
Data Structures and Algorithms

Algorithm Design

Greedy Methods and Divide &

Conquer

See references in Goodrich & Tamassia to

Greedy Methods & Divide & Conquer

• Optimisation Problems

• Greedy Methods

• Proving Greedy Methods Optimal

• Divide & Conquer

1

Programs = Algorithms + Data

Structures

Niklaus Wirth

Algorithms are often designed using common

techniques, including:

• Greedy Methods

• Divide & Conquer

• Dynamic Programming

• Backtracking

• Brute Force

• Branch & Bound

• Linear Programming

• Integer Programming

• Neural Networks

• Genetic Algorithms

• Simulated Annealing

• ...

2

Optimisation Problems

Comprise

• A set of constraints

• An optimisation function

A solution that satisfies the constraints is

feasible. A feasible solution with the best

possible value for the optimisation function is

optimal.

3

Change Making

Intuition: attempt to construct a sum using the

minimum number of coins.

A set of coin denominations, e.g.

{1, 2, 5, 10, 20, 50}

A target, e.g. 67p

A solution is a sequence of coins

ci ∈ denominations, e.g. [20, 20, 20, 2, 2, 2, 1] or

[20, 20, 20, 5, 1, 1]

The constraint is Σn

i
ci = target

The optimisation function is the length of

the sequence, e.g. 7 or 6

The optimal solution has the minimum

sequence length, i.e. 6

4

Many real world problems can be formulated as

optimisation problems. Operations Research

studies such problems, amongst others, for

large organisations like Airlines or Strategic

commands etc.

Example problems:

• Find the shortest journey, visiting

Edinburgh, Newcastle, Carlisle, Inverness,

Glasgow.

• Find the maximum volume of

arbitrary-sized crates that can be packed

into a container.

5

Greedy Algorithm Design

Technique

Key idea: Attempt to construct the optimal

solution by repeatedly taking the ’best’ feasible

solution.

Greedy Alg. 1: Change Making

Chose the largest possible denomination coin at

each stage:

Target Coin Selected

67

Optimal solution =

Exercise: Trace the algorithm for target 48p,

giving the optimal solution.

6

Greedy Alg. 2: Simple Shortest

Path

Chose the cheapest edge to traverse from the

end of the current path.

40

1 ----> 2

| \ ^ \

20| \30 |10\50

| \ | > 5

| \ | /

v v | /30

3 ----> 4

20

simpleShortestPath(1,5) =

length =

ShortestPath(1,5) =

length =

Dijkstra’s Shortest Path: Choose the cheapest

edge to traverse from any reached vertex.

7

Is the Greedy Algorithm Optimal?

It is usually easy to produce a greedy algorithm

for a problem.

However the algorithm may not always find

an optimal solution.

Hence it is essential to prove that a proposed

algorithm does find an optimal soluion.

8

Change Making Correctness Proof

(by contradiction)

Fifties, twenties, tens, fives, twos and pennies are

currency denominations. Twenties are smaller

denominations than fifties; and tens are smaller

denominations twenties; etc.

Let F10, T10, T, F, TW and P respectively, be the

number of fifties, twenties, tens, fives, twos and

pennies in the change generated by the greedy

algorithm. Let f10, t10, t, f, tw and p, respectively,

be the number of fifties, twenties, tens, fives, twos

and pennies in the change generated by an optimal

algorithm.

We make the following observations:

1. From the way the greedy algorithm works, it

follows that the total amount of change given

in lower denominations is less than the value of

the next higher denomination. That is, the

change given in pennies is less than 2p; the

change given in pennies and twos is less than

5p; etc. Therefore, T10 < 3, T < 2, F < 2,

TW < 3, P < 2.

9

2. For the optimal change, we can establish t10 <

3, t < 2, f < 2, tw < 3, p < 2. To see this,

note that if t10 >= 3, we can replace three

twenties by a fifty and a ten and provide the

change using one less coin. This is not possible

as t10+t+f+tw+p is the fewest number of

coins with which the change can be provided.

Similarly for the other denominations. Hence,

the total amount of change given in lower

denominations is less than the value of the

next higher denomination.

Now if F10 != f10, then either the greedy or the

optimal solution must provide 50 pence or more in

lower denominations. This violates the above

observations. So, F10 = f10. Similarly, if T10 !=

t10, then either the greedy or the optimal solution

must provide 20p or more in lower denominations

which violates the above observations, so, T10 =

t10. We can show T = t, F = f, TW = tw and P =

p in a similar way. Therefore, the greedy and

optimal solutions are the same.

10

Algorithm Design Technique 2:

Divide & Conquer

Key idea:

1. Divide the problem into smaller

independent subproblems

2. Solve the subproblems

3. Combine the solutions

Good for parallel programming

11

D&C1: Detecting a Counterfeit

Problem: you are given a balance and a bag

of 16 coins, one of which may be counterfeit.

Counterfeight coins are lighter than genuine

coins.

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

Algorithms: 1. Naive: compare coin 1 with coins

2,3, ... 16

Max. No. comparisons =

2. Better: Weigh pairs

Max. No. comparisons =

3. Best:

1. Divide the coins into two sets of eight: A and

B

2. Solve: weigh A and B

3. Combine: Counterfeit present iff (if and only

if) A != B

Max. No. comparisons =

12

Exercise: Does this algorithm work if there are

• at most two counterfeit coins, i.e. 0, 1 or 2

counterfeits?

• 0 or 3 counterfeit coins?

• some natural number 0, 1, 2, .. 16 of

counterfeit coins?

13

D&C2: Identifying the Counterfeit

Problem: locate the counterfeit coin in the

scenario above.

1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

Algorithms 1, and 2 from previous slide work,

requiring at most 15 and 8 comparisons

respectively.

Exercise: How many comparisons to identify 14

as the counterfeit using Algorithm 1? And using

Algorithm 2?

1. Divide the coins into two equal-size sets :

A and B

2. Solve: weigh A and B, lighter set contains

counterfeit, so apply D&C to it

3. Combine: return counterfeit coin

Max. No. comparisons = 4

14

D&C3: Quicksort

Quicksort was devised by C.A.R. Hoare and

sorts a sequence (list/array/file/etc) into

ascending order as follows.

1. Divide: Pick an element of the sequence

(typically the first element) as the pivot. Split

the sequence into two: his: all elements

greater than the pivot, and los all elements

smaller than the pivot.

2. Solve: Apply D&C to his giving hiSort and

apply D&C to los giving loSort

3. Combine: Append loSort, pivot and hiSort

15

Backtracking

Key idea: First organise the candidate

solutions to make searching easy, e.g. a graph

or tree. Then search the solution space

depth-first, and if the node at the end of the

current search proves infeasible, mark it as

dead and backtrack to the previous node.

Live nodes are part of the current solution

under investigation (often on a path).

Dead nodes are part of solutions that have

proved to be infeasible.

More example backtracking algorithms in

Weiss Section 10.5

16

Maze Search Problem

Find a path through a maze from top left (1,1)

to bottom right (4,4) avoiding obstacles

Maze is represented as a matrix:

1 2 3 4

1 0 0 0 0

2 0 1 1 1

3 0 0 1 0

4 0 0 0 0

17

Solution space is an undirected graph:

1,1 ---- 2,1 ---- 3,1 ---- 4,1

| | | |

| | | |

1,2 ---- 2,2 ---- 3,2 ---- 4,2

| | | |

| | | |

1,3 ---- 2,3 ---- 3,3 ---- 4,3

| | | |

| | | |

1,4 ---- 2,4 ---- 3,4 ---- 4,4

Every path from (1,1) to (4,4) is a solution, but

some cross obstacles, and are not feasible.

Search Objective: to find a feasible path

from top-left to bottom-right.

18

A Backtracking Alg: Maze seach

DFS tries to move Right, Down, Left, Up

Depth First Search

0 0 0 0

0 1 1 1

0 0 1 0

0 0 0 0

Backtrack!

0 0 0 0

0 1 1 1

0 0 1 0

0 0 0 0

19

Depth First Search

0 0 0 0

0 1 1 1

0 0 1 0

0 0 0 0

Path:

Note: Backtracking is easily implemented in

Logic languages like Prolog, and in lazy

functional languages like Haskell.

Exercise: Trace the algorithm for the following

maze.

0 0 0 0

0 1 0 1

0 1 1 1

0 0 0 0

20

Branch&Bound

Key idea: Use a breadth first search of the

solution space, but prune suboptimal solutions

Good for parallelism: there are many solutions

to consider simultaneously

But ... multiple solutions consume resources,

including memory

21

Branch&Bound Alg: Maze Search

Breadth First Search

0 0 0 0

0 1 1 1

0 0 0 0

0 0 1 0 2 paths

0 0 0 0

0 1 1 1

0 0 0 0

0 0 1 0 2 paths

22

0 0 0 0

0 1 1 1

0 0 0 0

0 0 1 0 3 paths

Top path is infeasible

Prune: chose shorter, or arbitrarily

between equal-length

0 0 0 0

0 1 1 1

0 0 0 0

0 0 1 0 2 paths

23

0 0 0 0

0 1 1 1

0 0 0 0

0 0 1 0 1 paths

0 0 0 0

0 1 1 1

0 0 0 0

0 0 1 0 1 path

Path:

24

Dynamic Programming

Key idea: Store optimal solutions to

subproblems, and use them to solve bigger

problems

Often used to produce an efficient version of a

recursively specified problem

More examples in Weiss Section 10.3.2 onwards

25

Fibionacci Numbers

The fibionacci numbers are a sequence of

numbers defined as follows (in SML)

fun fib 0 = 0

| fib 1 = 1

| fib n = fib(n-1) + fib(n-2)

i.e. 0,1,1,2,3,5,8,13,21,34

Fibionacci numbers have many properties, e.g.

the sum of the squares of two consecutive

fibionacci numbers is also a fibionacci number.

26

Naive Fib Function

A recursive definition is natural:

public static int fib(int n)

{

if (n <= 1)

return n;

else

return fib(n-1) + fib(n-1);

}

27

Efficiency of fib

fib(5)

28

Dynamic Programming Fib

Idea: store previous fibionacci numbers

public static int fib(int n)

{

int [] fibs;

fibs[0] = 0; // Initialise array

fibs[1] = 1;

for (int i = 2; i <= n; i++)

fibs[i] = fibs[i-1] + fibs[i-2];

return fibs[n];

}

29

Concluding Thoughts

There are many clever algorithms and data

structures out there.

Pick suitable algorithms and data structures

for your problem, and try to reuse code.

If you implement your own algorithms and

data structures: aim for generic code.

Happy Hacking!

30

