
ARM DEN0013D Copyright © 2011 � 2013 ARM. All rights reserved. 8-1
ID012214 Non-Confidential

Chapter 8 
Caches

The word cache derives from the French verb cacher, �to hide�.The application of this word to a 
processor is obvious � a cache is where the processor stores instructions and data, hidden from the 
programmer and system. In many cases, it would be true to say that the cache is transparent to, or 
hidden from you. But very often, as we shall see, it is important to understand the operation of the 
cache in detail.

When the ARM architecture was first developed, the clock speed of the processor and the access 
speeds of memory were broadly similar. Processor cores today are much more complicated and can 
be clocked orders of magnitude faster. However, the frequency of the external buses and of memory 
devices has not scaled to the same extent. It is possible to implement small blocks of on-chip 
SRAM that can operate at the same speeds as the core, but such RAM is very expensive in 
comparison to standard DRAM blocks, that can have thousands of times more capacity. In many 
ARM processor-based systems, access to external memory will take tens or even hundreds of core 
cycles.
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Figure 8-1 A basic cache arrangement

Essentially, a cache is a small, fast block of memory that (conceptually at least) sits between the 
core and main memory. It holds copies of items in main memory. Accesses to the cache memory 
happen significantly faster than those to main memory. Because the cache holds only a subset 
of the contents of main memory, it must store both the address of the item in main memory and 
the associated data. Whenever the core wants to read or write a particular address, it will first 
look for it in the cache. If it finds the address in the cache, it will use the data in the cache, rather 
than having to perform an access to main memory. This significantly increases the potential 
performance of the system, by reducing the effect of slow external memory access times. It also 
reduces the power consumption of the system, by avoiding the need to drive external signals.

Cache sizes are small relative to the overall memory used in the system. Larger caches make for 
more expensive chips. In addition, making an internal core cache larger can potentially limit the 
maximum speed of the core. Efficient use of this limited resource is a key part of writing 
efficient applications to run on a core. 

On-chip SRAM can be used to implement caches, that hold temporary copies of instructions and 
data from main memory. Code and data have the properties of temporal and spatial locality. This 
means that programs tend to re-use the same addresses over time (temporal locality) and tend to 
use addresses that are near to each other (spatial locality). Code, for instance, can contain loops, 
meaning that the same code gets executed repeatedly or a function can be called multiple times. 
Data accesses (for example, to the stack) can be limited to small regions of memory. It is this 
fact that access to RAM by the core exhibits such locality, and is not truly random, that enables 
caches to be successful.

The write buffer is a block that decouples writes being done by the core when executing store 
instructions from the external memory bus. The core places the address, control and data values 
associated with the store into a set of hardware buffers. Like the cache, it sits between the core 
and main memory. This enables the core to move on and execute the next instructions without 
having to stop and wait for the slow main memory to actually complete the write operation.
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8.1 Why do caches help?

Caches speed things up, as we have seen, because program execution is not random. Programs 
tend to access the same sets of data repeatedly and execute the same sets of instructions 
repeatedly. By moving code or data into faster memory when it is first accessed, subsequent 
accesses to that code or data become much faster. The initial access that provided the data to the 
cache is no faster than normal. It is any subsequent accesses to the cached values that are faster, 
and it is from this that the performance increase derives. The core hardware will check all 
instruction fetches and data reads or writes in the cache, although obviously you must mark 
some parts of memory (those containing peripheral devices, for example) as non-cacheable. 
Because the cache holds only a subset of main memory, you require a way to determine 
(quickly) whether the address you are looking for is in the cache.



Caches 

ARM DEN0013D Copyright © 2011 � 2013 ARM. All rights reserved. 8-4
ID012214 Non-Confidential

8.2 Cache drawbacks

It might appear that caches and write buffers are automatically a benefit, as they speed up 
program execution. However, they also add some problems that are not present in an uncached 
core. One such drawback is that program execution time can become non-deterministic.

What this means is that, because the cache is small and holds only a subset of main memory, it 
fills rapidly as a program executes. When the cache is full, existing code or data must be 
removed to make room for new items. So, at any given time, it is not normally possible for an 
application to be certain whether or not a particular instruction or data item is to be found in the 
cache.

This means that the execution time of a particular piece of code can vary significantly. This can 
be something of a problem in hard real-time systems where strongly deterministic behavior is 
required. 

Furthermore, you require a way to control how different parts of memory are accessed by the 
cache and write buffer. In some cases, you want the core to read up-to-date data from an external 
device, such as a peripheral. It would not be sensible to use a cached value of a timer peripheral, 
for example. Sometimes you want the core to stop and wait for a store to complete. So caches 
and write buffers give you some extra work to do.

Occasionally the contents of cache and external memory might not be the same, this is because 
the processor can update the cache contents, which have not yet been written back to main 
memory. Alternatively, an agent might update main memory after a core has taken its own copy. 
This is a problem of coherency. This can be a particular problem when you have multiple cores 
or memory agents like an external DMA controller. Coherency issues are described later in the 
book.
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8.3 Memory hierarchy

In computer science, a memory hierarchy refers to a hierarchy of memory types, with faster and 
smaller memories closer to the core and slower and larger memory farther away. In most 
systems, you can have secondary storage, such as disk drives and primary storage such as Flash, 
SRAM and DRAM. In embedded systems, you typically sub-divide this into on-chip and 
off-chip memory. Memory that is on the same chip (or at least in the same package) as the core 
will typically be much faster.

A cache can be included at any level in the hierarchy and can improve system performance 
where there is an access time difference between different parts of the memory system.

In ARM processor-based systems, level 1 (L1) caches are typically connected directly to the 
core logic that fetches instructions and handles load and store instructions. These are Harvard 
caches, that is, there are separate caches for instructions and for data that effectively appear as 
part of the core.

Figure 8-2 Typical Harvard cache

Over the years, the size of L1 caches has increased, because of SRAM size and speed 
improvements. At the time of writing, 16KB or 32KB cache sizes are most common, as these 
are the largest RAM sizes capable of providing single cycle access at a core speed of 1GHz or 
more.

Many ARM systems have, in addition, a level 2 (L2) cache. This is larger than the L1 cache 
(typically 256KB, 512KB or 1MB), but slower and unified (holding both instructions and data). 
It can be inside the core itself, or be implemented as an external block, placed between the core 
and the rest of the memory system. The ARM L2C-310 is an example of such an external L2 
cache controller block.

In addition, cores can be implemented in clusters in which each core has its own level 1 cache. 
Such systems require mechanisms to maintain coherency between caches, so that when one core 
changes a memory location, that change is made visible to other cores that share that memory. 
This is described in more detail when we look at multi-core processors. 
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8.4 Cache architecture

In a von Neumann architecture, a single cache is used for instruction and data (a unified cache). 
A modified Harvard architecture has separate instruction and data buses and therefore there are 
two caches, an instruction cache (I-cache) and a data cache (D-cache). In many ARM systems, 
you can have distinct instruction and data level 1 caches backed by a unified level 2 cache.

The cache requires to hold an address, some data and some status information. The top bits of 
the 32-bit address tells the cache where the information came from in main memory and is 
known as the tag. The total cache size is a measure of the amount of data it can hold; the RAMs 
used to hold tag values are not included in the calculation. The tag does, however, take up 
physical space in the cache. 

It would be inefficient to hold one word of data for each tag address, so several locations are 
typically grouped together under the same tag. This logical block is commonly known as a cache 
line. The middle bits of the address, or index, identify the line. The index is used as address for 
the cache RAMs and does not require storage as a part of the tag. This will be covered in more 
detail later in this chapter. A cache line is said to be valid when it contains cached data or 
instructions, and invalid when it does not.

This means that the bottom few bits of the address (the offset) are not required to be stored in 
the tag � you require the address of a whole line, not of each byte within the line, so the five or 
six least significant bits will always be 0.

Associated with each line of data are one or more status bits. Typically, you will have a valid 
bit, that marks the line as containing data that can be used. (This means that the address tag 
represents some real value.) In a data cache you might also have one or more dirty bits that mark 
whether the cache line (or part of it) holds data that is not the same as (newer than) the contents 
of main memory.

8.4.1 Cache terminology

A brief summary of some of the terms used might be helpful:

Figure 8-3 Cache terminology

� A line refers to the smallest loadable unit of a cache, a block of contiguous words from 
main memory.

� The index is the part of a memory address that determines in which line(s) of the cache 
the address can be found.
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� A way is a subdivision of a cache, each way being of equal size and indexed in the same 
fashion. The line associated with a particular index value from each cache way grouped 
together forms a set.

� The tag is the part of a memory address stored within the cache that identifies the main 
memory address associated with a line of data.

8.4.2 Direct mapped caches

There are different ways of implementing caches, the simplest of which is a direct mapped 
cache.

In a direct mapped cache, each location in main memory maps to a single location in the cache. 
However, as main memory is many times larger than the cache, many addresses will map to the 
same cache location. Figure 8-4 shows a small cache, with four words per line and four lines.

Figure 8-4 Direct mapped cache operation

This means that the cache controller will use two bits of the address (bits [3:2]) as the offset to 
select a word within the line and two bits of the address (bits [5:4]) as the index to select one of 
the four available lines. The remaining bits of the address (bits [31:6]) will be stored as a tag 
value.

Figure 8-5 Cache address

To look up a particular address in the cache, the hardware extracts the index bits from the 
address and reads the tag value associated with that line in the cache. If the two are the same and 
the valid bit indicates that the line contains valid data, it has a hit. It can then extract the data 
value from the relevant word of the cache line, using the offset and byte portion of the address. 
If the line contains valid data, but does not generate a hit (that is, the tag shows that the cache 
holds a different address in main memory) then the cache line is removed and is replaced by data 
from the requested address. 
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It should be clear that all main memory addresses with the same value of bits [5:4] will map to 
the same line in the cache. Only one of those lines can be in the cache at any given time. This 
means a problem called thrashing can easily occur. Consider a loop that repeatedly accesses 
address 0x00, 0x40 and 0x80, as in the following code:

 void add_array(int *data1, int *data2, int *result, int size) 
 {  

int i;

for (i=0 ; i<size ; i++) {
result[i] = data1[i] + data2[i];

}
}

In this code example, if result, data1, and data2 are pointers to 0x00, 0x40 and 0x80 respectively 
then this loop will cause repeated accesses to memory locations that all map to the same line in 
the basic cache, as shown in.Figure 8-4 on page 8-7. 

� When you first read address 0x40, it will not be in the cache and so a linefill takes place 
putting the data from 0x40 to 0x4F into the cache. 

� When you then read address 0x80, it will not be in the cache and so a linefill takes place 
putting the data from 0x80 to 0x8F into the cache � and in the process you lose the data 
from address 0x40 to 0x4F from the cache. 

� The result is written to 0x00. Depending on the allocation policy this can cause another 
line fill. The data from 0x80 to 0x8F might be lost.

� The same thing will happen on each iteration of the loop and our software will perform 
poorly. Direct mapped caches are therefore not typically used in the main caches of ARM 
cores, but you do see them in some places � for example in the branch target address cache 
of the ARM1136 processor.

Cores can have hardware optimizations for situations where the whole cache line is being 
written to. This is a condition that can take a significant proportion of total cycle time in some 
systems. For example, this can happen when memcpy()- or memset()-like functions that perform 
block copies or zero initialization of large blocks are executed. In such cases, there is no benefit 
in first reading the data values that will be over-written. This can lead to situations where the 
performance characteristics of the cache are different to what might normally be expected.

Cache allocate policies act as a hint to the core, they do not guarantee that a piece of memory 
will be read into the cache, and as a result, you should not rely on them.

8.4.3 Set associative caches

The main caches of ARM cores are always implemented using a set associative cache. This 
significantly reduces the likelihood of the cache thrashing seen with direct mapped caches, 
improving program execution speed and giving more deterministic execution. It comes at the 
cost of increased hardware complexity and a slight increase in power (because multiple tags are 
compared on each cycle).

With this kind of cache organization, the cache is divided into a number of equally-sized pieces, 
called ways. A memory location can then map to a way rather than a line. The index field of the 
address continues to be used to select a particular line, but now it points to an individual line in 
each way. Commonly, there are 2- or 4-ways, but some ARM implementations have used higher 
numbers. 

Level 2 cache implementations (such as the ARM L2C-310) can have larger numbers of ways 
(higher associativity) because of their much larger size. The cache lines with the same index 
value are said to belong to a set. To check for a hit, you must look at each of the tags in the set. 
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In Figure 8-6, a 2-way cache is shown. Data from address 0x00 (or 0x40, or 0x80) might be found 
in line 0 of either (but not both) of the two cache ways.

Figure 8-6 A 2-way set-associative cache

Increasing the associativity of the cache reduces the probability of thrashing. The ideal case is 
a fully associative cache, where any main memory location can map anywhere within the cache. 
However, building such a cache is impractical for anything other than very small caches (for 
example, those associated with MMU TLBs � see Chapter 9). In practice, performance 
improvements are minimal for Level 1 caches above 4-way associativity, with 8-way or 16-way 
associativity being more useful for larger level 2 caches.

8.4.4 A real-life example

Before going on to look at write buffers, let�s consider an example that is more realistic than 
those shown in the previous two diagrams. Figure 8-7 on page 8-10 is a 4-way set associative 
32KB data cache, with an 8-word cache line length. This kind of cache structure can be found 
on the Cortex-A7 or Cortex-A9 processors.

The cache line length is eight words (32 bytes) and you have 4-ways. 32KB divided by 4 (the 
number of ways), divided by 32 (the number of bytes in each line) gives you a figure of 256 
lines in each way. This means that you require eight bits to index a line within a way (bits 
[12:5]). Here, you must use bits [4:2] of the address to select from the eight words within the 
line, though the number of bits which are required to index into the line depends on whether you 
are accessing a word, halfword, or byte. The remaining bits [31:13] in this case will be used as 
a tag.
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Figure 8-7 A 32KB 4-way set associative cache

8.4.5 Cache controller

This is a hardware block that has the task of managing the cache memory, in a way that is 
(largely) invisible to the program. It automatically writes code or data from main memory into 
the cache. It takes read and write memory requests from the core and performs the necessary 
actions to the cache memory or the external memory.

When it receives a request from the core it must check to see whether the requested address is 
to be found in the cache. This is known as a cache look-up. It does this by comparing a subset 
of the address bits of the request with tag values associated with lines in the cache. If there is a 
match (a hit) and the line is marked valid then the read or write will happen using the cache 
memory.

When the core requests instructions or data from a particular address, but there is no match with 
the cache tags, or the tag is not valid, a cache miss results and the request must be passed to the 
next level of the memory hierarchy � an L2 cache, or external memory. It can also cause a cache 
linefill. A cache linefill causes the contents of a piece of main memory to be copied into the 
cache. At the same time, the requested data or instructions are streamed to the core. This process 
happens transparently and is not directly visible to a software developer.

The core need not wait for the linefill to complete before using the data. The cache controller 
will typically access the critical word within the cache line first. For example, if you perform a 
load instruction that misses in the cache and triggers a cache linefill, the core first retrieves that 
part of the cache line which contains the requested data. This critical data is supplied to the core 
pipeline, while the cache hardware and external bus interface then read the rest of the cache line, 
in the background.
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8.4.6 Virtual and physical tags and indexes

This section assumes some knowledge of the address translation process. Readers unfamiliar 
with virtual addressing might want to revisit this section after reading Chapter 9. 

A real-life example on page 8-9 was a little imprecise about specification of exactly which 
address is used to perform cache lookups. Early ARM processors such as the ARM720T or 
ARM926EJ-S processors used virtual addresses to provide both the index and tag values. This 
has the advantage that the core can do a cache look-up without the need for a virtual to physical 
address translation. The drawback is that changing the virtual to physical mappings in the 
system means that the cache must first be cleaned and invalidated, and this can have a significant 
performance impact. Invalidating and cleaning cache memory on page 8-17 goes into more 
detail about these terms.

ARM11 family processors use a different cache tag scheme. Here, the cache index is still 
derived from a virtual address, but the tag is taken from the physical address. The advantage of 
a physical tagging scheme is that changes in virtual to physical mappings do not now require 
the cache to be invalidated. This can have significant benefits for complex multi-tasking 
operating systems that can frequently modify translation table mappings. Using a virtual index 
has some hardware advantages. It means that the cache hardware can read the tag value from 
the appropriate line in each way in parallel without actually performing the virtual to physical 
address translation, giving a fast cache response. Such a cache is often described as Virtually 
Indexed, Physically Tagged (VIPT). Cache properties of Cortex-A series processors, including 
the use of these tagged caches are given in Table 8-1. Other properties of the Cortex-A series 
processors are listed in Table 2-3 on page 2-9.

Table 8-1 Cache features of Cortex-A series processors

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15

L2 Cache External Integrated Integrated External Integrated Integrated

L2 Cache size - 128KB to 
1MBa

0KB to 1MBa - 256KB to 8MB 512KB to 4MBa

Cache 
Implementation 
(Data)

PIPT PIPT PIPT PIPT PIPT PIPT

Cache 
Implementation 
(Instruction)

VIPT VIPT VIPT VIPT VIPT PIPT

L1 Cache size 
(data)a

4K to 64Ka 8KB to 64KBa 16/32KBa 16KB/32KB/64KBa 32KB 32KB

Cache size 
(Inst)a

4K to 64Ka 8KB to 64KBa 16/32KBa 16KB/32KB/64KBa 32KB or 64KB 32KB

L1 Cache 
Structure

2-way set 
associative 
(Inst)

4-way set 
associative 
(Data)

2-way set 
associative 
(Inst)

4-way set 
associative 
(Data)

4-way set 
associative

4-way set 
associative (Inst)

4-way set 
associative (Data)

4-way set 
associative 
(Inst)

4-way set 
associative 
(Data)

2-way set 
associative 
(Inst)

2-way set 
associative 
(Data)

L2 Cache 
Structure

- 8-way set 
associative

8-way set 
associative

- 16-way set 
associative

16-way 
associative
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However, there is a drawback to a VIPT implementation. For a 4-way set associative 32KB or 
64KB cache, bits [12] and [13] of the address are required to select the index. If 4KB pages are 
used in the MMU, bits [13:12] of the virtual address might not be equal to bits [13:12] of the 
physical address. There is therefore scope for potential cache coherency problems if multiple 
virtual address mappings point to the same physical address. This is resolved by placing certain 
restrictions on such multiple mappings that kernel translation table software must obey. This is 
described as a page coloring issue and exists on other processor architectures for the same 
reasons. 

This problem is avoided by using a Physically Indexed, Physically Tagged (PIPT) cache 
implementation. The Cortex-A series of processors use such a scheme for their data caches. It 
means that page coloring issues are avoided, but at the cost of hardware complexity.

Cache line 
(words)

8 8 16 8 - 16

Cache line 
(bytes)

32 64 64 32 64 64

Error protection None None L2 ECC None L1 None, L2 
ECC

Optional for L1 
and L2 

a. Configurable

Table 8-1 Cache features of Cortex-A series processors (continued)

Processor

Cortex-A5 Cortex-A7 Cortex-A8 Cortex-A9 Cortex-A12 Cortex-A15
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8.5 Cache policies

There are a number of different choices that can be made in cache operation. Consider what 
causes a line from external memory to be placed into the cache (allocation policy) and how the 
controller decides which line within a set associative cache to use for the incoming data 
(replacement policy). What happens when the core performs a write that hits in the cache (write 
policy) must also be controlled. 

8.5.1 Allocation policy

When the core performs a cache look-up and the address it wants is not in the cache, it must 
determine whether or not to perform a cache linefill and copy that address from memory.

� A read allocate policy allocates a cache line only on a read. If a write is performed by the 
core that misses in the cache, the cache is not affected and the write goes to the next level 
of the hierarchy.

� A write allocate policy allocates a cache line for either a read or write that misses in the 
cache (and so might more accurately be called a read-write cache allocate policy). For 
both memory reads that miss in the cache and memory writes that miss in the cache, a 
cache linefill is performed. This is typically used in combination with a write-back write 
policy on current ARM cores, as we shall see in Write policy on page 8-14.

8.5.2 Replacement policy

When there is a cache miss, the cache controller must select one of the cache lines in the set for 
the incoming data. The cache line selected is called the victim. If the victim contains valid, dirty 
data, the contents of that line must be written to main memory before new data can be written 
to the victim cache line. This is called eviction.

The replacement policy is what controls the victim selection process. The index bits of the 
address are used to select the set of cache lines, and the replacement policy selects the specific 
cache line from that set that is to be replaced.

� Round-robin or cyclic replacement means that you have a counter (the victim counter) that 
cycles through the available ways and cycles back to 0 when it reaches the maximum 
number of ways.

� Pseudo-random replacement randomly selects the next cache line in a set to replace. The 
victim counter is incremented in a pseudo-random fashion and can point to any line in the 
set.

� Least Recently Used (LRU) replacement is used to replace the cache line or page that was 
least recently used.

Most ARM processors support both Round-robin and Pseudo random policies. The Cortex-A15 
processor also supports LRU.

A round-robin replacement policy is generally more predictable, but can suffer from poor 
performance in certain use cases and for this reason, the pseudo-random policy is often 
preferred.
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8.5.3 Write policy

When the core executes a store instruction, a cache lookup on the address(es) to be written is 
performed. For a cache hit on a write, there are two choices. 

� Write-through. With this policy writes are performed to both the cache and main memory. 
This means that the cache and main memory are kept coherent. Because there are more 
writes to main memory, a write-through policy is slower than a write-back policy for some 
use cases, where the same area of memory is updated frequently. If large contiguous 
blocks of memory are being written to, and the writes can be buffered, it may be just as 
efficient to write-through. If the memory is not expected to be read from anytime soon 
(think large memory copies or memory initialization,) then it is better to not fill up the 
cache with such writes.

� Write-back. In this case, writes are performed only to the cache, and not to main memory. 
This means that cache lines and main memory can contain different data. The cache line 
holds newer data, and main memory contains older data (said to be stale). To mark these 
lines, each line of the cache has an associated dirty bit (or bits). When a write happens that 
updates the cache, but not main memory, the dirty bit is set. If the cache later evicts a cache 
line whose dirty bit is set (a dirty line), it writes the line out to main memory. Using a 
write-back cache policy can significantly reduce traffic to slow external memory and 
therefore improve performance and save power. However, if there are other agents in the 
system that can access memory at the same time as the core, you must consider coherency 
issues. These are described in Cache coherency on page 18-9.
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8.6 Write and Fetch buffers

A write buffer is a hardware block inside the core (but sometimes in other parts of the system 
as well), implemented using a number of buffers. It accepts address, data and control values 
associated with core writes to memory. When the core executes a store instruction, it might place 
the relevant details, such as the location to write to, the data to be written, and the transaction 
size into the buffer. The core does not have to wait for the write to be completed to main 
memory. It can proceed with executing the next instructions. The write buffer itself will drain 
the writes accepted from the core, to the memory system.

A write buffer can increase the performance of the system. It does this by freeing the core from 
having to wait for stores to complete. In effect, provided there is space in the write buffer, the 
write buffer is a way to hide latency. If the number of writes is low or well spaced, the write 
buffer will not become full. If the core generates writes faster than they can be drained to 
memory, the write buffer will eventually fill and there will be little performance benefit.

Some write buffers support write merging (also called write combining). They can take multiple 
writes (for example, a stream of writes to adjacent bytes) and merge them into one single burst. 
This can reduce the write traffic to external memory and therefore boost performance.

It will be obvious that sometimes the behavior of the write buffer is not what you want when 
accessing a peripheral, you might want the core to stop and wait for the write to complete before 
proceeding to the next step. Sometimes you really want a stream of bytes to be written and you 
don�t want the stores to be combined.ARM memory ordering model on page 10-3, describes 
memory types supported by the ARM architecture and how to use these to control how caches 
and write buffers are used for particular devices or parts of the memory map.

Similar components, called fetch buffers, can be used for reads in some systems. In particular, 
cores typically contain prefetch buffers that read instructions from memory ahead of them 
actually being inserted into the pipeline. In general, such buffers are transparent to you. Some 
possible hazards associated with this will be considered when we look at memory ordering 
rules.
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8.7 Cache performance and hit rate

The hit rate is defined as the number of cache hits divided by the number of memory requests 
made to the cache during a specified time, normally calculated as a percentage. Similarly, the 
miss rate is the number of total cache misses divided by the total number of memory requests 
made to the cache. One might also calculate the number of hits or misses on reads or writes only. 

Clearly, a higher hit rate will generally result in higher performance. It is not really possible to 
quote example figures for typical software, the hit rate is very dependent on the size and spatial 
locality of the critical parts of the code or data operated on and of course, the size of the cache. 

There are some simple rules that can be followed to give better performance. The most obvious 
of these is to enable caches and write buffers and to use them wherever possible (typically for 
all parts of the memory system that contain code and more generally for RAM and ROM, but 
not peripherals). Performance will be considerably increased in Cortex-A series processors if 
instruction memory is cached. Placing frequently accessed data together in memory can also be 
helpful. For example, a frequently accessed array might benefit from having a base address at 
the start of a cache line. 

Fetching a data value in memory involves fetching a whole cache line; if none of the other words 
in the cache line will be used, there will be little or no performance gain. This can be mitigated 
by accessing data in a manner that is �cache-friendly�.For instance, accesses to sequential 
addresses, for example, accessing a row of an array, benefit from cache behavior, 
Non-predictable or non-sequential access patterns, for example, linked lists, do not. 

Smaller code might cache better than larger code and this can sometimes give seemingly 
paradoxical results. For example, a piece of C code might fit entirely within cache when 
compiled for Thumb (or for the smallest size) but not when compiled for ARM (or for maximum 
performance) and as a consequence can actually run faster than the more optimized version. 
Cache considerations are described in much more detail in Chapter 17 Optimizing Code to Run 
on ARM Processors.
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8.8 Invalidating and cleaning cache memory

Cleaning and invalidation can be required when the contents of external memory have been 
changed and you want to remove stale data from the cache. It can also be required after MMU 
related activity such as changing access permissions, cache policies, or virtual to physical 
address mappings.

The word flush is often used in descriptions of clean and invalidate operations. ARM generally 
uses only the terms clean and invalidate.

� Invalidation of a cache or cache line means to clear it of data. This is done by clearing the 
valid bit of one or more cache lines. The cache must always be invalidated after reset as 
its contents will be undefined. If the cache contains dirty data, it is generally incorrect to 
invalidate it. Any updated data in the cache from writes to write-back cacheable regions 
would be lost by simple invalidation.

� Cleaning a cache or cache line means writing the contents of dirty cache lines out to main 
memory and clearing the dirty bit(s) in the cache line. This makes the contents of the 
cache line and main memory coherent with each other. This is only applicable for data 
caches in which a write-back policy is used. Cache invalidate, and cache clean operations 
can be performed by cache set, or way, or by virtual address.

Copying code from one location to another (or other forms of self-modifying code) might 
require you either to clean and/or to invalidate the cache. The memory copy code will use load 
and store instructions and these will operate on the data side of the core. If the data cache is using 
a write-back policy for the area to which code is written, it is necessary to clean that data from 
the cache before the code can be executed. This ensures that the instructions stored as data go 
out into main memory and are then available for the instruction fetch logic. In addition, if the 
area to which code is written was previously used for some other program, the instruction cache 
could contain stale code (from before main memory was re-written). Therefore, it might also be 
necessary to invalidate the instruction cache before branching to the newly copied code.

The commands to either clean or invalidate the cache are CP15 operations. They are available 
only to privileged code and cannot be executed in User mode. In systems where the TrustZone 
Security Extensions are in use, there can be hardware limitations applied to non-secure use of 
some of these operations.

CP15 instructions exist that will clean, invalidate, or clean and invalidate level 1 data or 
instruction caches. Invalidation without cleaning is safe only when it is known that the cache 
cannot contain dirty data � for example a Harvard instruction cache, or when the data is going 
to be overwritten, and you don't care about losing the previous values. You can perform the 
operation on the entire cache, or on individual lines. These individual lines can be specified 
either by giving a virtual address to be cleaned or to be invalidated, or by specifying a line 
number in a particular set, in cases where the hardware structure is known. The same operations 
can be performed on the L2 or outer caches and we will look at this in Level 2 cache controller 
on page 8-22. A typical example of such code can be found in Setting up caches, MMU and 
branch predictors on page 13-3.

Example 8-1 Preparing the caches

setup_caches
 MRC p15, 0, r1, c1, c0, 0           ; Read System Control Register (SCTLR)
 BIC r1, r1, #1                      ; mmu off
 BIC r1, r1, #(1 << 12)              ; i-cache off
 BIC r1, r1, #(1 << 2)               ; d-cache & L2-$ off

 MCR p15, 0, r1, c1, c0, 0           ; Write System Control Register (SCTLR)
 ;-----------------------------------------------
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 ; 1.MMU, L1$ disable
 ;-----------------------------------------------
 MRC p15, 0, r1, c1, c0, 0           ; Read System Control Register (SCTLR)
 BIC r1, r1, #1                      ; mmu off
 BIC r1, r1, #(1 << 12)              ; i-cache off
 BIC r1, r1, #(1 << 2)               ; d-cache & L2-$ off
 MCR p15, 0, r1, c1, c0, 0           ; Write System Control Register (SCTLR)
 ;-----------------------------------------------
 ; 2. invalidate: L1$, TLB, branch predictor
 ;-----------------------------------------------
 MOV     r0, #0
 MCR     p15, 0, r0, c7, c5, 0       ; Invalidate Instruction Cache
 MCR     p15, 0, r0, c7, c5, 6       ; Invalidate branch prediction array
 MCR     p15, 0, r0, c8, c7, 0       ; Invalidate entire Unified Main TLB
 ISB                                 ; instr sync barrier
 ;-----------------------------------------------
 ; 2.a. Enable I cache + branch prediction
 ;----------------------------------------------- 
 MRC     p15, 0, r0, c1, c0, 0           ; System control register
 ORR     r0, r0, #1 << 12                ; Instruction cache enable
 ORR     r0, r0, #1 << 11                ; Program flow prediction
 MCR     p15, 0, r0, c1, c0, 0           ; System control register
 ;-----------------------------------------------

Of course, these operations will be accessed through kernel code � in GCC on Linux, you will 
use the __clear_cache() function implemented in arch/arm/mm/cache-v7.S. 

void __clear_cache(char* beg, char* end);

The start address (char* beg) is inclusive, while the end address (char* end) is exclusive.

Equivalent functions exist in other operating systems, Google Android has cacheflush(), for 
example.

A common situation where cleaning or invalidation can be required is DMA (Direct Memory 
Access). When it is required to make changes made by the core visible to external memory, so 
that it can be read by a DMA controller, it might be necessary to clean the cache. When external 
memory is written by a DMA controller and it is necessary to make those changes visible to the 
core, the affected addresses must be invalidated in the cache.
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8.9 Point of coherency and unification

For set/way based clean and invalidate, the operation is performed on a specific level of cache. 
For operations that use a virtual address, the architecture defines two conceptual points:

Point of Coherency (PoC) 

For a particular address, the PoC is the point at which all blocks, for example, 
cores, DSPs, or DMA engines, that can access memory are guaranteed to see the 
same copy of a memory location. Typically, this will be the main external system 
memory.

Figure 8-8 Point of Coherency

Point of Unification (PoU) 

The PoU for a core is the point at which the instruction and data caches of the core 
are guaranteed to see the same copy of a memory location. For example, a unified 
level 2 cache would be the point of unification in a system with Harvard level 1 
caches and a TLB for cacheing translation table entries. If no external cache is 
present, main memory would be the Point of unification.

In the Cortex-A9 processor the PoC and PoU is essentially the same place, at the 
L2 interface.

Since the Cortex-A8 processor incorporates a L2 cache under CP15 control PoU 
and PoC are in different places, PoU is in the L2 cache and PoC is outside the L2 
interfaces.
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Figure 8-9 Point of Unification

Readers unfamiliar with the terms hardware translation table walk or Translation 
Lookaside Buffer (TLB) will find these described in Chapter 9. If no external 
cache is present, main memory would be the PoU.

In the case of a cluster, or a big.LITTLE combination, the PoU is where instruction and data 
caches and translation table walks of all the cores within the cluster are guaranteed to see the 
same copy of a memory location.

Knowledge of the PoU enables self-modifying code to ensure future instruction fetches are 
correctly made from the modified version of the code. They can do this by using a two-stage 
process: 

� Clean the relevant data cache entries by address.

� Invalidate instruction cache entries by address.

In addition, the use of memory barriers will be required.

8.9.1 Example code for cache maintenance operations

The following code illustrates a generic mechanism for cleaning the entire data or unified cache 
to the point of coherency.

Note

 In the case of a cluster where multiple cores share a cache before the point of coherency, running 
this sequence on multiple cores results in the operations being repeated on the shared cache

MRC p15, 1, R0, c0, c0, 1   ; Read CLIDR into R0
ANDS R3, R0, #0x07000000
MOV R3, R3, LSR #23         ; Cache level value (naturally aligned)
BEQ Finished
MOV R10, #0

Loop1 
ADD R2, R10, R10, LSR #1    ; Work out 3 x cache level
MOV R1, R0, LSR R2          ; bottom 3 bits are the Cache type for this level
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Instruction 
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TLB
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AND R1, R1, #7              ; get those 3 bits alone
CMP R1, #2
BLT Skip                    ; no cache or only instruction cache at this level
MCR p15, 2, R10, c0, c0, 0  ; write CSSELR from R10
ISB                         ; ISB to sync the change to the CCSIDR
MRC p15, 1, R1, c0, c0, 0   ; read current CCSIDR to R1
AND R2, R1, #7              ; extract the line length field
ADD R2, R2, #4              ; add 4 for the line length offset (log2 16 bytes)
LDR R4, =0x3FF
ANDS R4, R4, R1, LSR #3     ; R4 is the max number on the way size (right aligned)
CLZ R5, R4                  ; R5 is the bit position of the way size increment
MOV R9, R4                  ; R9 working copy of the max way size (right aligned)

Loop2 
LDR R7, =0x00007FFF
ANDS R7, R7, R1, LSR #13    ; R7 is the max num of the index size (right aligned)

Loop3 
ORR R11, R10, R9, LSL R5    ; factor in the way number and cache number into R11
ORR R11, R11, R7, LSL R2    ; factor in the index number
MCR p15, 0, R11, c7, c10, 2 ; DCCSW, clean by set/way
SUBS R7, R7, #1             ; decrement the index
BGE Loop3
SUBS R9, R9, #1             ; decrement the way number
BGE Loop2

Skip 
ADD R10, R10, #2            ; increment the cache number
CMP R3, R10
BGT Loop1
DSB

Finished 

Similarly, you can use the clean data cache entry and invalidate TLB operations to ensure that 
all writes to the translation tables are visible to the MMU.
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8.10 Level 2 cache controller

At the start of this chapter, we briefly described the partitioning of the memory system and 
explained how many systems have a multi-level cache hierarchy. The Cortex-A5 and Cortex-A9 
processors, however, do not have an integrated level 2 cache. Instead, the system designer can 
opt to connect another cache controller, such as the ARM L2 cache controller (L2C-310) outside 
of the processor instance.

The L2C-310 cache controller can support a cache of up 8MB in size, with a set associativity of 
between four and sixteen ways. The size and associativity are fixed by the SoC designer. The 
level 2 cache can be shared between multiple cores, or indeed between the core and other agents, 
such as a graphics processor. It is possible to lockdown cache data on a per-master per-way 
basis, enabling management of cache sharing between multiple components.

8.10.1 Level 2 cache maintenance

Virtual and physical tags and indexes on page 8-11 described how you might require the ability 
either to clean or invalidate some or all of a cache. This can be done by writing to 
memory-mapped registers within the L2 cache controller in the case where the cache is external 
to the core, or through CP15, where the level 2 cache is implemented inside the core. The 
registers themselves are not cached, which makes this feasible. Where such operations are 
performed by having the core perform memory-mapped writes, the core must have a way of 
determining when the operation is complete. It does this by polling an additional 
memory-mapped register within the L2 cache controller.

The ARM L2C-310 Level 2 cache controller operates only on physical addresses. Therefore, to 
perform cache maintenance operations, it might be necessary for the program to perform a 
virtual to physical address translation. The L2C-310 provides a cache sync operation that forces 
the system to wait for pending operations to complete.
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8.11 Parity and ECC in caches

So-called soft errors are an increasing concern. Smaller transistor geometries and lower 
voltages give circuits an increased sensitivity to perturbation by cosmic rays and other 
background radiation, alpha particles from silicon packages, or from electrical noise. This is 
particularly true for memory devices that rely on storing small amounts of charge and that also 
occupy large proportions of total silicon area. In some systems, mean-time-between-failure 
could be measured in seconds if appropriate protection against soft errors was not employed.

The ARM architecture provides support for parity and Error Correcting Code (ECC) in the 
caches. Parity means that there is an additional bit that marks whether the number of bits with 
the value one is even or odd, depending on the scheme chosen. This provides a simple check 
against single bit errors. 

An ECC scheme enables detection of multiple bit failures and possible recovery from soft 
errors, but recovery calculations can take several cycles. Implementing a core that is tolerant of 
level 1 cache RAM accesses taking multiple clock cycles significantly complicates the design. 
ECC is therefore more commonly used only on blocks of memory (for example, the Level 2 
cache), outside the core. The Cortex-A15, however, supports ECC and parity inside the core.

Parity is checked on reads and writes, and can be implemented on both tag and data RAMs. 
Parity mismatch generates a prefetch or data abort exception, and the fault status address 
registers are updated appropriately. 
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Chapter 9 
The Memory Management Unit

An important function of a Memory Management Unit (MMU) is to enable you to manage tasks as 
independent programs running in their own private virtual memory space. A key feature of such a 
virtual memory system is address relocation, or the translation of the virtual address issued by the 
processor to a physical address in main memory. 

The ARM MMU is responsible for translating addresses of code and data from the virtual view of 
memory to the physical addresses in the real system. The translation is carried out by the MMU 
hardware and is transparent to the application. In addition, the MMU controls such things as 
memory access permissions, memory ordering and cache policies for each region of memory. 

In multi-tasking embedded systems, we typically require a way to partition the memory map and 
assign permissions and memory attributes to these regions of memory. In situations where we are 
running more complex operating systems, like Linux, we require even greater control over the 
memory system.

The MMU enables tasks or applications to be written in a way that requires them to have no 
knowledge of the physical memory map of the system, or about other programs that might be 
running simultaneously. This enables you to use the same virtual memory address space for each 
program. It also lets you work with a contiguous virtual memory map, even if the physical memory 
is fragmented. This virtual address space is separate from the actual physical map of memory in the 
system. Applications are written, compiled and linked to run in the virtual memory space. Virtual 
addresses are those used by you, and the compiler and linker, when placing code in memory. 
Physical addresses are those used by the actual hardware system. 

It is the responsibility of the operating system to program the MMU to translate between these two 
views of memory. Figure 9-1 on page 9-2 shows an example system, illustrating the virtual and 
physical views of memory. Different processors and/or devices in a single system might have 
different virtual and physical address maps, for example, some multi-core boards and PCI devices.
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Figure 9-1 Virtual and physical memory

When the MMU is disabled, all virtual addresses map directly to the corresponding physical 
address (a flat mapping). If the MMU cannot translate an address, it generates an abort exception 
on the processor and provides information to the processor about what the problem was. This 
feature can be used to map memory or devices on-demand, one page at a time.
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9.1 Virtual memory

The MMU enables you to build systems with multiple virtual address maps. Each task can have 
its own virtual memory map. The OS kernel places code and data for each application in 
physical memory, but the application itself does not require the location.

The address translation carried out by the MMU is done using translation tables. These are 
tree-shaped table data structures created by software in memory, that the MMU hardware 
traverses to accomplish virtual address translation. 

Note

 In the ARM architecture, the concept referred to in generic computer terminology as page tables 
has a more specific meaning. The ARM architecture uses multi-level page tables, and defines 
translation tables as a generic term for all of these. An entry in a translation table contains all 
the information required to translate a page in virtual memory to a page in physical memory. 
The specific mechanism of traversal and the table format are configurable by software and are 
explained later.

Translation table entries are organized by virtual address. In addition to describing the 
translation of that virtual page to a physical page, they also provide access permissions and 
memory attributes necessary for that page.

Figure 9-2 The Memory Management Unit

Addresses generated by the core are virtual addresses. When the MMU is enabled all memory 
accesses made by the core pass through it. The MMU essentially replaces the most significant 
bits of this virtual address with some other value, to generate the physical address (effectively 
defining a base address of a piece of memory).The same translation tables are used to define the 
translations and memory attributes that apply to both instruction fetches and to data accesses. 
Dedicated hardware within the MMU enables it to read the translation tables in memory. This 
process is known as translation table walking.

9.1.1 Configuring and enabling the MMU

Before the MMU is enabled, the translation tables must be written to memory. The TTBR 
register must be set to point to the tables. The following code sequence can then be used to 
enable the MMU:

MRC p15, 0, R1, c1, C0, 0 ;Read control register
ORR R1, #0x1 ;Set M bit
MCR p15, 0,R1,C1, C0,0 ;Write control register and enable MMU

Care must be taken if enabling the MMU changes the address mapping of the region in which 
code is currently being executed. Barriers (See Memory barriers on page 10-6) may be 
necessary to ensure correct operation.
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9.2 The Translation Lookaside Buffer

The Translation Lookaside Buffer (TLB) is a cache of recently executed page translations within 
the MMU. On a memory access, the MMU first checks whether the translation is cached in the 
TLB. If the requested translation is available, you have a TLB hit, and the TLB provides the 
translation of the physical address immediately. If the TLB does not have a valid translation for 
that address, you have a TLB miss and an external translation table walk is required. This newly 
loaded translation can then be cached in the TLB for possible reuse.

The exact structure of the TLB differs between implementations of the ARM processors. What 
follows is a description of a typical system, but individual implementations might vary from 
this. There are one or more micro-TLBs that are situated close to the instruction and data caches. 
Addresses with entries that hit in the micro-TLB require no additional memory look-up and no 
cycle penalty. However, the micro-TLB has only a small number of mappings, typically eight 
on the instruction side and eight on the data side. This is backed by a larger main TLB (typically 
64 entries), but there might be some penalty associated with accesses that miss in the micro-TLB 
but that hit in the main TLB. Figure 9-3 shows how each TLB entry contains physical and 
virtual addresses, but also attributes (such as memory type, cache policies and access 
permissions) and potentially an ASID value, described in Address Space ID on page 9-17.

The TLB is like other caches and so has a TLB line replacement policy, but this is effectively 
transparent to users. If the translation table entry is a valid one, the virtual address, physical 
address and other attributes for the whole page or section are stored as a TLB entry. If the 
translation table entry is not valid, the TLB will not be updated. The ARM architecture requires 
that only valid translation table descriptors are cached within the TLB. 

Figure 9-3 Illustration of TLB structure

9.2.1 TLB coherency

When the operating system changes translation table entries, it is possible that the TLB could 
contain stale translation information. The OS must take steps to invalidate TLB entries. There 
are several CP15 operations available that permit a global invalidate of the TLB or removal of 
specific entries. 

As speculative instruction fetches and data reads might cause translation table walks, it is 
essential to invalidate the TLB when a valid translation table entry is changed. Invalid 
translation table entries cannot be cached in the TLB so they can be changed without 
invalidation. 
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The Linux kernel has a number of functions that use these CP15 operations, including 
flush_tlb_all() and flush_tlb_range(). Such functions are not typically required by device 
drivers.
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9.3 Choice of page sizes

Page size is essentially controlled by the operating system, but it is worth being aware of the 
considerations involved when selecting a size. Smaller page sizes enable finer control of a block 
of memory and potentially can reduce the amount of unused memory in a page. If a task requires 
7KB of data space, there is less unused space if it is allocated two 4KB pages as opposed to a 
64KB page or a 1MB section. Smaller page sizes also enable finer control over permissions, 
cache properties and so forth.

However, with increased page sizes, each entry in the TLB holds a reference to a larger piece of 
memory. It is therefore more likely that a TLB hit will occur on any access and so there will be 
fewer translation table walks to slow external memory. For this reason, 16MB supersections can 
be used with large pieces of memory that do not require detailed mapping. In addition, each L2 
translation table requires 1KB of memory. 
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9.4 First level address translation

Consider the process by which a virtual address is translated to a physical address using level 1 
translation table entries on an ARM core. The first step is to locate the translation table entry 
associated with the virtual address.

The first stage of translation uses a single level 1 translation table, sometimes called a master 
translation table. The L1 translation table divides the full 4GB address space of a 32-bit core 
into 4096 equally sized sections, each of which describes 1MB of virtual memory space. The 
L1 translation table therefore contains 4096 32-bit (word-sized) entries. 

Each entry can either hold a pointer to the base address of a level 2 translation table or a 
translation table entry for translating a 1MB section. If the translation table entry is translating 
a 1MB section determined by the encoding, (See Figure 9-5 on page 9-8), it gives the base 
address of the 1MB page in physical memory. 

The lower bits are the same in both addresses (defining an offset in physical memory from the 
base address). The ARM MMU supports a multi-level translation table architecture with two 
levels of translation tables, level 1 (L1) and level 2 (L2). Unless the Large Physical Address 
Extensions (See Large Physical Address Extensions on page 22-10) are implemented, both L1 
and L2 translation tables use the Short-descriptor translation table format that feature:

� 32-bit page descriptors.

� Up to two levels of translation tables.

� Support for 32-bit physical addresses

� Support for the following memory sizes:

� 16 MB or 1 MB sections.

� 64KB or 4KB page sizes.

The base address of the L1 translation table is known as the Translation Table Base Address and 
is held in CP15 c2. It must be aligned to a 16KB boundary. The Translation table locations are 
defined by the Translation Table Base Registers (TTRB0 and TTRB1). 

When the MMU performs a translation, the top 12 bits of the requested virtual address act as the 
index into the translation table.
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Figure 9-4 Finding the address of the level 1 translation table entry

To take a simple example, shown in Figure 9-4, suppose the L1 translation table is stored at 
address 0x12300000. The processor issues virtual address 0x00100000. The top 12 bits [31:20] 
define which 1MB of virtual address space is being accessed. In this case 0x001, so the MMU 
must read table entry 1. To get the offset into the table you must multiply the entry number by 
entry size:

0x001 * 4 bytes = address offset of 0x004

The address of the entry the MMU reads the physical address from is 0x12300000 + 0x004 = 
0x12300004.

Now that you have the location of the translation table entry, you can use it to determine the 
physical memory address

Figure 9-5 shows the format of L1 translation table entries in CP15 c2.

Figure 9-5 Level 1 translation table entry format

First level translation tables contain first level descriptors.

L1 translation table entries can be one of four possible types:

� A 1MB section translation entry, mapping a 1MB region to a physical address.
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� An entry that points to an L2 translation table. This enables a 1MB piece of memory to be 
sub-divided into pages.

� A 16MB supersection. This is a special kind of 1MB section entry, that requires 16 entries 
in the translation table, but can reduce the number of entries allocated in the Translation 
Lookaside Buffer for this region.

� A fault entry that generates an abort exception. This can be either a prefetch or data abort, 
depending on the type of access. This effectively indicates virtual addresses that are 
unmapped.

The least significant two bits [1:0] in the entry define whether the entry is a fault entry, a 
translation table entry, or a section entry. Bit [18] is used to distinguish between a normal section 
and supersection.

A supersection is a 16MB piece of memory, that must have both its virtual and physical base 
address aligned to a 16MB boundary. Because L1 translation table entries each describe 1MB, 
you require 16 consecutive, identical entries within the table to mark a supersection. Choice of 
page sizes on page 9-6 described why supersections can be useful.

Figure 9-6 shows the simplest case in which the physical address of a 1MB section is directly 
generated from the contents of a single entry in the level 1 translation table.

Figure 9-6 First level address translation

The translation table entry for a section (or supersection) contains the physical base address used 
to translate the virtual address. Many other bits are given in the translation table entry, including 
the Access Permissions (AP) and Cacheable (C) or Bufferable (B) types that we will consider 
in Memory attributes on page 9-14. This is all of the information required to access the 
corresponding physical address and in these cases, there is no requirement for the MMU to look 
beyond the L1 table. 

Figure 9-7 on page 9-10 summarizes the translation process for an address translated by a 
section entry in the L1 translation table.
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Figure 9-7 Generating a physical address from a level 1 translation table entry

In a translation table entry for a 1MB section of memory, the upper 12 bits of the translation 
table entry replace the upper 12 bits of the virtual address when generating the physical address, 
as Figure 9-5 on page 9-8 shows.

Translation Table Base Address

31 14 13 0

Virtual Address

31 20 19 0

First Level Descriptor Address
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Section Base Address Descriptor
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0 10

Level 1
Table

31 20 019
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9.5 Level 2 translation tables

An L2 translation table has 256 word-sized (4 byte) entries, requires 1KB of memory space and 
must be aligned to a 1KB boundary. Each entry translates a 4KB block of virtual memory to a 
4KB block in physical memory. A translation table entry can give the base address of either a 
4KB or 64KB page. 

There are three types of entry used in L2 translation tables, identified by the value in the two 
least significant bits of the entry:

� A large page entry points to a 64KB page. You should note that, since each entry points 
to a 4KB address space, large page entries must be repeated 16 times.

� A small page entry points a 4KB page.

� A fault page entry generates an abort exception if accessed.

Figure 9-8 shows the format of L2 translation table entries. 

Figure 9-8 Format of a level 2 translation table entry

As with the L1 translation table entry, a physical address is given, along with other information 
about the page. Type extension (TEX), Shareable (S), and Access Permission (AP, APX) bits 
are used to specify the attributes necessary for the ARMv7 memory model. Along with TEX, 
the C and B bits control the cache policies for the memory governed by the translation table 
entry. The nG bit defines the page as being global (applies to all processes) or non-global (used 
by a specific process). These are described in more detail in Memory attributes on page 9-14. 
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Figure 9-9 Generating the address of the level 2 translation table entry

In Figure 9-9 we see how the address of the L2 translation table entry that we require is 
calculated by taking the (1KB aligned) base address of the level 2 translation table (given by the 
level 1 translation table entry) and using 8 bits of the virtual address (bits [19:12]) to index 
within the 256 entries in the L2 translation table.

Figure 9-10 on page 9-13 summarizes the address translation process when using two layers of 
translation tables. Bits [31:20] of the virtual address are used to index into the 4096-entry L1 
translation table, whose base address is given by the CP15 TTB register. The L1 translation table 
entry points to an L2 translation table that contains 256 entries. Bits [19:12] of the virtual 
address are used to select one of those entries that then gives the base address of the page. The 
final physical address is generated by combining that base address with the remaining bits of the 
virtual address.
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Figure 9-10 Summary of generation of physical address using the L2 translation table entry
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9.6 Memory attributes

We have seen how translation table entries enable the MMU hardware to translate virtual to 
physical addresses. However, they also specify a number of attributes associated with each page, 
including access permissions, memory type and cache policies.

9.6.1 Memory Access Permissions

The Access Permission (AP and APX) bits in the translation table entry give the access 
permissions for a page. See Table 9-1.

An access that does not have the necessary permission (or that faults) will be aborted. On a data 
access, this will result in a precise data abort exception. On an instruction fetch, the access will 
be marked as aborted and if the instruction is not subsequently flushed before execution, a 
prefetch abort exception will be taken. Faults generated by an external access will not, in 
general, be precise.

Information about the address of the faulting location and the reason for the fault is stored in 
CP15 (the fault address and fault status registers). The abort handler can then take appropriate 
action � for example, modifying translation tables to remedy the problem and then returning to 
the application to retry the access. Alternatively, the application that generated the abort might 
have a problem and must be terminated.

9.6.2 Memory types

Earlier ARM architecture versions enabled you to specify the memory access behavior of pages 
by configuring whether the cache and write buffer could be used for that location. This simple 
scheme is inadequate for today�s more complex systems and processors, where you can have 
multiple levels of caches, hardware managed coherency between multiple processors sharing 
memory and processors that can speculatively fetch both instructions and data. The new 
memory types added to the ARM architecture in ARMv6 and extended in the ARMv7 
architecture are designed to meet these requirements.

Three mutually exclusive memory types are defined in the ARM architecture. All regions of 
memory are configured as one of these three types:

� Strongly-ordered

� Device 

� Normal.

Table 9-1 Summary of Access Permission encodings

APX AP Privileged Unprivileged Description

0 00 No access No access Permission fault

0 01 Read/Write No access Privileged Access only

0 10 Read/Write Read No user-mode write

0 11 Read/Write Read/Write Full access

1 00 - - Reserved

1 01 Read No access Privileged Read only

1 10 Read Read Read only

1 11 - - Reserved
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These are used to describe the memory regions. A summary of the memory types is shown in 
Table 9-2.

More descriptions of these memory types can be found in ARM memory ordering model on 
page 10-3.

Table 9-3 shows how the TEX, C and B bits within the translation table entry are used to set the 
memory types of a page and also the cache policies to be used. The meaning of each of the 
memory types is described in Chapter 10, while the cache policies were described in Chapter 8. 

The final entry within the table requires more explanation. For normal cacheable memory, the 
two least significant bits of the TEX field are used to provide the outer cache policy (perhaps 
for level 2 or level 3 caches) while the C and B bits give the inner cache policy (for level 1 and 

Table 9-2 Memory attributes

Memory type 
Shareable/

Non-shareable
Cacheable Description

Normal Shareable Yes Designed to handle normal memory that is shared between

multiple cores.

Non-shareable Yes Designed to handle normal memory that is used only by a

single core.

Device - No Designed to handle memory-mapped peripherals.a All memory 
accesses to Device memory occur in program order.

Strongly-ordered - No All memory accesses to Strongly-ordered memory occur in

program order. All Strongly-ordered accesses are assumed to be

shared.

a. Shared memory was originally used to distinguish between accesses directed to the �peripheral private port� found on several 
ARM11 processors. This use is now deprecated and processors implementing LPAE treat all device accesses as Shareable.

Table 9-3 Memory type and cacheable properties encoding in translation table entry

TEX C B Description Memory type

000 0 0 Strongly-ordered Strongly-ordered

000 0 1 Shareable device Devicea

a. LPAE treats all device accesses as Shareable

000 1 0 Outer and Inner write-through, no allocate on write Normal

000 1 1 Outer and Inner write-back, no allocate on write Normal

001 0 0 Outer and Inner non-cacheable Normal

001 - - Reserved -

010 0 0 Non-shareable device Devicea

010 - - Reserved -

011 - - Reserved -

1XX Y Y Cached memory

XX = Outer policy

YY = Inner policy

Normal
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any other cache that is to be treated as inner cache). This enables you to specify different cache 
policies for both the inner and outer cache. For the Cortex-A15 and Cortex-A8 processors, inner 
cache properties set by the translation table entry apply to both L1 and L2 caches. On some older 
processors, outer cache might support write allocate, while the L1 cache might not. Such 
processors must still behave correctly when running code that requests this cache policy, of 
course.

9.6.3 Execute Never

When set, the Execute Never (XN) bit in the translation table entry prevents speculative 
instruction fetches taking place from desired memory locations and will cause a prefetch abort 
to occur if execution from the memory location is attempted. Typically device memory regions 
are marked as execute never to prevent accidental execution from such locations, and to prevent 
undesirable side-effects which might be caused by speculative instruction fetches.

9.6.4 Domains

The ARM architecture has an unusual feature that enables regions of memory to be tagged with 
a domain ID. There are 16 domain IDs provided by the hardware and CP15 c3 contains the 
Domain Access Control Register (DACR) that holds a set of 2-bit permissions for each domain 
number. This enables each domain to be marked as no-access, manager mode or client mode. 
No-access causes an abort on any access to a page in this domain, irrespective of page 
permissions. Manager mode ignores all page permissions and enables full access. Client mode 
uses the permissions of the pages tagged with the domain.

Note

 The use of domains is deprecated in the ARMv7 architecture, and will eventually be removed, 
but in order for access permissions to be enforced, it is still necessary to assign a domain number 
to a section and to ensure that the permission bits for that domain are set to client. Typically, you 
would set all domain ID fields to 0 and set all fields in the DACR to �Client�.
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9.7 Multi-tasking and OS usage of translation tables

In most systems using Cortex-A series processors, you will have a number of applications or 
tasks running concurrently. Each task can have its own unique translation tables residing in 
physical memory. Typically, much of the memory system is organized so that the 
virtual-to-physical address mapping is fixed, with translation table entries that never change. 
This typically is used to contain operating system code and data, and also the translation tables 
used by individual tasks.

Whenever an application is started, the operating system will allocate it a set of translation table 
entries that map both the code and data used by the application to physical memory. If the 
application has to map in code or extra data space (for example through a malloc() call), the 
kernel can subsequently modify these tables. When a task completes and the application is no 
longer running, the kernel can remove any associated translation table entries and re-use the 
space for a new application. In this way, multiple tasks can be resident in physical memory. On 
a task switch, the kernel switches translation table entries to the page in the next thread to be 
run. In addition, the dormant tasks are completely protected from the running task. This means 
that the MMU can prevent the running task from accessing the code or data of other tasks. 

9.7.1 Address Space ID

When we described the translation table bits in Level 2 translation tables on page 9-11 we noted 
a bit called nG (non-global). If the nG bit is set for a particular page, the page is associated with 
a specific application. When the MMU performs a translation, it uses both the virtual address 
and an ASID value.

The ASID is a number assigned by the OS to each individual task. This value is in the range 
0-255 and the value for the current task is written in the ASID register (accessed using CP15 
c13). When the TLB is updated and the entry is marked as non-global, the ASID value will be 
stored in the TLB entry in addition to the normal translation information. Subsequent TLB 
look-ups will only match on that entry if the current ASID matches with the ASID that is stored 
in the entry. You can therefore have multiple valid TLB entries for a particular page (marked as 
non-global), but with different ASID values. This significantly reduces the software overhead 
of context switches, as it avoids the requirement to flush the on-chip TLBs. The ASID forms 
part of a larger (32-bit) process ID register that can be used in task-aware debugging.

Note

 A context switch denotes the scheduler transferring execution from one process to another. This 
typically requires saving the current process state and restoring the state of the next process 
waiting to be run.

Figure 9-11 on page 9-18 illustrates this. Here, you have multiple applications (A, B and C), 
each of which is linked to run from virtual address 0. Each application is located in a separate 
address space in physical memory. There is an ASID value associated with each application so 
you can have multiple entries within the TLB at any particular time, that will be valid for virtual 
address 0. 
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Figure 9-11 ASIDs in TLB mapping the same virtual address

9.7.2 Translation Table Base Register 0 and 1

An additional potential difficulty associated with managing multiple applications with their 
individual translation tables is that there could be multiple copies of the L1 translation table, one 
for each application. Each of these will be 16KB in size. Most of the entries will be identical in 
each of the tables, as typically only one region of memory will be task-specific, with the kernel 
space being unchanged in each case. Furthermore, if a global translation table entry is to be 
modified, the change will be required in each of the tables.

To help reduce the effect of these problems, a second translation table base register is provided. 
CP15 contains two Translation Table Base Registers, TTBR0 and TTBR1. A control register 
(the TTB Control Register) is used to program a value in the range 0 to 7. This value (denoted 
by N) tells the MMU how many of the upper bits of the virtual address it must check to 
determine which of the two TTB registers to use.

When N is 0 (the default), all virtual addresses are mapped using TTBR0. With N in the range 
1-7, the hardware looks at the most significant bits of the virtual address. If the N most 
significant bits are all zero, TTBR0 is used, otherwise TTBR1 is used.
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For example, if N is set to 7, any address in the bottom 32MB of memory will use TTBR0 and 
the rest of memory will use TTBR1. As a result, the application-specific translation table 
pointed to by TTBR0 will contain only 32 entries (128 bytes). The global mappings are in the 
table pointed to by TTBR1 and only one table must be maintained.

When these features are used, a context switch will typically require the operating system to 
change the TTBR0 and ASID values, using CP15 instructions. However, as these are two 
separate, non-atomic operations, some care is required to avoid problems associated with 
speculative accesses occurring using the new value of one register together with the older value 
of the other. OS programmers making use of these features should become familiar with the 
sequences recommended for this purpose in the ARM Architecture Reference Manual.

9.7.3 The Fast Context Switch Extension

The Fast Context Switch Extension (FCSE) was added to the ARMv4 architecture but has been 
deprecated since ARMv6. It enabled multiple independent tasks to run in a fixed, overlapping 
area at the bottom of the virtual memory space without having to clean the cache or TLB on a 
context switch. It did this by modifying virtual addresses by substituting a process ID value into 
the top seven bits of the virtual address (but only if that address lay within the bottom 32MB of 
memory). Some ARM documentation distinguishes Modified Virtual Addresses (MVA) from 
Virtual Addresses (VA). This distinction is useful only when the FCSE is used.


