbers have high priority.

21

Graph Traversal Reflection

The graph traversal is determined by how the

next vertex to visit is selected

• shortest path: chose next vertex from a

priority queue (priority is shortest

length).

• depth-first search chose next vertex from

a stack

• breadth-first search chose next vertex

from a queue

• random walk chose the next vertex

randomly from a set

22

Summary

• Weighted graphs useful for many problems

- each edge has an associated number

representing weight/cost/length.

• Easy to implement as NxN array of

weights, or by adding a weight to edge

objects.

• Example problem: single-source,

all-destinations shortest path

• Example algorithm: Dijkstra’s greedy

solution.

23

