
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 — 2018/19

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2018/19 1 / 19

Outline

1 Lecture 1: Introduction to Systems Programming

2 Lecture 2: Systems Programming with the Raspberry Pi

3 Lecture 3: Memory Hierarchy
Memory Hierarchy

Principles of Caches

4 Lecture 4: Programming external devices
Basics of device-level programming

5 Lecture 5: Exceptional Control Flow

6 Lecture 6: Computer Architecture
Processor Architectures Overview

Pipelining

7 Lecture 7: Code Security: Buffer Overflow Attacks
8 Lecture 8: Interrupt Handling

9 Lecture 9: Miscellaneous Topics

10 Lecture 10: Revision

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2018/19 2 / 19

Lecture 7: Code Security: Buffer Overflow Attacks

Code Security deals with writing code that is “secure” against
attacks, i.e. that cannot be tricked in performing an unintended
task.
This is important across all application domains, e.g. web
programming, server programming, embedded systems
programming.
It is particularly important in embedded systems programming,
because you often don’t have OS protection against attacks.
You will learn more about security in F20CN: Computer Network
Security.
Here we focus on the security of low-level code and in particular
on buffer overflow attacks.
NB: Buffer overflow attacks are some of the most commonly
occuring security bugs

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 3 / 19

Dynamically Changing Attributes: setuid

Background: dynamically changing the ownership of programs.
Sometimes we want to specify that a file can only be modified by a
certain program.
Thus, we want to control access on a per-program, rather than a
per-user basis.
We can achieve this by creating a new user, representing the role
of a modifier for these files.
Mark the program, as setuid to this user.
This means, no matter who started the program, it will run under
the user id of this new user.
Example:

Beware: setuid programs are a major security pitfall!
0Figure from “Security Engineering” by Ross Anderson, Chapters 4, 6

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 4 / 19

http://cwe.mitre.org/top25/
http://cwe.mitre.org/top25/

Example code for setuid

static uid_t euid, uid;
int main(int argc, char * argvp[]) {

FILE *file;
/* Store real and effective user IDs */
uid = getuid(); euid = geteuid();
/* Drop privileges */
seteuid(uid);
/* Do something useful ... */
/* Raise privileges, in order to access the file */
seteuid(euid);
/* Open the file; NB: this is owned and readable only by a different user */
file = fopen("/tmp/logfile", "a");
/* Drop privileges again */
seteuid(uid);
/* Write to the file */
if (file) {
fprintf(file, "Someone used this program: UID=%d, EUID=%d\n", getuid(), geteuid());

} else {
fprintf(stderr, "Could not open file /tmp/logfile; aborting ...\n");
return 1;

}
/* Close the file and return */
fclose(file); return 0; }

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 5 / 19

Testing this prgram

As normal user do the following:
do everything in an open directory
> cd /tmp
download the source code
> wget http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21CN/Labs/OSsec/setuid1.c

compile the program
> gcc -o s1 setuid1.c
change permissions so that everyone can execute it
> chmod a+x s1
check the permissions
> ls -lad s1
-rwxrwxr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1
generate an empty logfile
> touch /tmp/logfile
change permissions to make it read/writeable only by the owner!
> chmod go-rwx /tmp/logfile
check the permissions
> ls -lad /tmp/logfile
-rw------- 1 hwloidl hwloidl 0 2011-11-11 22:06 /tmp/logfile

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 6 / 19

As guest user do the following

> cd /tmp
try to run the program
> ./s1
Could not open file /tmp/logfile; aborting ...
this failed, because guest doesn’t have permission to write to logfile

As normal user do the following

set the setuid bit
> chmod +s s1
> ls -lad s1
-rwsrwsr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1

Now, as guest you can run the program:

> ./s1
now this succeeds, although the user still cannot read the file
> cat /tmp/logfile
cat: /tmp/logfile: Permission denied

But the normal user can read the file, eg:

> cat /tmp/logfile
Someone used this program: UID=1701, EUID=1701
Someone used this program: UID=12386, EUID=12386

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 7 / 19

Buffer Overflow Attacks

Often low-level programs use fixed-size arrays (buffers) to store
data.
When copying into such buffers, the program has to check that it
doesn’t exceed the size of the buffer.
There are no automatic bounds checks in low-level languages
such as C.
If no check is performed, the program would just overwrite the
following data block.
If the data beyond the bound is chosen to be malign, executable
machine code, an attacker can gain control of the system in this
way.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 8 / 19

http://www.macs.hw.ac.uk/~hwloidl/Courses/F21CN/Labs/OSsec/setuid1.c

Example 1: Rsyslog

The following vulnerability in the rsyslog program was reported in
Linux Magazin 12/11:

[...]
int i; /* general index for parsing */
uchar bufParseTAG[CONF_TAG_MAXSIZE];
uchar bufParseHOSTNAME[CONF_HOSTNAME_MAXSIZE];
[...]
while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ &&

i < CONF_TAG_MAXSIZE) {
bufParseTAG[i++] = *p2parse++;
--lenMsg;

}
if(lenMsg > 0 && *p2parse == ’:’) {
++p2parse;
--lenMsg;
bufParseTAG[i++] = ’:’;

}
[...]
bufParseTAG[i] = ’\0’; /* terminate string */

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 9 / 19

Example 2:

The following vulnerability in the rsyslog program was reported in
Linux Magazin 12/11:

[...]
int i; /* general index for parsing */
uchar bufParseTAG[CONF_TAG_MAXSIZE];
uchar bufParseHOSTNAME[CONF_HOSTNAME_MAXSIZE];
[...]
while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ &&

i < CONF_TAG_MAXSIZE) {
bufParseTAG[i++] = *p2parse++;
--lenMsg;

}
if(lenMsg > 0 && *p2parse == ’:’) {
++p2parse;
--lenMsg;
bufParseTAG[i++] = ′ :′;

}
[...]
bufParseTAG[i] = ’\0’; /* terminate string */

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 10 / 19

Discussion

The goal of this code is to read tags and store them in a buffer.
The program reads from a memory location p2parse and writes
into the buffer bufParseTAG.
The fixed size of the buffer is CONF TAG MAXSIZE

The while-loop iterates over the input text, and also checks
whether the index i is still within bounds.
BUT: after the while loop, 1 or 2 characters are added to the buffer
as termination characters; this can cause a buffer overflow!
The impact of the overflow is system-specific. It can lead to
overwriting the variable i on the stack.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 11 / 19

Smashing the Stack

One common form of exploiting a buffer overflow is to manipulate
the stack.
This can happen through unchecked copy operations into a local
function variable or argument.
This is dangerous, because local variables are kept on the stack,
together with the return address for the function.
Therefore, a buffer-overflow can directly modify the control-flow
in the program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 12 / 19

Example of Smashing the Stack

Assume, we call this func-
tion:

int function() {
int a;
char b[5];
char c[4];
...

}

The stack-layout for this
function is:

c
b
a
...
return address

A buffer overflow of b can overwrite the contents of a, or maybe even
the return address, which would change the control flow of the
program.
Stack Guard and other security programs re-order the variables on the
stack, and add variables at the end to detect overwrites.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 13 / 19

Difficulties in exploiting the vulnerability

The attacker needs to locate the position of the return address,
and write the address of its own, malign code there.
Several techniques can be used to achieve this.
In a return-to-libc attack, the attacker overwrites the return
address with a call to a known libc library function (eg. system).
After this, the return address to the malign code and data for the
arguments to the libc function is placed.
This will cause a call to the libc function, followed by executing the
malign code itself.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 14 / 19

A Worst Case Scenario

A particularly dangerous combination of weaknesses is the following:
A setuid function, raising privileges temporarily,
which contains a buffer overflow vulnerability,
and an attacker that plants shellcode as malign code onto the
stack.
If successful, the shellcode will give the attacker access to a full
shell with the privileges used in that part of the application.
If these are root privileges, the attacker can do anything he wants!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 15 / 19

Prevention Mechanisms

Canary variables, eg. on the stack, can detect overflows.
Re-ordering variables on the stack can help to reduce the impact
of a buffer overflow.
Compiler modifications can change the pointer semantics, eg.
never store a pointer directly, but only a version that needs to be
XORed to get to the real address.
Some operating systems allow to mark address blocks as
non-executable.
Address randomisation (re-arranging data at random in the
address space) is frequently in modern operating systems to
make it more difficult to predict where to find a return address or
similar, attackable control-flow data.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 16 / 19

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,’)))

*c++ = ’\0′;
else

c = str;

if (!(n % 10)) /* alloc some more */
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == ’!’) wild[n].not = 1; /* not */
else if (*c == ’@’) wild[n].not = -1; /* absolute not (feeding) */
else wild[n].not = 0;

strcpy(p, wild[n].not ? c + 1 : c);
wild[n++].pat = xstrdup(pattern);

} while (c != str);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 17 / 19

Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,’)))

*c++ = ’\0′;
else

c = str;

if (!(n % 10)) /* alloc some more */
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == ’!’) wild[n].not = 1; /* not */
else if (*c == ’@’) wild[n].not = -1; /* absolute not (feeding) */
else wild[n].not = 0;

strcpy(p, wild[n].not ? c + 1 : c);
wild[n++].pat = xstrdup(pattern);

} while (c != str);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 18 / 19

Discussion

This example is part of an IMAP server for emails.
This code segment handles wildcards to perform operations.
Its weakness is that it uses strcpy to copy a block of characters,
which copies an unbounded 0-terminated block of memory.
Instead, the function strncpy should be used, which takes the
size of the block to copy as additional argument.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 7: Buffer Overflow Attacks 19 / 19

	Lecture 7: Code Security: Buffer Overflow Attacks

