
F28DA1 Tutorial 3
Data Structures and Algorithms Solution

Graph ADT and Basic Graph Search Algorithms

1. Complete the following table of properties of the graph with True/False

Property True/False
Directed Y
Cyclic Y
Connected N e.g. no path

from 6 to 3
Weighted N

2. For node 2 in Figure 1,
• What is the in-degree? 2
• What is the out-degree? 2
• What nodes are adjacent to 2? 3, 5
• What nodes are adjacent from 2? 1,5
• Give a paths to node 6, 2,5,6
• Are there any more paths to node 6?
 Yes an infinite number, e.g. 2,5,2,5,6 or 2,5,2,5,2,5,6.

3. Draw an adjacency matrix representation of the graph in Figure 1.

1 2 3 4 5 6
1 F F F F F F
2 T F F F T F
3 F T F F F T
4 T F F F T F
5 F T F F F T
6 F F F F F F

4. Draw an adjacency list representation of the graph in Figure 1.

Either of the following representations is acceptable:

1 []
2 [1,5]
3 [2,6]
4 [1,5]
5 [2,6]
6 []

1
2
3
4
5
6

1 5

2 6

1 5

2 6

F28DA1 Tutorial 3
Data Structures and Algorithms Solution

5. Write a method boolean existsEdge(int i, int j) for the Adjacency
Matrix Digraph (AdjacencyDigraph) class in the notes.

public boolean existsEdge(int i, int j)
 {
 if (i < 1 || j < 1 || i > n || j > n)
 throw new IllegalArgumentException("no vertex " + i +
“ or “ + j);
 else
 return a[i][j];
 }

6. Write the int outDegree(int i) and int inDegree(int i) methods
for the Adjacency List Digraph (LinkedDigraph) class in the notes.

public int outDegree(int i)
 {
 if (i < 1 || i > n)
 throw new IllegalArgumentException("no vertex " + i);

 return aList[i].size();
 }

public int inDegree(int i)
 {
 if (i < 1 || i > n)
 throw new IllegalArgumentException("no vertex " + i);

 // count in edges at vertex i
 int sum = 0;
 for (int j = 1; j <= n; j++)
 if (aList[j].indexOf(new EdgeNode(i)) != -1)
 sum++;

 return sum;
 }

	Y
	F
	F
	F
	T
	F
	T
	F
	F
	F
	T
	F
	T
	F
	F
	F
	F
	F
	F

