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Lecture 1:
Introduction to Systems

Programming
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Introduction to Systems Programming

This course focuses on how hardware and systems software
work together to perform a task.
We take a programmer-oriented view and focus on software and
hardware issues that are relevant for developing fast, secure,
and portable code.
Performance is a recurring theme in this course.
You need to grasp a lot of low-level technical issues in this course.
In doing so, you become a “power programmer”.
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Why is this important?

You need to understand issues at the hardware/software interface, in
order to

understand and improve performance and resource consumption
of your programs, e.g. by developing cache-friendly code;
avoid progamming pitfalls, e.g. numerical overflows;
avoid security holes, e.g. buffer overflows;
understand details of the compilation and linking process.
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Questions to be addressed

For each of these issues we will address several common questions
on the hardware/software interface:

Optimizing program performance:
I Is a switch statement always more efficient than a sequence of

if-else statements?
I How much overhead is incurred by a function call?
I Is a while loop more efficient than a for loop?
I Are pointer references more efficient than array indexes?
I Why does our loop run so much faster if we sum into a local

variable instead of an argument that is passed by reference?
I How can a function run faster when we simply rearrange the

parentheses in an arithmetic expression?
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Questions to be addressed

Understanding link-time errors:
I What does it mean when the linker reports that it cannot resolve a

reference?
I What is the difference between a static variable and a global

variable?
I What happens if you define two global variables in different C files

with the same name?
I What is the difference between a static library and a dynamic

library?
I Why does it matter what order we list libraries on the command

line?
I Why do some linker-related errors not appear until run time?

Avoiding security holes:
I How can an attacker exploit a buffer overflow vulnerability?
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Compilation of hello world
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We have seen individual phases in the compilation chain so far
(e.g. assembly)
Using gcc on top level picks the starting point, depending on the
file extension, and generates binary code
You can view the intermediate files of the compilation using the
gcc flag -save-temps

This is useful in checking, e.g. which assembler code is generated
by the compiler
We will be using -D flags to control the behaviour of the
pre-processor on the front end
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The Shell

Your window to the system is the shell, which is an interpreter for
commands issued to the system:

host> echo "Hello world"
Hello world
host> ls
...

The Linux Introduction in F27PX-Praxis gave you an overview of what
you can do in a shell. In this course, we make heavy usage of the
shell. Check the later sections in the on-line Linux Introduction, which
explain some of the more advanced concepts.
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Hardware organisation of a typical system
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Components

The picture on the previous slide, mentions several important
concepts:

Processor: the Central Processing Unit (CPU) is the engine that
executes instructions; modern CPUs are complicated in order to
provide additional performance (multi-core, pipelining, caches
etc);
Main Memory: temporary storage for both program and data;
arranged as a sequence of dynamic random access memory
(DRAM) chips;
Buses transmit information, as byte streams, between
components of the hardware; the Universal Serial Bus (USB) is
the most common connection for external devices;
I/O devices are in charge of input/output and represent the
interface of the hardware to the external world
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The Hello World Program

#include <stdio.h>

int main()
{

printf("hello, world\n");
}

What happens when we compile and execute this hello world
program?
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Compiling Hello World

When we compile the program by calling

gcc -o hello hello.c

the compilation chain is executed. Note:
The source code of Hello World is represented in ASCII
characters and stored in a file.
The contents of the file is just a sequence of bytes
The context determines whether these bytes are interpreted as
text or as graphics etc.

When we execute the resulting binary, the next slides show what’s
happening

./hello
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1. Reading the hello program from the keyboard

Main
memory

I/O 
bridgeBus interface

ALU

Register file

CPU

System bus Memory bus

Disk 
controller

Graphics
adapter

USB
controller

Mouse Keyboard Display
Disk

I/O bus Expansion slots for
other devices such
as network adapters

PC

"hello"

User
types

"hello"

The shell reads ./hello from the keyboard, stores it in memory;
then, initiates to load the executable file from disk to memory.
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2. Reading the executable from disk to main memory
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Using direct memory access (DMA) the data travels from disk directly
to memory.
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3. Writing the output string from memory to display
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Once the code and data in the hello object file are loaded into memory,
the processor begins executing the machine-language instructions in
the hello program’s main routine.
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Caches

Copying data from memory to the CPU is slow compared to
performing an arithmetic or logic operation.
This difference is called processor-memory gap and it is
increasing with newer generations of processors.
Copying data from disk is even slower.
On the other hand, these slower devices provide more capacity.
To speed up the computation, smaller faster storage devices
called cache memories are used.
These cache memories (or just caches) serve as temporary
staging areas for information that the processor is likely to need in
the near future.
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Cache memories
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An L1 cache on the processor chip holds tens of thousands of
bytes and can be accessed nearly as fast as the register file.
A larger L2 cache with hundreds of thousands to millions of bytes
is connected to the processor by a special bus.
It might take 5 times longer for the process to access the L2 cache
than the L1 cache, but this is still 5 to 10 times faster than
accessing the main memory.
The L1 and L2 caches are implemented with a hardware
technology known as static random access memory (SRAM).
Newer systems even have three levels of cache: L1, L2, and L3.
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Caches and Memory Hierarchy
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The Role of the Operating System

Application programs

Processor Main memory I/O devices

Operating system
Software

Hardware

We can think of the operating system as a layer of software
interposed between the application program and the hardware.
All attempts by an application program to manipulate the hardware
must go through the operating system.
This enhances the security of the system, but also generates
some overhead.
In this course we are mainly interested in the interface between
the Software and Hardware layers in the picture above.
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Goals of the Operating System

The operating system has two primary purposes:
to protect the hardware from misuse by runaway applications, and
to provide applications with simple and uniform mechanisms for
manipulating complicated and often wildly different low-level
hardware devices.

The operating system achieves both goals via three fundamental
abstractions: processes, virtual memory, and files.

Processor Main memory I/O devices

Processes

Files

Virtual memory
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Basic Concepts

In this overview we will cover the following basic concepts:
Processes
Threads
Virtual memory
Files
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Processes

A process is the operating system’s abstraction for a running
program.
It provides the illusion of having exclusive access to the entire
machine.
Multiple processes can run concurrently.
The OS mediates the access to the hardware, and prevents
processes from overwriting each other’s memory.
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Concurrency vs Parallelism vs Threads

Concurrent execution means that the instructions of one
process are interleaved with the instructions of another process.
The operating system performs this interleaving with a mechanism
known as context switching.
The context of a process consists of: the program counter (PC),
the register file, and the contents of main memory.
They appear to run simultaneously, but in reality at each point the
CPU is executing just one process’ operation.
On multi-core systems, where a CPU contains several
independent processors, the two processes can be executed in
parallel, running on separate cores.
In this case, both processes are genuinely running simultaneously.
The main goal of parallelism is to make programs run faster.
A process can itself consist of multiple threads.
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Example of Context Switching

This example shows the context switching that is happening between
the shell process and the hello process, when running our hello
world example.

Process A Process B

User code

Kernel code

User code

Kernel code

User code

Time
Context 
switch

Context 
switch

read

Disk  interrupt
Return 

from read
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Different Forms of Concurrency

Concurrency can be exploited at different levels:
Thread-level concurrency: A program explicitly creates several
threads with independent control flows. Each thread typically
represents a large piece of computation. Shared memory, or
message passing can be used to exchange data.
Instruction-Level Parallelism: The components of the CPU can
be arranged in a way so that the CPU executes several
instructions at the same time. For example, while one instruction
is performing an ALU operation, the data for the next instruction
can be loaded from memory (“pipelining”).
Single-Instruction, Multiple-Data (SIMD) Parallelism: Modern
processor architectures provide vector-operations, that allow to
execute an operation such as addition, over a sequence of values
(“vectors”), rather than just two values. Graphic cards make heavy
use of this form of parallelism to speed-up graphics operations.
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Categorizing different processor configurations

All processors
Multiprocessors

Uniprocessors Multi-
core

Hyper-
threaded

Uniprocessors, with only one CPU, need to context-switch in
order to run several processes seemingly at the same time
Multiprocessors replicate certain components of the hardware to
genuinely run processes at the same time:

I Muticores replicate the entire CPU, as several “cores”, each of can
run a process.

I Hyperthreaded machines replicate hardware to store the context
of several processes to speed-up context-switching.
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Virtual Memory

Virtual memory is an abstraction that provides each process with the
illusion that it has exclusive use of the main memory. Each process
has the same uniform view of memory, which is known as its virtual
address space.

Kernel virtual memory

Memory mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

0

Memory
invisible to
user code

Read/write data 

Read-only code and data

Loaded from the 
hello executable file

printf function

0x08048000 (32)
0x00400000 (64)

NB: The top region of the address space is resevered for the OS. User
processes are not allowed to write into this area!
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Virtual Memory
The lower region holds the data for the user.
The user space is separated into several areas, with different roles:

The code and data area: contains the progam code and
initialised data, starting at a fixed address. The program code is
read only, the data is read/write.
The heap contains dynamically allocated data during the
execution of the program. In high-level languages, such as Java,
any new will allocate in the heap. In low-level languages, such as
C, you can use the library function malloc to dynamically allocate
data in the heap.
The shared data section holds dynamically allocated data,
managed by shared libraries.
The stack is a dynamic area at the top of the memory, growing
downwards. It is used to hold the local data of functions whenever
a function is called during program execution.
The topmost section of the virtual memory is allocated to kernel
virtual memory, and only accessible to the OS kernel.
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Virtual Memory

Virtual memory gives the illusion of a continuous address space,
exceeding main memory, with exclusive access.
It abstracts over the limitations of physical main memory and
allows for several parallel threads to access the same address
space.
We will discuss this aspect in more detail in the Lecture on
“Memory Hierarchy”.
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Files

A file is a sequence of bytes.
A file can be used to model any I/O device: disk, keyboard,
mouse, network connections etc.
Files can also be used to store data about the hardware (/proc/
filesystem), or to control the system, e.g. by writing to files.
Thus, the concept of a file is a very powerful abstraction that can
be used for many different purposes.
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External Devices

An important task of the OS/code is to interact with external
devices.
We will see this in detail on the Rpi2
From the OS point of view, external devices and network
connections are files that can be written to and read from.
When writing to such a special file, the OS sends the data to the
corresponding network device
When reading from such a special file, the OS reads data from the
corresponding network device
This file abstraction simplifies network communication, but is also
a source of additional communication overhead.
Therefore, high performance libraries tend to avoid this “software
stack” of implementing file read/write in the OS, but rather directly
read to and write from the device (in the same way that we will be
using these devices)
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A network is another I/O device
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The network can be viewed as just another I/O device.
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The Role of Abstraction

In order to tackle system complexity abstraction is a key concept.
For example, an application program interface (API), abstracts
from the internals of an implementation, and only describes its
core functionality.
Java class declaration or C prototypes are programming language
features to facilitate abstraction.
The instruction set architecture abstracts over details of the
hardware, so that the same instructions can be used for different
realisations of a processor.
On the level of the operating system, key abstractions are

I processes (as abstractions of a running program),
I files (as abstractions of I/O), and
I virtual memory (as an abstraction of main memory).

A newer form of abstraction is a virtual machine, which abstracts
over an entire computer.
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Some abstractions provided by a computer system

Processor Main memory I/O devices

Processes

Files

Virtual memory

Operating system

Virtual machine

Instruction set
architecture

A major theme in computer systems is to provide abstract
representations at different levels to hide the complexity of the actual
implementations.
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Reading List: Systems Programming

David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.

Randal E. Bryant, David R. O’Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.

Bruce Smith “Raspberry Pi Assembly Language: Raspbian”,
CreateSpace Independent Publishing Platform; 2 edition, 19 Aug
2013. ISBN-13: 978-1492135289.
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Other Online Resources

Gordon Henderson “WiringPi library: GPIO Interface library for the
Raspberry Pi,
http://wiringpi.com/

Valvers “Bare Metal Programming in C”,
http://www.valvers.com/open-software/raspberry-pi/step01-bare-
metal-programming-in-cpt1/

Alex Chadwick, Univ of Cambridge “Baking Pi”,
https://www.cl.cam.ac.uk/projects/raspberrypi/tutorials/os
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Lecture 2.
Systems Programming with

the Raspberry Pi
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SoC: System-on-Chip

A System-on-Chip (SoC) integrates all components of a
computer or other electronic system into a single chip.
One of the main advantages of SoCs is their low power
consumption.
Therefore they are often used in embedded devices.
All versions of the Raspberry Pi are examples of SoCs

Note: In this course we are using the Raspberry Pi 2 Model B. The
low-level code will only work with this version.

The Raspberry Pi Foundation: https://www.raspberrypi.org/
UK registered charity 1129409
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Raspberry Pi 1 vs 2

The Raspberry Pi version 2 was released on 2nd February 2015. Its
components are:

the BCM2836 SoC (System-on-Chip) by Broadcom
an ARM-Cortex-A7 CPU with 4 cores (clock frequency: 900MHz)
1 GB of DRAM
a Videocore IV GPU
4 USB ports (sharing the one internal port together with the
Ethernet connection)
power supply through a microUSB port

NB: RPi2 is significantly more powerful than RPi1, which used an
ARM1176JZ-F single-core at 700MHz clock frequency (as the
BCM2835 SoC). However, its network bandwidth is unchanged.
NB: The A-series of the ARM architectures is for “application” usage
and therefore more powerful than the M-series, which is mainly for
small, embedded systems.
It is possible to safely over-clock the processor up to 950 MHz.

0Material from Raspberry Pi Geek 03/2015
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Raspberry Pi 2

0Source: https://en.wikipedia.org/wiki/Raspberry Pi
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Software configuration

RPi2 supports several major Linux distributions, including:
Raspbian (Debian-based), Arch Linux, Ubuntu, etc
The main system image provided for RPi2 can boot into several of
these systems and provides kernels for both ARMv6 (RPi1) and
ARMv7 (RPi2)
The basic software configuration is almost the same as on a
standard Linux desktop
To tune the software/hardware configuration call

> sudo raspi-config
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Updating your software under Raspbian

We are using Raspbian 7, which is based on Debian “Wheezy” with a
Linux kernel 3.18.
There is a more recent version (2017-01-11) out: Raspbian 8, based
on Debian “Jessie” with a Linux kernel 4.4. Highlights:

Uses systemd for starting the system (changes to run-scripts,
enabling services).
Supports OpenGL and 3D graphics acceleration in an
experimental driver (enable using the raspi-config)

To update the software under Raspbian, do the following:
> sudo apt-get update
> sudo apt-get upgrade
> sudo rpi-update

To find the package foo in the on-line repository, do the following:
> sudo apt-cache search foo

To install the package foo in the on-line repository, do the following:
> sudo apt-get install foo
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Virtualisation

In this powerful, multi-core configuration, an RPi2 can be used as
a server, running several VMs.
To this end RPi2 under Raspbian runs a hypervisor process,
mediating hardware access between the VMs.
Virtualisation is hardware-supported for the ARMv6 and ARMv7
instruction set
The ARMv7 instruction set includes a richer set of SIMD
(single-instruction, multiple-data) instructions (the NEON
extensions), to use parallelism and speed-up e.g. multi-media
applications
The NEON instruction allow to perform operations on up to 16
8-bit values at the same time, through the processor’s support for
64-bit and 128-bit registers
Performance improvements in the range of 8 − 16× have been
reported for multi-media applications
The usual power consumption of the Ri2 is between 3.5−−4 Watt
(compared to ca 3 Watt for the RPi1)
To compare the (peak) performance of RPi2 with RPi1, the
Dhrystone benchmark delievers 875 DMIPS on an RPi 1 and
6840 DMIPS on an RPi 2, i.e. ca 7×.
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CPU Performance Comparison: Hardware
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CPU Performance Comparison: Measurements
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CPU Performance Comparison: Measurements
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Note

RPi2 ca. 7.82× faster than RPi1

Banana Pi M2 is 1.11× faster than
RPi2

Cubox i4Pro is 1.46× faster
ODroid C1 is 1.38× faster

Intel i7 PC is 15.5× faster than RPi2



Network performance comparison: RPi 1 vs RPi 2

To compare network performance, encrypted data-transfer
through scp is used.
This profits from the quad-core architecture, because one core
can be dedicated to encryption, another core to the actual data
transfer.
An increase in network performance by a factor of 2.5× is
reported.
The highest observed bandwidth on the RPi 2 (with overclocking
to 1.05 GHz) is 70 Mbit/s.
The theoretcial peak performance of the LAN-port is ca 90 MBit/s.
The SunSpider benchmark for rendering web pages, reports up to
5× performance improvement.
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Network performance Measurements
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High-performance Alternatives

There are several single-board computers that provide a
high-performance alternative to the RPi.
These are of interest if you have applications with high
computational demands and you want to run it on a low-cost and
low-power device.
It’s possible to build for example a cluster of such devices as a
parallel programming platform: see The Glasgow University
Raspberry Pi Cloud
Here we give an overview of the main performance
characteristics of three RPi2 alternatives:

I the CuBox i4Pro by SolidRun
I the Banana Pi M3 by Sinovoip
I the Lemaker HiKey by Lemaker
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http://www.lemaker.org/product-hikey-specification.html


Core Specs of the CuBox i4-Pro

Freescale i.MX6 (SoC) quad-core, containing an ARM Cortex A9
(ARMv7 instruction set) with 4 cores
GC2000 GPU (supports OpenGL etc)
4 GB RAM and a micro-SD card slot
10/100/1000 Mb/s Ethernet (max 470Mb/s)
WLAN (802.11b/g/n)
Bluetooth 4.0
1 USB port and eSATA (3Gb/s) interface
Price: 124$

Software
Debian Linux, Kodi Linux, XBMC Linux
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Core Specs of the Banana Pi M3

Allwinner A83T (SoC) chip, containing an ARM Cortex-A7
(ARMv7 instruction set) with 8 cores
PowerVR SGX544MP1 GPU (supports OpenGL etc)
2 GB LPDDR3 RAM plus 8 GB eMMC memory and a micro-SD
card slot
Gigabit Ethernet
WLAN (802.11b/g/n)
Bluetooth 4.0
2 USB ports and SATA interface
40 GPIO pins (not compatible with RPi2)
Price: 90e

Software
BPI-Berryboot (allegedly with GPU support), or Ubuntu Mate

Experiences
SATA shares the the USB bus connection and is therefore slow
Problems accessing the on-board micro-phone
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Core Specs of the Lemaker Hikey

Kirin 620 (SoC) chip with ARM Cortex A53 and 8 cores
ARM Mali450-MP4 (supports OpenGL etc) GPU
1 or 2 GB LPDDR3 RAM plus 8 GB eMMC memory and a
micro-SD card slot
WLAN (802.11b/g/n)
Bluetooth 4.1
2 USB ports
40 GPIO pins (not compatible with RPi2)
Audio and Video via HDMI connectors
Board-layout matches the 96-board industrial standard for
embedded devices
Price: 120e

Software
Android variant (part of 96-board initiative)
Linaro (specialised Linux version for embedded devices)
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Banana Pi M3 and Lemaker Hikey: Specs

0Material from Raspberry Pi Geek 04/2016
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http://www.raspberry-pi-geek.de/Magazin/2016/04/Banana-Pi-M3-vs.-Lemaker-Hikey


Raspberry Pi 3 and Lemaker Hikey: Performance

Performance as runtime (of sysbench benchmark) and network
bandwidth (using lperf benchmark):

Perf. (runtime) Max Network bandwidth
number of threads power Ethernet WLAN

1 4 8
Raspberry Pi 2 297s 75s —
Raspberry Pi 3 182s 45s — 45 Mb/s
Cubox i4Pro 296s 75s —
Banana Pi M3 159s 40s 21s 1.1A 633 Mb/s 2.4 Mb/s
Lemaker Hikey 12s 3s 2s 1.7A — 37.3 Mb/s

Summary: In terms of performance, the Lemaker Hikey is the best
choice.

0Material from Raspberry Pi Geek 04/2016
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Raspberry Pi 3 and Lemaker Hikey: Performance
comparison

To run the (CPU) performance benchmark on the RPi2 do:

> sudo apt-get update
> sudo apt-get install sysbench
> sysbench --num-threads=1 --cpu-max-prime=10000 --test=cpu

run

0Material from Raspberry Pi Geek 04/2016
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Core Specs of Odroid-XU4

Exynos 5422 (SoC) Octa big.LITTLE ARM with an ARM
Cortex-A15 quad-core and an ARM Cortex-A7 quad-core
Mali-T628 MP6 GPU
2 GB LPDDR3 RAM plus eMMC memory and a micro-SD card
slot
Gigabit Ethernet
1 USB 2.0A and 1 USB 3.0 port
Video via HDMI connectors
40 GPIO pins (not compatible with RPi2)
Price: 95e

The CPU is the same as in high-end smartphones such as the
Samsug Galaxy S5.
The big.LITTLE architecture dynamically switches from (faster)
Cortex-A15 to (slower) Cortex-A7 to save power.
Software: Ubuntu 14.04 or Ubuntu 16.04; Android 4.4.4;
OpenMediaVault 2.2.13, Kali Linux, Debian.
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RPi3 vs Odroid-XU4: Specs

0Material from Raspberry Pi Geek 02/2017
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Odroid-XU4
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Network performance: RPi3 vs Odroid-XU4

Note: Raw network performance is ca. 5× faster on the ODroid-XU4!
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Raspberry Pi 3 and ODroid C2:
CPU Performance Comparison

0Material from Raspberry Pi Geek 04/2016
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Raspberry Pi 3 and ODroid C2:
I/O Performance Comparison

0Material from Raspberry Pi Geek 04/2016
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Raspberry Pi 3 and ODroid C2:
Network Performance Comparison

0Material from Raspberry Pi Geek 04/2016
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RPi3 vs Odroid-XU4: Experience

In terms of network-performance, the ODroid-XU4 is much faster.
It is a good basis for a NAS (Network attached Storage).
In terms of CPU-performance, the Odroid is slightly faster:
Cortex-A15 (2.0 GHz) vs Cortex-A53 (1.2 GHz).
However, in practice, the GUI is much slower.
Based on the gtkperf GUI benchmark, the ODroid is ca. 3×
slower.
The reason for this difference is more optimisation in the device
drivers for RPi’s VideoCore IV GPU (compared to ODroid’s Mali
GPU).
Note: To assess performance and usability, one has to consider
the entire software stack, not just the raw performance of the
hardware!
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Summary

The Raspberry Pi is one of the most widely-used single-board
computers.
The RPi comes in several version (1,2,3); we are using the
Raspberry Pi 2 model B.
There is a rich software eco-system for the RPis and excellent,
detailed documentation.
A good high-CPU-performance alternatives is: Lemaker HiKey
A good high-network-performance alternative is: Odroid-XU4
Check out the Raspberry Pi projects available online.
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Lecture 3:
Memory Hierarchy
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Memory Hierarchy: Introduction

Some fundamental and enduring properties of hardware and
software:

I Fast storage technologies cost more per byte, have less capacity,
and require more power (heat!).

I The gap between CPU and main memory speed is widening.
I Well-written programs tend to exhibit good locality.

These fundamental properties complement each other beautifully.
They suggest an approach for organizing memory and
storage systems known as a memory hierarchy.

0Lecture based on Bryant & O’Hallaron, 3rd edition, Chapter 6
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Memory Hierarchy

Our view of the main memory so far has been a flat one, ie.
access time to all memory locations is constant.
In modern architecture this is not the case.
In practice, a memory system is a hierarchy of storage devices
with different capacities, costs, and access times.
CPU registers hold the most frequently used data.
Small, fast cache memories nearby the CPU act as staging areas
for a subset of the data and instructions stored in the relatively
slow main memory.
The main memory stages data stored on large, slow disks, which
in turn often serve as staging areas for data stored on the disks or
tapes of other machines connected by networks
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Caches and Memory Hierarchy

Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 

and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files 
retrieved from disks on 
remote network servers.

Main memory holds disk 
blocks retrieved from local 
disks.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved from 
cache memory.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 

costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from memory.

L6:
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Discussion

As we move from the top of the hierarchy to the bottom, the devices
become slower, larger, and less costly per byte.

The main idea of a memory hierarchy is that storage at one level
serves as a cache for storage at the next lower level.

Using the different levels of the memory hierarchy efficiently is crucial
to achieving high performance.

Access to levels in the hierarchy can be explicit (for example when
using OpenCL to program a graphics card), or implicit (in most other
cases).
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The importance of the memory hierarchy

For the programmer this is important because data access times
are very different:

I Register: 0 cycles
I Cache: 1–30 cycles
I Main memory: 50–200 cycles

We want to store data that is frequently accessed high in the
memory hierarchy
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Locality

Principle of Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used recently
Temporal locality: Recently referenced items are likely to be
referenced again in the near future.
Spatial locality: Items with nearby addresses tend to be
referenced close together in time
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Locality Example: sum-over-array

ulong count; ulong sum;
for (count = 0, sum = 0; count<n; count++)

sum += arr[count];
res1->count = count;
res1->sum = sum;
res1->avg = sum/count;

}
Data references

I Reference array elements in succession (stride-1 reference
pattern). spatial locality

I Reference variable sum each iteration. temporal locality
Instruction references

I Reference instructions in sequence. spatial locality
I Cycle through loop repeatedly. spatial locality
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Importance of Locality

Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer!

Which of the following two version of sum-over-matrix has better
locality (and performance):

Traversal by rows: Traversal by columns:
int i, j; ulong sum;
for (i = 0; i<n; i++)
for (j = 0; j<n; j++)

sum += arr[i][j];

int i, j; ulong sum;
for (j = 0; j<n; j++)
for (i = 0; i<n; i++)
sum += arr[i][j];
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Caches

Cache: A smaller, faster storage device that acts as a staging
area for a subset of the data in a larger, slower device.
Fundamental idea of a memory hierarchy:

I For each k , the faster, smaller device at level k serves as a cache
for the larger, slower device at level k + 1.

Why do memory hierarchies work?
I Because of locality, programs tend to access the data at level k

more often than they access the data at level k + 1.
I Thus, the storage at level k + 1 can be slower, and thus larger and

cheaper per bit.

Big Idea: The memory hierarchy creates a large pool of storage
that costs as much as the cheap storage near the bottom, but that
serves data to programs at the rate of the fast storage near the
top.
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General Cache Concepts

0From Bryant and O’Hallaron, Ch 6
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General Cache Concepts: Hit

0From Bryant and O’Hallaron, Ch 6
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General Cache Concepts: Miss

0From Bryant and O’Hallaron, Ch 6
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General Cache Concepts: Miss

0From Bryant and O’Hallaron, Ch 6
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Types of Cache Misses

Cold (compulsory) miss:
I Cold misses occur because the cache is empty.

Conflict miss:
I Most caches limit blocks at level k+1 to a small subset (sometimes

a singleton) of the block positions at level k.
F E.g. Block i at level k+1 must be placed in block (i mod 4) at level k.

I Conflict misses occur when the level k cache is large enough, but
multiple data objects all map to the same level k block.

F E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.

Capacity miss:
I Occurs when the set of active cache blocks (working set) is larger

than the cache.
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Examples of Caching in the Memory Hierarchy

0From Bryant and O’Hallaron, Ch 6
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Summary

The speed gap between CPU, memory and mass storage
continues to widen.
Well-written programs exhibit a property called locality.
Memory hierarchies based on caching close the gap by exploiting
locality.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 3: Memory Hierarchy 82 / 276



Principles of Caches

Cache memories are small, fast SRAM-based memories
managed automatically in hardware.

I Hold frequently accessed blocks of main memory
CPU looks first for data in caches (e.g., L1, L2, and L3), then in
main memory.
Typical system structure:

Main
memory

I/O
bridgeBus interface

ALU

Register file
CPU chip

System bus Memory bus

Cache 
memories
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ARM Cortex A7 Cache Hierarchy

A cache is a small, fast block of memory that sits between the core and main memory. It holds
copies of items in main memory. Accesses to the cache memory happen significantly faster than
those to main memory. Because the cache holds only a subset of the contents of main memory,
it must store both the address of the item in main memory and the associated data. Whenever
the core wants to read or write a particular address, it will first look for it in the cache. If it finds
the address in the cache, it will use the data in the cache, rather than having to perform an
access to main memory. This significantly increases the potential performance of the system, by
reducing the effect of slow external memory access times. It also reduces the power
consumption of the system. NB: In many ARM-based systems, access to external memory will
take 10s or 100s of cycles.
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ARMv7-A Memory Hierarchy

See ARM Architcture Reference, Ch A3, Fig A3.6, p.157
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Caching policies: direct mapping

The caching policy determines how to map addresses (and their
contents) in main memory to locations in the chache.
Since the cache is much smaller, several main memory addresses
will be mapped to the same cache location.
The role of the caching policy is to avoid such clashes as much as
possible, so that the cache can be used for most memory
read/write operations.
The simplest caching policy is a direct mapped cache:

I each location in main memory always maps to a single location in
the cache

I this policy is simple to implement, and therefore requires little
hardware

I a weakness of the policy is, that if two frequently used memory
addresses map to the same cache address, this results in a lot of
cache misses (“cache thrashing”)
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Direct mapped cache

0See ARM Programmer’s Guide, Ch 8, Fig 8.4, p 113
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Caching policies: set-associative

To eliminate the weakness of the direct-mapped caches, a more
flexible set-associative cache can be used.
With this policy, one memory location can map to one of several
ways in the cache.
Conceptually, each way represents a slice of the cache.
Therefore, a main memory address can be mapped to any of
these slices in the cache.
Inside one such slice, however, the location is fixed.
If the system uses n such slices (“ways”) it is called an n-way
associative cache.
This avoids cache thrashing in cases where no more than n
frequently used variables (memory locations) occur.

NB: The ARM Cortex A7 uses a 4-way set associative data cache,
with cache size of 32kB, and a cache line size of 8 words
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Set-associative cache

0See ARM Programmer’s Guide, Ch 8, Fig 8.5, p 115
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ARM cache features
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ARM cache features
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ARM Cortex A7 Structure
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Example: Cache friendly code

See the background reading material on the web page:
Web aside on blocking in matrix multiplication
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Summary: Memory Hierarchy

In modern architectures the main memory is arranged in a
hierarchy of levels (“memory hierarchy”).
Levels higher in the hierarchy (close to the processor) have fast
access time but small capacity.
Levels lower in the hierarchy (further from the processor) have
slow access time but large capacity.
Modern systems provide hardware (caches) and software
(paging; configurable caching policies) support for managing the
different levels in the hierarchy.
The simplest caching policy uses direct mapping
Modern ARM architectures use a more sophisticated set
associative cache, that reduces “cache thrashing”.
For a programmer it’s important to be aware of the impact of
spatial and temporal locality on the performance of the program.
Making good use of the cache can reduce runtime by a factor of
ca. 3 as in our example of blocked matrix multiplication.
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Lecture 4.
Programming external devices
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Basics of the I2C interface

So far we always used the GPIO interface to directly connect
external devices.
This is the easiest interface to use.
It is however limited in the number of connections and devices you
can connect with.
A more general interface is the I2C interface or the I2C bus.

0Based on the article The I2C-bus of the Raspberry Pi (Der I2C-Bus des Raspberry
Pi) (in German), Raspberry Pi Geek 01/15
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Basics of the I2C interface

I2C is a serial master-slave bus.
It is serial, i. e.communication is one bit at a time.
It allows to connect several masters (data-providers) with several
slaves (data-consumers)
It is designed for short-distance communication,
i. e.communication on a board
Therefore it is also used in the standard Linux kernel to monitor,
e. g.temperature and other system health information
I2C was originally developed by Philips in the 1980s, and has
become an industry standard.
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Technical detail on I2C

Communication uses 2 connections:
I a serial data line (SDA)
I a serial clock line (SCL) for synchronising the communication

Both connections use pull-up resistors to encode one bit (high
potential = 1)
The two sides of the communication are

I a master that sends the clock information and initiates
communication

I a slave that receives the data

Typical communication rates are between 100 kb/s (standard
mode) and 5 Mb/s (ultra fast mode)
NB: I2C was not designed for communicating large volumes of
data
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Technical detail on I2C

I2C uses a 7-bit address space, i. e.128 possible addresses of
which 16 are reserved.
The 8-th bit indicates the direction of the data transfer between
master and slave.
The usable address-space is defined in the technical
documentation of the device. E. g.
PCF8574 Port-Expander 0x20 – 0x27
PCF8583 Clock/Calendar 0xA0 – 0xA2

The device PCF8583 is a chip that provides an external clock,
with three registers starting at 0xA0
As an example we will now use the PCF8574 port-expander,
which is accessed through address 0x20.
This can be used to e. g. control an LCD display over just one data
channel.
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Block Diagram of the PCF8574 Port Expander

NB: 1 input data channel (SDA), 8 output data channels (P0 . . . P7)

0From PCF8574 Data Sheet
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What’s happening on the wires?

signals start with HIGH

a change in the SDA signal, with SCL HIGH, indicates start/stop

0From PCF8574 Data Sheet
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How are the bits transferred?

one bit is transferred during each clock pulse
data is sampled while the SCL line is HIGH
the SDA line needs to be stable during this HIGH period
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A typical system configuration using I2C

lines are (quasi-)bidirectional
a device generating a message is a “transmitter”
a device receiving is the “receiver”
the controller of the message is the “master”
the receivers of the message are the “slaves”
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I2C on the Raspberry Pi 2

On the RPi2 the following pins provide an I2C interface: physical
Pin 03 (SDA) and Pin 05 (SCL) (these are pins 2 and 4 in the
BCM numbering)
In the following example we will use these pins to connect a
PCF8574 device.
In our configuration we connect the device with four buttons and
LEDs as shown in the picture below.
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Test configuration

0From The I2C-bus of the Raspberry Pi (Der I2C-Bus des Raspberry Pi) (in
German), Raspberry Pi Geek 01/15
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Software configuration

We use the wiringPi library that we have installed and
discussed before.

We also need the i2c-tools package for the drivers
communicating over the I2C bus
To install i2c-tools do the following:
> sudo apt-get install i2c-tools
> sudo adduser pi i2c
> gpio load i2c

We can now use i2cdetect to check the connection between
our RPi2 and the external device:
> i2cdetect -y 1

This shows that we can reach the device through address 0x20
The 4 high-bits in that address refer to the LEDs, the 4 low-bits
refer to the buttons
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Software configuration

Initially all lines are at high, so all LEDs should light up
To turn LEDs off, one-by-one we execute:

> i2cset -y 1 0x20 0x00
> i2cset -y 1 0x20 0x10
> i2cset -y 1 0x20 0x20
> i2cset -y 1 0x20 0x40
> i2cset -y 1 0x20 0x80

Now we want to configure the button as an input device:

> i2cset -y 1 0x20 0x0f
> watch ’i2cget -y 1 0x20’

Using watch we continously get output about the current value
issued by the button
Pressing the button will change the observed value

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 4: Prging ext devices 107 / 276



A C API for I2C

Now we want to use the I2C-bus to programmatically control
external devices
We use the following API provided by Gordon Henderson’s
wiringPi library:
int wiringPiI2CSetup (const int devId)

Open the I2C device, and regsiter the target device
int wiringPiI2CRead (int fd)

Simple device read
int wiringPiI2CWrite (int fd, int data)

Simple device write
int wiringPiI2CReadReg8 (int fd, int reg)

Read an 8-bit value from a regsiter on the device
int wiringPiI2CWriteReg8 (int fd, int reg, int value)

Write a 8-bit value to the given register
and similar read/write interface for 16-bit values.
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Sample Source for I2C

Using this interface we can make the LEDs blink one-by-one:
#include <wiringPiI2C.h>
int main(void) {
int handle = wiringPiI2CSetup(0x20) ;
wiringPiI2CWrite(handle, 0x10);
delay(5000);
wiringPiI2CWrite(handle, 0x20);
delay(5000);
wiringPiI2CWrite(handle, 0x40);
delay(5000);
wiringPiI2CWrite(handle, 0x80);
delay(5000);
wiringPiI2CWrite(handle, 0x00);
return 0;

}

NB: We access the LEDs as a bitmask on the high 4-bits, setting the
low 4-bits to zero in each case.
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Further Reading & Hacking

The I2C-bus of the Raspberry Pi (Der I2C-Bus des Raspberry Pi)
(in German), Raspberry Pi Geek 01/15
Data sheet of the PCF8574 port-expander
I2CTutorial
Configuring I2C, SMBus on Raspbian Linux
Using wiringPi on the PCF8574
Using an PCF8574 to control an LCD display
Another guide how to use an PCF8574 to control an LCD display
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Lecture 5.
Exceptional Control Flow
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What are interrupts and why do we need them?

In order to deal with internal or external events, abrupt changes in
control flow are needed.
Such abrupt changes are also called exceptional control flow
(ECF).
Informally, these are known as hardware- and
software-interrupts.
The system needs to take special action in these cases (call
interrupt handlers, use non-local jumps)

0Lecture based on Bryant and O’Hallaron, Ch 8
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ECF on different levels

ECF occurs at different levels:
hardware level: e.g. arithmetic overflow events detected by the
hardware trigger abrupt control transfers to exception handlers
operating system: e.g. the kernel transfers control from one user
process to another via context switches.
application level: a process can send a signal to another process
that abruptly transfers control to a signal handler in the recipient.

In this class we will cover an overview of ECF with examples from
the operating system level.
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Handling ECF on different levels

ECF is dealt with in different ways:
hardware level: call an interrupt routine, typ. in Assembler
operating system: call a signal handler, typ. in C
application level: call an exception handler, e.g. in a Java
catch block
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Why do we need this?

Why do you need to understand ECF/interrupts:
Understanding ECF will help you understand important
systems concepts. Interrupts are used by the OS to deal with
I/O, virtual memory etc.
Understanding ECF will help you understand how
applications interact with the operating system. To request a
service from the OS, a program needs to perform a system call,
which is implemented as an interrupt.
Understanding ECF will help you write interesting new
application programs. To implement the concept of a process
waiting for an event, you’ll need to use interrupts.
Understanding ECF will help you understand how software
exceptions work. Most programming languages have “exception”
constructs in the form of try, catch, and throw statements.
These are implemented as non-local jumps, as application-level
ECF.
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Exceptions

Definition
An exception is an abrupt change in the control flow in response to
some change in the processor’s state.

A change in the processor’s state (event) triggers an abrupt control transfer
(an exception) from the application program to an exception handler. After it
finishes processing, the handler either returns control to the interrupted
program or aborts.
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Exceptions (cont’d)

When the processor detects that the event has occurred, it makes an
indirect procedure call (the exception), through a jump table called an
exception table, to an operating system subroutine (the exception
handler) that is specifically designed to process this particular kind of
event.
When the exception handler finishes processing, one of three things
happens, depending on the type of event that caused the exception:

The handler returns control to the current instruction, i.e. the
instruction that was executing when the event occurred.
The handler returns control to the instruction that would have
executed next had the exception not occurred.
The handler aborts the interrupted program.
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Exceptions (cont’d)

When the processor detects that the event has occurred, it makes an
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Interrupt handling

The interrupt handler returns control to the next instruction in the
application program’s control flow.
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Exception Handling

Exception Handling requires close cooperation between software and
hardware.

Each type of possible exception in a system is assigned a unique
nonnegative integer exception number.
Some of these numbers are assigned by the designers of the
processor. Other numbers are assigned by the designers of the
operating system kernel.
At system boot time (when the computer is reset or powered on),
the operating system allocates and initializes a jump table called
an exception table, so that entry k contains the address of the
handler for exception k .
At run time (when the system is executing some program), the
processor detects that an event has occurred and determines the
corresponding exception number k . The processor then triggers
the exception by making an indirect procedure call, through
entry k of the exception table, to the corresponding handler.
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Exception table

Exception
table

0
1

2 ...

n-1

 Code for  
exception handler 0

 Code for  
exception handler 0

Code for 
exception handler 1

Code for 
exception handler 1

Code for
exception handler 2

Code for
exception handler 2

Code for 
exception handler n-1

Code for 
exception handler n-1

...
The exception table is a jump table where entry k contains the address
of the handler code for exception k .
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Calculating the adress of an exception handler

Exception table

+

Exception number 
(x 4)

0
1

2

n-1

Address of entry
for exception # kException table

base register

...

This picture shows how the processor uses the exception table to form
the address of the appropriate exception handler. The exception
number is an index into the exception table, whose starting address is
contained in a special CPU register called the exception table base
register.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface
Lec 5: Exceptional Control Flow 121 /

276



Differences between exception handlers and
procedure calls

Calling an exception handler is similar to calling a procedure/method,
but there are some important differences:

Depending on the class of exception, the return address is either
the current instruction or the next instruction.
The processor also pushes some additional processor state onto
the stack that will be necessary to restart the interrupted program
when the handler returns.
If control is being transferred from a user program to the kernel, all
of these items are pushed onto the kernel’s stack rather than onto
the user’s stack.
Exception handlers run in kernel mode, which means they have
complete access to all system resources.
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Classes of exceptions

Exceptions can be divided into four classes: interrupts, traps, faults,
and aborts:

Class Cause (A)Sync Return behavior
Interrupt Signal from I/O device Async Always returns to next instr
Trap Intentional exception Sync Always returns to next instr
Fault Potent. recoverable error Sync Might return to current instr
Abort Nonrecoverable error Sync Never returns

It is useful to distinguish 2 reasons for an exceptional control flow:
an exception is any unexpected change in control flow;
e.g. arithmetic overflow, using an undefined instruction, hardware
timer
an interrupt is an unexpected change in control flow triggered by
an external event;
e.g. I/O device request, hardware malfunction

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface
Lec 5: Exceptional Control Flow 123 /

276



Traps and System Calls

Traps are intentional exceptions that occur as a result of
executing an instruction.
Traps are often used as an interface between application program
and OS kernel.
Examples: reading a file (read), creating a new process (fork),
loading a new program (execve), or terminating the current
process (exit).
Processors provide a special “syscall n” instruction.
This is exactly the SWI instruction on the ARM processor.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface
Lec 5: Exceptional Control Flow 124 /

276



Trap Handling

The trap handler returns control to the next instruction in the
application program’s control flow.
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Faults

Faults result from error conditions that a handler might be able
to correct.
Note that after fault handling, the processor typically reexecutes
the same instruction.
Example: page fault exception.

I Assume an instruction references a virtual address whose
corresponding physical page is not in memory.

I In this case page fault is triggered.
I The fault handler loads the required page into main memory.
I After that the same instruction needs to be executed again.
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Fault handling

Depending on whether the fault can be repaired or not, the fault
handler either reexecutes the faulting instruction or aborts.
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Aborts

Aborts result from unrecoverable fatal errors, typically hardware errors
such as parity errors that occur when DRAM or SRAM bits are
corrupted. Abort handlers never return control to the application
program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface
Lec 5: Exceptional Control Flow 128 /

276



Common system calls

Number Name Description
1 exit Terminate process
2 fork Create new process
3 read Read file
4 write Write file
5 open Open file
6 close Close file
7 waitpi Wait for child to terminate
11 execve Load and run program
19 lseek Go to file offset
20 getpid Get process ID

0For a more complete list see Smith, Appendix B “Raspbian System Calls”
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Common system calls

Number Name Description
27 alarm Set signal delivery alarm clock
29 pause Suspend process until signal arrives
37 kill Send signal to another process
48 signal Install signal handler
63 dup2 Copy file descriptor
64 getppid Get parent’s process ID
65 getpgrp Get process group
67 sigaction Install portable signal handler
90 mmap Map memory page to file
106 stat Get information about file

0For the truly complete list see /usr/include/sys/syscall.h
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Signal handlers in C

UNIX signals are a higher-level software form of exceptional control
flow, that allows processes and the kernel to interrupt other processes.

Signals provide a mechanism for exposing the occurrence of such
exceptions to user processes.
For example, if a process attempts to divide by zero, then the
kernel sends it a SIGFPE signal (number 8).
Other signals correspond to higher-level software events in the
kernel or in other user processes.

0From Bryant and O’Hallaron, Sec 8.5
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Signal handlers in C (cont’d)

For example, if you type a ctrl-c (i.e. press the ctrl key and the
c key at the same time) while a process is running in the
foreground, then the kernel sends a SIGINT (number 2) to the
foreground process.
A process can forcibly terminate another process by sending it a
SIGKILL signal (number 9).
When a child process terminates or stops, the kernel sends a
SIGCHLD signal (number 17) to the parent.
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Signal handling

Receipt of a signal triggers a control transfer to a signal handler. After
it finishes processing, the handler returns control to the interrupted
program.
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Example: handling ctrl-c

// header files
#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

void ctrlc_handler(int sig) {
fprintf(stderr, "Received signum %d; thank you for pressing

CTRL-C\n", sig);
exit(1);

}

int main() {
signal(SIGINT, ctrlc_handler); // install the signal handler
while (1) { } ; // infinite loop

}
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Example: handling ctrl-c in more detail

See signal2.c
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Example: sending SIGALARM by the kernel

/* signal handler, i.e. the fct called when a signal is
received */

void handler(int sig)
{

static int beeps = 0;

printf("BEEP %d\n", beeps+1);
if (++beeps < 5)

alarm(1); /* Next SIGALRM will be delivered in 1 second

*/
else {

printf("BOOM!\n");
exit(1);

}
}

int main() {
signal(SIGALRM, handler); /* install SIGALRM handler; see:

man 2 signal */
alarm(1); /* Next SIGALRM will be delivered in 1s; see: man

2 alarm */

while (1) { /* nothing */ ; /* Signal handler returns
control here each time */

}
exit(0);

}
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Timers

We now want to use timers, i.e. setting up an interrupt in regular
intervals.
The BCM2835 chip as an on-board timer for time-sensitive
operations.
We will explore three ways of achieving this:

I using C library calls (on top of Raspbian)
I using assembler-level system calls (to the kernel running inside

Raspbian)
I by directly probing the on-chip timer available on the RPi2

In this section we will cover how to use the on-chip timer to
implement a simple timeout function in C

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface
Lec 5: Exceptional Control Flow 137 /

276



Overview

Features of the different approaches:
C library calls (on top of Raspbian)

I are portable across hardware and OS
I require a (system) library for handling the timer

assembler-level system calls (to the kernel running inside
Raspbian)

I depend on the OS, but are portable across hardware
I require a support for software-interrupts in the OS kernel

directly probing the on-chip timer available on the RPi2
I depend on both hardware and OS
I the instructions for probing a hardware timer are specific to the

hardware
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Example: C library functions for controlling timers

getitimer, setitimer - get or set value of an interval timer
#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *

new_value,
struct itimerval *old_value);

setitimer sets up an interval timer that issues a signal in an interval
specified by the new value argument, with this structure:
struct itimerval {

struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */

};
struct timeval {

time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};
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C library functions for controlling timers

There are three kinds of timers, specified by the which argument:
ITIMER REAL decrements in real time, and delivers SIGALRM
upon expiration.
ITIMER VIRTUAL decrements only when the process is
executing, and delivers SIGVTALRM upon expiration.
ITIMER PROF decrements both when the process executes and
when the system is executing on behalf of the process. Coupled
with ITIMER VIRTUAL, this timer is usually used to profile the
time spent by the application in user and kernel space. SIGPROF
is delivered upon expiration.

0See: man getitimer
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Programming a C-level signal handler

Signals (or software interrupts) can be programmed on C level by
associating a C function with a signal sent by the kernel.
sigaction - examine and change a signal action
#include <signal.h>
int sigaction(int signum, const struct sigaction *act,

struct sigaction *oldact);

The sigaction structure is defined as something like:
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *,

void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};NB: the sa handler or sa sigaction fields define the action to be
performed when the signal with the id signum is sent.

0See man sigaction
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Programming Timers using C library calls

We need the following headers:

#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>

// in micro-sec
#define DELAY 250000

0Sample source in itimer11.c
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Programming Timers using C library calls

int main ()
{
struct sigaction sa;
struct itimerval timer;

fprintf(stderr, "configuring a timer with a delay of %d
micro-seconds ...\n", DELAY);

/* Install timer_handler as the signal handler for
SIGALRM. */

memset (&sa, 0, sizeof (sa));
sa.sa_handler = &timer_handler;
sigaction (SIGALRM, &sa, NULL);

Calling sigaction like this, causes the function timer handler to
be called whenever signal SIGALRM arrives.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface
Lec 5: Exceptional Control Flow 143 /

276



Programming Timers using C library calls

Now, we need to set-up a timer to send SIGALRM every DELAY
micro-seconds:

/* Configure the timer to expire after 250 msec... */
timer.it_value.tv_sec = 0;
timer.it_value.tv_usec = DELAY;
/* ... and every 250 msec after that. */
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = DELAY;
/* Start a real timer. It counts down whenever this

process is executing. */
setitimer (ITIMER_REAL, &timer, NULL);

/* A busy loop, doing nothing but accepting signals */
while (1) {} ;

}

0Sample source in itimer11.c
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Further Reading & Hacking

Randal E. Bryant, David R. O’Hallaron “Computer Systems: A
Programmers Perspective”,
3rd edition, Pearson, 7 Oct 2015. ISBN-13: 978-1292101767.
Chapter 8: Exceptional Control Flow

David A. Patterson, John L. Hennessy. “Computer Organization
and Design: The Hardware/Software Interface”,
ARM edition, Morgan Kaufmann, Apr 2016. ISBN-13:
978-0128017333.
Section 4.9: Exceptions

tewart Weiss. “UNIX Lecture Notes”
Chapter 5: Interactive Programs and Signals
Department of Computer Science, Hunter College, 2011
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Summary

Interrupts trigger an exceptional control flow, to deal with
special situations.
Interrupts can occur at several levels:

I hardware level, e.g. to report hardware faults
I OS level, e.g. to switch control between processes
I application level, e.g. to send signals within or between processes

The concept is the same on all levels: execute a short sequence
of code, to deal with the special situation.
Depending on the source of the interrupt, execution will continue
with the same, the next instruction or will be aborted.
The mechanisms how to implement this behaviour are different:
in software on application level, in hardware with jumps to entries
in the interrupt vector table on hardware level
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Lecture 6:
Computer Architecture
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Classes of Computer Architectures

There is a wide range of computer architectures from small-scale
(embedded) to large-scale (super-computers)
In this course we focus on embedded systems
A key requirement for these devices is low power consumption
This is also increasingly important for main-stream hardware and
even for super-computing
Embedded devices are found in cars, planes, house-hold devices,
network-devices, cell-phones etc
This is the most rapidly growing market for computer hardware
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Number of processors produced

0From Patterson & Hennessy, Chapter 1
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Limitations to further improvements

0From Patterson & Hennessy, Chapter 1
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Processor Architectures: Introduction

In this part we take a brief look at the design of processor
hardware.
This view will give you a better understanding of how computers
work.
In particular you will gain a better understanding of issues relevant
to resource consumption.
So far we have used a very simple model of a CPU: each
instruction is fetched and executed to completion before the next
one begins.
Modern processor architectures use pipeling to execute multiple
instructions simultaneously (“super-scalar architectures”).
Special measures need to be taken to ensure that the processor
computes the same results as it would with sequential execution.
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A simple picture of the CPU

The ALU executes arithmetic/logic operations with arguments in
registers
Load and store instructions move data between memory and
registers
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Why should you learn about architecture design?

It is intellectually interesting and important.
Understanding how the processor works aids in understanding
how the overall computer system works.
Although few people design processors, many design hardware
systems that contain processors.
You just might work on a processor design.
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Stages of executing an assembler instruction

Processing an assembler instruction involves a number of operations:
1 Fetch: The fetch stage reads the bytes of an instruction from

memory, using the program counter (PC) as the memory address.
2 Decode: The decode stage reads up to two operands from the

register file.
3 Execute: In the execute stage, the arithmetic/logic unit (ALU)

either performs the operation specified by the instruction,
computes the effective address of a memory reference, or
increments or decrements the stack pointer.

4 Memory: The memory stage may write data to memory, or it may
read data from memory.

5 Write back: The write-back stage writes up to two results to the
register file.

6 PC update: The PC is set to the address of the next instruction.
NB: The processing depends on the instruction, and certain stages
may not be used.
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Unpipelined computation hardware

Combinational
logic

R
e
g

300 ps 20 ps

Clock

Delay = 320 ps
Throughput = 3.12 GIPS

Time

I1

I2

I3

(a) Hardware: Unpipelined

(b) Pipeline diagram

On each 320 ps cycle, the system spends 300 ps evaluating a
combinational logic function and 20 ps storing the results in an output
register.

0From Bryant, Chapter 4
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Instruction-level parallelism

Key observation: We can do the different stages of the execution
in parallel (“instruction-level parallelism”)
An architecture that allows this kind of parallelism is called
“pipelined” architecture
This is a big performance boost: ideally each instruction takes just
1 cycle (as opposed to 5 cycles for the 5 stages of the execution)
However, the ideal case is often not reached, and modern
architecture play clever tricks to get closer to the ideal case:
branch prediction, out-of-order execution etc
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Three-stage pipelined computation hardware

The computation is split into stages A, B, and C. On each 120-ps
cycle, each instruction progresses through one stage.

0From Bryant, Chapter 4
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Three-stage pipeline timing

The rising edge of the clock signal controls the movement of
instructions from one pipeline stage to the next.
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Example: One clock cycle of pipeline operation.

We now take a closer look on how values are propagated through
the pipeline.
Instruction I1 has completed stage B
Instruction I2 has completed stage A

0From Bryant, Chapter 4, Fig 4.35
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Example: One clock cycle of pipeline operation.

Just before clock rise: values have been computed (stage A of
instruction I2, stage B of instruction I1), but the pipeline registers have
not been updated, yet.

0From Bryant, Chapter 4
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Example: One clock cycle of pipeline operation.

On clock rise, inputs are loaded into the pipeline registers.

0From Bryant, Chapter 4
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Example: One clock cycle of pipeline operation.

Signals then propagate through the combinational logic (possibly at
different rates).

0From Bryant, Chapter 4
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Example: One clock cycle of pipeline operation.

Before time 360, the result values reach the inputs of the pipeline
registers, to be propagated at the next rising clock.

0From Bryant, Chapter 4
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Multiple-clock-cycle pipeline diagram

0From Patterson & Hennessy, Chapter 4
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Abstract view of a sequential processor

The information processed
during execution of an in-
struction follows a clockwise
flow starting with an instruc-
tion fetch using the program
counter (PC), shown in the
lower left-hand corner of the
figure.
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Discussion of pipelined execution

The main pipeline stages are:
Fetch: Using the program counter register as an address, the
instruction memory reads the bytes of an instruction. The PC
incrementer computes valP, the incremented program counter.
Decode: The register file has two read ports, A and B, via which
register values valA and valB are read simultaneously.
Execute: This uses the arithmetic/logic (ALU) unit for different
purposes according to the instruction type: integer operations,
memory access, or branch instructions.
Memory: The Data Memory unit reads or writes a word of
memory (memory instruction). The instruction and data memories
access the same memory locations, but for different purposes.
Write back: The register file has two write ports. Port E is used to
write values computed by the ALU, while port M is used to write
values read from the data memory.
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Abstract view of a pipelined processor

Hardware structure of a
pipelined implementation.
By inserting pipeline regis-
ters between the stages, we
create a five-stage pipeline.

0From Bryant, Chapter 4
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Pipeline registers
The pipeline registers are labeled as follows:

F holds a predicted value of the program counter.
D sits between the fetch and decode stages. It holds information
about the most recently fetched instruction for processing by the
decode stage.
E sits between the decode and execute stages. It holds
information about the most recently decoded instruction and the
values read from the register file for processing by the execute
stage.
M sits between the execute and memory stages. It holds the
results of the most recently executed instruction for processing by
the memory stage. It also holds information about branch
conditions and branch targets for processing conditional jumps.
W sits between the memory stage and the feedback paths that
supply the computed results to the register file for writing and the
return address to the PC selection logic when completing a return
instruction.
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Example of instruction flow through pipeline
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The ARM picture

The pipeline in the BCM2835 SoC for the RPi has 8 pipeline stages:
1 Fe1: The first Fetch stage, where the address is sent to memory

and an instruction is returned.
2 Fe2: Second fetch stage, where the processor tries to predict the

destination of a branch.
3 De: Decoding the instruction.
4 Iss: Register read and instruction issue
5 Only for ALU operations:

1 Sh: Perform shift operations as required.
2 ALU: Perform arithmetic/logic operations.
3 Sat: Saturate integer results.

6 WBi: Write back of data from any of the above sub-pipelines.

0See slidesRPiArch and the table in Smith’s book
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Pipelining and branches

How can a pipelined architecture deal with conditional branches?
In this case the processor doesn’t know the successor instruction
until further down the pipeline.
To deal with this, modern architectures perform some form of
branch prediction in hardware.
There are two forms of branch prediction:

I static branch prediction always takes the same guess (e.g. guess
always taken)

I dynamic branch prediction uses the history of the execution to take
better guesses

Performance is significantly higher when branch predictions are
correct
If they are wrong, the processor needs to stall or inject bubbles
into the pipeline
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Example: bad branch prediction

.global _start

.text
_start: EORS R1, R1, R1 @ always 0

BNE target @ Not taken
MOV R0, #11 @ fall through
MOV R7, #1
SWI 0

target: MOV R0, #1
MOV R7, #1
SWI 0

Branch prediction: we assume the processor takes an always taken
policy, i.e. it always assumes that that a branch is taken
NB: the conditional branch (BNE) will never be taken, because
exclusive-or with itself always gives 0, i.e. this is a deliberately bad
example for the branch predictor
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Processing mispredicted branch instructions.

Predicting “branch taken”, instruction 0x014 is fetched in cycle 3,
and instruction 0x018 is fetched in cycle 4.
In cycle 4 the branch logic detects that the branch is not taken
It therefore abandons the execution of 0x014 and 0x018 by
injecting bubbles into the pipeline.
The result will be as expected, but performance is sub-optimal!

0Adapted from Bryant, Figure 4.62
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Example of bad branch prediction

Code example: sumav3 asm
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Hazards of Pipelining

Pipelining complicates the processing of instructions because of:
I Control hazards, where branches are mis-predicted (as we have

seen)
I Data hazards, where data dependencies exist between

subsequent instructions
Several ways exist to solve these problems:

I To deal with control hazards, branch prediction is used and, if
necessary, partially executed instructions are abandoned.

I To deal with data hazards, bubbles can be injected to delay the
execution of instructions, or data in pipeline registers (but not
written back) can be forwarded to other stages in the pipeline.

A lot of the complexities in modern processors is due to deep
pipelining, (possibly dynamic) branch prediction, and forwarding of
data

For details on pipelining and data hazards, see Bryant & O’Hallaron,
Computer Systems: A Programmer’s View, Chapter 4 (especially
Sec 4.4 and 4.5).
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Data Hazards

The branch-prediction example above was a case of a control
hazard.
Now we look into a simple example of a data hazard.
Consider the following simple ARM assembler program:

ADD R3, R1, R2 @ R3 = R1 + R2
SUB R0, R3, R4 @ R0 = R3 - R4

Note, the result from the first instruction, in R3, will only become
available in the write-back (5th) stage
But, the data in R3 is needed already in the decode (2nd) stage of
the second instruction
Without intervention, this would stall the pipeline, similar to the
branch-mis-prediction case
The solution to this is to introduce forwarding (or by-passing) to
the hardware of the processor
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A Graphical Representation of Forwarding

0From Patterson & Hennessy, Chapter 4
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Example: Reordering Code to Avoid Pipeline Stalls

We have previously examined, how C expressions are compiled to
Assembler code. For example, consider this C program fragment:

int a, b, c, d, e, f;
a = b + e;
c = b + f;

Knowing about control and data hazards motivates reordering of
code that should be done by the compiler to avoid pipeline stalls.
Such reordering is commonly done in the backend of compilers.
Therefore, the sequence of Assembler instructions might be
different from the one you expect.
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Data layout and code for a C expression

0From Patterson & Hennessy, Chapter 4
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Example: Reordering Code to Avoid Pipeline Stalls

Example: Translate the following C expression into Assembler:

int a, b, c, d, e, f;
a = b + e;
c = b + f;

Example: We assume the variables are stored in memory, starting
from the location held in register R0. Here is the naive Assembler code:

LDR R1, [R0, #4] @ load b
LDR R2, [R0, #16] @ load e
ADD R3, R1, R2 @ b + e
STR R3, [R0, #0] @ store a
LDR R4, [R0, #20] @ load f
ADD R5, R1, R4 @ b + f
STR R5, [R0, #12] @ store c

Can you spot the data hazard in this example?
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A Graphical Representation of a Load-Store Hazard

0From Patterson & Hennessy, Chapter 4
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Example: Reordering Code to Avoid Pipeline Stalls

Example: Translate the following C expression into Assembler:

int a, b, c, d, e, f;
a = b + e;
c = b + f;

Example: The reordered Assembler code, eliminating the data hazard:

LDR R1, [R0, #4] @ load b
LDR R2, [R0, #16] @ load e
LDR R4, [R0, #20] @ load f; moved_up
ADD R3, R1, R2 @ b + e
STR R3, [R0, #0] @ store a
ADD R5, R1, R4 @ b + f
STR R5, [R0, #12] @ store c

Moving the third LDR instruction upward, makes its result available
soon enough to avoid a pipeline stall.
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Summary: Processor Architecture and Pipelining

Modern (“super-scalar”) processors can execute several
instructions at the same time, by organising the execution of an
instruction into several stages and using a pipeline structure.
This exploits instruction-level parallelism and boosts
performance.
However, there is a risk of control and data hazards, leading to
reduced performance, e.g. due to poor branch prediction
Knowing these risks, you can develop faster code!
These code transformations are often done internally by the
compiler.
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Lecture 7: Code Security: Buffer Overflow Attacks

Code Security deals with writing code that is “secure” against
attacks, i.e. that cannot be tricked in performing an unintended
task.
This is important across all application domains, e.g. web
programming, server programming, embedded systems
programming.
It is particularly important in embedded systems programming,
because you often don’t have OS protection against attacks.
You will learn more about security in F20CN: Computer Network
Security.
Here we focus on the security of low-level code and in particular
on buffer overflow attacks.
NB: Buffer overflow attacks are some of the most commonly
occuring security bugs
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Dynamically Changing Attributes: setuid

Background: dynamically changing the ownership of programs.
Sometimes we want to specify that a file can only be modified by a
certain program.
Thus, we want to control access on a per-program, rather than a
per-user basis.
We can achieve this by creating a new user, representing the role
of a modifier for these files.
Mark the program, as setuid to this user.
This means, no matter who started the program, it will run under
the user id of this new user.
Example:

Beware: setuid programs are a major security pitfall!
0Figure from “Security Engineering” by Ross Anderson, Chapters 4, 6
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Example code for setuid

static uid_t euid, uid;
int main(int argc, char * argvp[]) {

FILE *file;
/* Store real and effective user IDs */
uid = getuid(); euid = geteuid();
/* Drop privileges */
seteuid(uid);
/* Do something useful ... */
/* Raise privileges, in order to access the file */
seteuid(euid);
/* Open the file; NB: this is owned and readable only by a different user */
file = fopen("/tmp/logfile", "a");
/* Drop privileges again */
seteuid(uid);
/* Write to the file */
if (file) {
fprintf(file, "Someone used this program: UID=%d, EUID=%d\n", getuid(), geteuid());

} else {
fprintf(stderr, "Could not open file /tmp/logfile; aborting ...\n");
return 1;

}
/* Close the file and return */
fclose(file); return 0; }
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Testing this prgram

As normal user do the following:
# do everything in an open directory
> cd /tmp
# download the source code
> wget http://www.macs.hw.ac.uk/˜hwloidl/Courses/F21CN/Labs/OSsec/setuid1.c

# compile the program
> gcc -o s1 setuid1.c
# change permissions so that everyone can execute it
> chmod a+x s1
# check the permissions
> ls -lad s1
-rwxrwxr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1
# generate an empty logfile
> touch /tmp/logfile
# change permissions to make it read/writeable only by the owner!
> chmod go-rwx /tmp/logfile
# check the permissions
> ls -lad /tmp/logfile
-rw------- 1 hwloidl hwloidl 0 2011-11-11 22:06 /tmp/logfile
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As guest user do the following

> cd /tmp
# try to run the program
> ./s1
Could not open file /tmp/logfile; aborting ...
# this failed, because guest doesn’t have permission to write to logfile

As normal user do the following

# set the setuid bit
> chmod +s s1
> ls -lad s1
-rwsrwsr-x 1 hwloidl hwloidl 10046 2011-11-11 22:06 s1

Now, as guest you can run the program:

> ./s1
# now this succeeds, although the user still cannot read the file
> cat /tmp/logfile
cat: /tmp/logfile: Permission denied

But the normal user can read the file, eg:

> cat /tmp/logfile
Someone used this program: UID=1701, EUID=1701
Someone used this program: UID=12386, EUID=12386
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Buffer Overflow Attacks

Often low-level programs use fixed-size arrays (buffers) to store
data.
When copying into such buffers, the program has to check that it
doesn’t exceed the size of the buffer.
There are no automatic bounds checks in low-level languages
such as C.
If no check is performed, the program would just overwrite the
following data block.
If the data beyond the bound is chosen to be malign, executable
machine code, an attacker can gain control of the system in this
way.
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Example 1: Rsyslog

The following vulnerability in the rsyslog program was reported in
Linux Magazin 12/11:

[...]
int i; /* general index for parsing */
uchar bufParseTAG[CONF_TAG_MAXSIZE];
uchar bufParseHOSTNAME[CONF_HOSTNAME_MAXSIZE];
[...]
while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ &&

i < CONF_TAG_MAXSIZE) {
bufParseTAG[i++] = *p2parse++;
--lenMsg;

}
if(lenMsg > 0 && *p2parse == ’:’) {
++p2parse;
--lenMsg;
bufParseTAG[i++] = ’:’;

}
[...]
bufParseTAG[i] = ’\0’; /* terminate string */
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Example 2:

The following vulnerability in the rsyslog program was reported in
Linux Magazin 12/11:

[...]
int i; /* general index for parsing */
uchar bufParseTAG[CONF_TAG_MAXSIZE];
uchar bufParseHOSTNAME[CONF_HOSTNAME_MAXSIZE];
[...]
while(lenMsg > 0 && *p2parse != ’:’ && *p2parse != ’ ’ &&

i < CONF_TAG_MAXSIZE) {
bufParseTAG[i++] = *p2parse++;
--lenMsg;

}
if(lenMsg > 0 && *p2parse == ’:’) {
++p2parse;
--lenMsg;
bufParseTAG[i++] = ′ :′;

}
[...]
bufParseTAG[i] = ’\0’; /* terminate string */
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Discussion

The goal of this code is to read tags and store them in a buffer.
The program reads from a memory location p2parse and writes
into the buffer bufParseTAG.
The fixed size of the buffer is CONF TAG MAXSIZE

The while-loop iterates over the input text, and also checks
whether the index i is still within bounds.
BUT: after the while loop, 1 or 2 characters are added to the buffer
as termination characters; this can cause a buffer overflow!
The impact of the overflow is system-specific. It can lead to
overwriting the variable i on the stack.
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Smashing the Stack

One common form of exploiting a buffer overflow is to manipulate
the stack.
This can happen through unchecked copy operations into a local
function variable or argument.
This is dangerous, because local variables are kept on the stack,
together with the return address for the function.
Therefore, a buffer-overflow can directly modify the control-flow
in the program.
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Example of Smashing the Stack

Assume, we call this func-
tion:

int function() {
int a;
char b[5];
char c[4];
...

}

The stack-layout for this
function is:

c
b
a
...
return address

A buffer overflow of b can overwrite the contents of a, or maybe even
the return address, which would change the control flow of the
program.
Stack Guard and other security programs re-order the variables on the
stack, and add variables at the end to detect overwrites.
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Example of Smashing the Stack

Assume, we call this func-
tion:

int function() {
int a;
char b[5];
char c[4];
...

}

The stack-layout for this
function is:

c
b
a
...
return address

A buffer overflow of b can overwrite the contents of a, or maybe even
the return address, which would change the control flow of the
program.
Stack Guard and other security programs re-order the variables on the
stack, and add variables at the end to detect overwrites.
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Difficulties in exploiting the vulnerability

The attacker needs to locate the position of the return address,
and write the address of its own, malign code there.
Several techniques can be used to achieve this.
In a return-to-libc attack, the attacker overwrites the return
address with a call to a known libc library function (eg. system).
After this, the return address to the malign code and data for the
arguments to the libc function is placed.
This will cause a call to the libc function, followed by executing the
malign code itself.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface
Lec 7: Buffer Overflow Attacks 195 /

276



A Worst Case Scenario

A particularly dangerous combination of weaknesses is the following:
A setuid function, raising privileges temporarily,
which contains a buffer overflow vulnerability,
and an attacker that plants shellcode as malign code onto the
stack.
If successful, the shellcode will give the attacker access to a full
shell with the privileges used in that part of the application.
If these are root privileges, the attacker can do anything he wants!
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Prevention Mechanisms

Canary variables, eg. on the stack, can detect overflows.
Re-ordering variables on the stack can help to reduce the impact
of a buffer overflow.
Compiler modifications can change the pointer semantics, eg.
never store a pointer directly, but only a version that needs to be
XORed to get to the real address.
Some operating systems allow to mark address blocks as
non-executable.
Address randomisation (re-arranging data at random in the
address space) is frequently in modern operating systems to
make it more difficult to predict where to find a return address or
similar, attackable control-flow data.
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Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,’)))

*c++ = ’\0′;
else

c = str;

if (!(n % 10)) /* alloc some more */
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == ’!’) wild[n].not = 1; /* not */
else if (*c == ’@’) wild[n].not = -1; /* absolute not (feeding) */
else wild[n].not = 0;

strcpy(p, wild[n].not ? c + 1 : c);
wild[n++].pat = xstrdup(pattern);

} while (c != str);
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Listing 2: imap/nntpd.c

Another attack mentioned in Linux Magazin 12/11 is this one:

do {
if ((c = strrchr(str, ’,’)))

*c++ = ’\0′;
else

c = str;

if (!(n % 10)) /* alloc some more */
wild = xrealloc(wild, (n + 11) * sizeof(struct wildmat));

if (*c == ’!’) wild[n].not = 1; /* not */
else if (*c == ’@’) wild[n].not = -1; /* absolute not (feeding) */
else wild[n].not = 0;

strcpy(p, wild[n].not ? c + 1 : c);
wild[n++].pat = xstrdup(pattern);

} while (c != str);
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Discussion

This example is part of an IMAP server for emails.
This code segment handles wildcards to perform operations.
Its weakness is that it uses strcpy to copy a block of characters,
which copies an unbounded 0-terminated block of memory.
Instead, the function strncpy should be used, which takes the
size of the block to copy as additional argument.
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Lecture 8.
Interrupt Handling
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What are interrupts and why do we need them?

In order to deal with internal or external events, abrupt changes in
control flow are needed.
Such abrupt changes are also called exceptional control flow
(ECF).
The system needs to take special action in these cases (call
interrupt handlers, use non-local jumps)

0Lecture based on Bryant and O’Hallaron, Ch 8
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Revision: Interrupts on different levels

An abrupt change to the control flow is called exceptional control
flow (ECF).
ECF occurs at different levels:

hardware level: e.g. arithmetic overflow events detected by the
hardware trigger abrupt control transfers to exception handlers
operating system: e.g. the kernel transfers control from one user
process to another via context switches.
application level: a process can send a signal to another process
that abruptly transfers control to a signal handler in the recipient.

We covered the application level in a previous class, today we will
focus on the OS and hardware level.
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Timers with assembler-level system calls

We have previously used C library functions to implement timers.
We will now use the ARM assembler SWI command that we know, to
trigger a system call to sigaction, getitmer or setitimer.
The corresponding codes are1:

sigaction: 67
setitimer: 104
getitmer: 105

The arguments to these functions need to be in registers: R0, R1, R2,
etc

1See Smith, Appendix B “Raspbian System Calls”
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Reminder: Interface to C library functions

getitimer, setitimer - get or set value of an interval timer
#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *

new_value,
struct itimerval *old_value);

setitimer sets up an interval timer that issues a signal in an interval
specified by the new value argument, with this structure:
struct itimerval {

struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */

};
struct timeval {

time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 8: Interrupt Handling 205 / 276



Reminder: Setting-up a timer in C

Signals (or software interrupts) can be programmed on C level by
associating a C function with a signal sent by the kernel.
sigaction - examine and change a signal action
#include <signal.h>
int sigaction(int signum, const struct sigaction *act,

struct sigaction *oldact);

The sigaction structure is defined as something like:
struct sigaction {

void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *,

void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};NB: the sa sigaction field defines the action to be performed when
the signal with the id in signum is sent.

1See man sigaction
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Timers with assembler-level system calls

We will now use the ARM assembler SWI command that we know, to
trigger a system call to sigaction, getitmer or setitimer.
The corresponding codes are2:

sigaction: 67
setitimer: 104
getitmer: 105

The arguments to these functions need to be in registers: R0, R1, R2,
etc

2See Smith, Appendix B “Raspbian System Calls”
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Example: Timers with assembler-level system calls

We need the following headers:

#include <signal.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sys/time.h>

// sytem call codes
#define SETITIMER 104
#define GETITIMER 105
#define SIGACTION 67

// in micro-sec
#define DELAY 250000

2Sample source itimer21.c
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Our own getitimer function

static inline int getitimer_asm(int which, struct
itimerval *curr_value){

int res;
asm(/* inline assembler version of performing a system

call to GETITIMER */
"\tB _bonzo105\n"
"_bonzo105: NOP\n"
"\tMOV R0, %[which]\n"
"\tLDR R1, %[buffer]\n"
"\tMOV R7, %[getitimer]\n"
"\tSWI 0\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [buffer] "m" (curr_value)
, [which] "r" (ITIMER_REAL)
, [getitimer] "r" (GETITIMER)

: "r0", "r1", "r7", "cc");
}
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Our own setitimer function

static inline int setitimer_asm(int which, const struct
itimerval *new_value, struct itimerval *old_value) {

int res;
asm(/* system call to SETITIMER */

"\tB _bonzo104\n"
"_bonzo104: NOP\n"
"\tMOV R0, %[which]\n"
"\tLDR R1, %[buffer1]\n"
"\tLDR R2, %[buffer2]\n"
"\tMOV R7, %[setitimer]\n"
"\tSWI 0\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [buffer1] "m" (new_value)
, [buffer2] "m" (old_value)
, [which] "r" (ITIMER_REAL)
, [setitimer] "r" (SETITIMER)

: "r0", "r1", "r2", "r7", "cc");
}

2Sample source in itimer21.c
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Our own sigaction function

int sigaction_asm(int signum, const struct sigaction *act
, struct sigaction *oldact){

int res;
asm(/* performing a syscall to SIGACTION */

"\tB _bonzo67\n"
"_bonzo67: NOP\n"
"\tMOV R0, %[signum]\n"
"\tLDR R1, %[buffer1]\n"
"\tLDR R2, %[buffer2]\n"
"\tMOV R7, %[sigaction]\n"
"\tSWI 0\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [buffer1] "m" (act)
, [buffer2] "m" (oldact)
, [signum] "r" (signum)
, [sigaction] "r" (SIGACTION)

: "r0", "r1", "r2", "r7", "cc");
}

2Sample source in itimer21.c
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Example: Timers with assembler-level system calls

The main function is as before, using our own functions:

int main () {
struct sigaction sa;
struct itimerval timer;

/* Install timer_handler as the signal handler for
SIGALRM. */

memset (&sa, 0, sizeof (sa));
sa.sa_handler = &timer_handler;

sigaction_asm (SIGALRM, &sa, NULL);
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Example: Timers with assembler-level system calls

/* Configure the timer to expire after 250 msec... */
timer.it_value.tv_sec = 0;
timer.it_value.tv_usec = DELAY;
/* ... and every 250 msec after that. */
timer.it_interval.tv_sec = 0;
timer.it_interval.tv_usec = DELAY;
/* Start a virtual timer. It counts down whenever this

process is executing. */
setitimer_asm (ITIMER_REAL, &timer, NULL);

/* Busy loop, but accepting signals */
while (1) {} ;

}

2Sample source in itimer21.c
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Timers by probing the RPi on-chip timer

The RPi 2 has an on-chip timer that ticks at a rate of 250 MHz
This can be used for getting precise timing information
(in our case) to implement a timer directly.
As before, we need to know the base address of the timer device
and the register assignment for this device.
We find both in the BCM Peripherals Manual, Chapter 12,
Table 12.1
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GPIO Register Assignment

2See BCM Peripherals Manual, Chapter 12, Table 12.1
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Example code

#define TIMEOUT 3000000
...
static volatile unsigned int timerbase ;
static volatile uint32_t *timer ;
...
timerbase = (unsigned int)0x3F003000 ;
// memory mapping
timer = (int32_t *)mmap(0, BLOCK_SIZE, PROT_READ|

PROT_WRITE, MAP_SHARED, fd, timerbase) ;
if ((int32_t)timer == (int32_t)MAP_FAILED)
return failure (FALSE, "wiringPiSetup: mmap (TIMER)

failed: %s\n", strerror (errno)) ;
else
fprintf(stderr, "NB: timer = %x for timerbase %x\n",

timer, timerbase);

As usual we memory-map the device memory into the accessible
address space.
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Example code

{ volatile uint32_t ts = *(timer+1); // word offset
volatile uint32_t curr;

while( ( (curr=*(timer+1)) - ts ) < TIMEOUT ) { /*
nothing */ }

}

To wait for TIMEOUT micro-seconds, the core code just has to read
from location timer+1 to get and check the timer value.

2Sample source in itimer31.c; see also this discussion on the BakingPi pages
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Summary

In order to implement a time-out functionality, several mechanisms
can be used:

I C library calls (on top of Raspbian)
I assembler-level system calls (to the kernel running inside

Raspbian)
I directly probing the on-chip timer available on the RPi2

We have seen sample code for each of the 3 mechanisms.
Also, on embedded systems time-critical code is often needed, so
access to a precise on-chip timer is important for many kinds of
applications.
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Interrupt requests in Assembler

Exception
table

0
1

2 ...

n-1

 Code for  
exception handler 0

 Code for  
exception handler 0

Code for 
exception handler 1

Code for 
exception handler 1

Code for
exception handler 2

Code for
exception handler 2

Code for 
exception handler n-1

Code for 
exception handler n-1

...
The central data structure for handling (hardware) interrupts is the
interrupt vector table (or more generally exception table).
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Interrupt handlers in C + Assembler

We will now go through the steps of handling hardware interrupts
directly in assembler.
To implement interrupt handlers directly on the RPi2 we need to:

1 Build vector tables of interrupt handlers
2 Load vector tables
3 Set registers to enable specific interrupts
4 Set registers to globally enable interrupts

2Valvers: Bare Metal Programming in C (Pt4)
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Building an Interrupt Vector Table

The relevant information for the Cortex A7 processor, used on the
RPi2, can be found in the ARMv7 reference manual in Section B1.8.1
(Table B1-3).

Exception Type Mode VE Normal Address
Reset Supervisor 0x00
Undefined Instruction Undefined 0x04
Software Interrupt (SWI) Supervisor 0x08
Prefetch Abort Abort 0x0C
Data Abort Abort 0x10
IRQ (Interrupt) IRQ 0 0x18
IRQ (Interrupt) IRQ 1 undef
FIQ (Fast Interrupt) FIQ 0 0x1C
FIQ (Fast Interrupt) FIQ 1 undef

NB: each entry is 4 bytes; just enough to code a branch operation to
the actual code NB: when an exception occurs the processor changes
mode to the exception-specific mode
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NB: For Fast Interrupt exception, a lot of registers have been replaced
by mode-specific registers, i.e. these registers can be used in the
interrupt handler
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Coding Interrupt Handlers

An interrupt handler is a block of C (or assembler) code, that is called
on an interrupt. The interrupt vector table links the interrupt number
with the code.
We need to inform the compiler that a function should be used as an
interrupt handler like this:

void f () __attribute__ ((interrupt ("IRQ")));

Other permissible values for this parameter are: IRQ, FIQ, SWI,
ABORT and UNDEF.
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Example interrupt handler

A very basic “undefined instruction” handler looks like this:

/**
@brief The undefined instruction interrupt handler

If an undefined instruction is encountered, the CPU will
start

executing this function. Just trap here as a debug
solution.

*/
void __attribute__((interrupt("UNDEF")))

undefined_instruction_vector(void)
{

while( 1 )
{

/* Do Nothing! */
}

}
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Constructing Vector Tables
“Our vector table:”
_start:

ldr pc, _reset_h
ldr pc, _undefined_instruction_vector_h
ldr pc, _software_interrupt_vector_h
ldr pc, _prefetch_abort_vector_h
ldr pc, _data_abort_vector_h
ldr pc, _unused_handler_h
ldr pc, _interrupt_vector_h
ldr pc, _fast_interrupt_vector_h

_reset_h: .word _reset_
_undefined_instruction_vector_h: .word

undefined_instruction_vector
_software_interrupt_vector_h: .word

software_interrupt_vector
_prefetch_abort_vector_h: .word

prefetch_abort_vector
_data_abort_vector_h: .word data_abort_vector
_unused_handler_h: .word _reset_
_interrupt_vector_h: .word interrupt_vector
_fast_interrupt_vector_h: .word

fast_interrupt_vector
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Constructing Vector Tables

_reset_:

mov r0, #0x8000
mov r1, #0x0000
ldmia r0!,{r2, r3, r4, r5, r6, r7, r8, r9}
stmia r1!,{r2, r3, r4, r5, r6, r7, r8, r9}
ldmia r0!,{r2, r3, r4, r5, r6, r7, r8, r9}
stmia r1!,{r2, r3, r4, r5, r6, r7, r8, r9}

NB: using tools such as gdb and objdump we know that “our” vector
table is at address 0x00008000; in supervisor mode we can write to
any address, so the code above moves our vector table to the start of
the memory, where it should be
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The Interrupt Controller

We need to enable interrupts by
enabling the kind of interrupt we are interested in;
globally enabling interrupts

The global switch ensures that disabling interrupts can be done in just
one instruction.
But we still want more detailed control over different kinds of interrupts
to treat them differently.
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Interrupt Control Registers

The interrupt controller on an ARM architecture, provides registers to
control the behaviour of interrupt handling. We can use these registers
in a similar way as the GPIO registers.
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Interrupt Control Registers

We now define a structure for the interrupt controller registers,
matching the table on the previous slide
/** @brief See Section 7.5 of the BCM2835 ARM Peripherals docu

*/
#define RPI_INTERRUPT_CONTROLLER_BASE ( PERIPHERAL_BASE + 0

xB200 )

/** @brief The interrupt controller memory mapped register set

*/
typedef struct {

volatile uint32_t IRQ_basic_pending;
volatile uint32_t IRQ_pending_1;
volatile uint32_t IRQ_pending_2;
volatile uint32_t FIQ_control;
volatile uint32_t Enable_IRQs_1;
volatile uint32_t Enable_IRQs_2;
volatile uint32_t Enable_Basic_IRQs;
volatile uint32_t Disable_IRQs_1;
volatile uint32_t Disable_IRQs_2;
volatile uint32_t Disable_Basic_IRQs;
} rpi_irq_controller_t;
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Auxiliary functions

Functions to get the base address of the peripherals:

/** @brief The BCM2835 Interupt controller peripheral at its
base address */

static rpi_irq_controller_t* rpiIRQController =
(rpi_irq_controller_t*)RPI_INTERRUPT_CONTROLLER_BASE;

/**
@brief Return the IRQ Controller register set

*/
rpi_irq_controller_t* RPI_GetIrqController( void )
{

return rpiIRQController;
}
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The ARM Timer Peripheral

The ARM timer is in the basic interrupt set. To enable interrupts from
the ARM Timer peripheral we set the relevant bit in the Basic
Interrupt enable register:
/** @brief Bits in the Enable_Basic_IRQs register to enable

various interrupts.
See the BCM2835 ARM Peripherals manual, section 7.5 */

#define RPI_BASIC_ARM_TIMER_IRQ (1 << 0)
#define RPI_BASIC_ARM_MAILBOX_IRQ (1 << 1)
#define RPI_BASIC_ARM_DOORBELL_0_IRQ (1 << 2)
#define RPI_BASIC_ARM_DOORBELL_1_IRQ (1 << 3)
#define RPI_BASIC_GPU_0_HALTED_IRQ (1 << 4)
#define RPI_BASIC_GPU_1_HALTED_IRQ (1 << 5)
#define RPI_BASIC_ACCESS_ERROR_1_IRQ (1 << 6)
#define RPI_BASIC_ACCESS_ERROR_0_IRQ (1 << 7)

and in our main C code to enable the ARM Timer IRQ:
/* Enable the timer interrupt IRQ */
RPI_GetIrqController()->Enable_Basic_IRQs =

RPI_BASIC_ARM_TIMER_IRQ;
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Before using the ARM Timer it also needs to be enabled.
Again, we map the ARM Timer peripherals register set to a C struct to
give us access to the registers:
/** @brief See Section 14 of thed BCM2835 Peripherals PDF */
#define RPI_ARMTIMER_BASE ( PERIPHERAL_BASE + 0xB400 )

/** @brief 0 : 16-bit counters - 1 : 23-bit counter */
#define RPI_ARMTIMER_CTRL_23BIT ( 1 << 1 )

#define RPI_ARMTIMER_CTRL_PRESCALE_1 ( 0 << 2 )
#define RPI_ARMTIMER_CTRL_PRESCALE_16 ( 1 << 2 )
#define RPI_ARMTIMER_CTRL_PRESCALE_256 ( 2 << 2 )

/** @brief 0 : Timer interrupt disabled - 1 : Timer interrupt
enabled */

#define RPI_ARMTIMER_CTRL_INT_ENABLE ( 1 << 5 )
#define RPI_ARMTIMER_CTRL_INT_DISABLE ( 0 << 5 )

/** @brief 0 : Timer disabled - 1 : Timer enabled */
#define RPI_ARMTIMER_CTRL_ENABLE ( 1 << 7 )
#define RPI_ARMTIMER_CTRL_DISABLE ( 0 << 7 )
...
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Accessing the ARM Timer Register

This code gets the current value of the ARM Timer:

static rpi_arm_timer_t* rpiArmTimer = (rpi_arm_timer_t*)
RPI_ARMTIMER_BASE;

rpi_arm_timer_t* RPI_GetArmTimer(void)
{

return rpiArmTimer;
}
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ARM Timer setup

Then, we can setup the ARM Timer peripheral from the main C code
with something like:

/* Setup the system timer interrupt */
/* Timer frequency = Clk/256 * 0x400 */
RPI_GetArmTimer()->Load = 0x400;

/* Setup the ARM Timer */
RPI_GetArmTimer()->Control =

RPI_ARMTIMER_CTRL_23BIT |
RPI_ARMTIMER_CTRL_ENABLE |
RPI_ARMTIMER_CTRL_INT_ENABLE |
RPI_ARMTIMER_CTRL_PRESCALE_256;

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 8: Interrupt Handling 234 / 276



Globally enable interrupts

We have now configured the ARM Timer and the Interrupt controller.
We still need to globally globally enable interrupts, which needs some
assembler code.

_enable_interrupts:
mrs r0, cpsr @ move status to reg
bic r0, r0, #0x80 @ modify status
msr cpsr_c, r0 @ move reg to status

mov pc, lr
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An LED control interrupt handler

Our interrupt handler should control an LED, as usual.
Note that we need to clear the interrupt pending bit in the handler, to
avoid immediately re-issuing an interrupt.
/* @brief The IRQ Interrupt handler: blinking LED */
void __attribute__((interrupt("IRQ"))) interrupt_vector(void)
{

static int lit = 0;

/* Clear the ARM Timer interrupt */
RPI_GetArmTimer()->IRQClear = 1;

/* Flip the LED */
if( lit ) {

LED_OFF();
lit = 0;

} else {
LED_ON();
lit = 1;

}
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Kernel function

On a bare-metal system, the following wrapper code is needed to start
the system:
/** Main function - we’ll never return from here */
void kernel_main( unsigned int r0, unsigned int r1, unsigned int atags )
{

/* Write 1 to the LED init nibble in the Function Select GPIO
peripheral register to enable LED pin as an output */

RPI_GetGpio()->LED_GPFSEL |= LED_GPFBIT;

/* Enable the timer interrupt IRQ */
RPI_GetIrqController()->Enable_Basic_IRQs = RPI_BASIC_ARM_TIMER_IRQ;

/* Setup the system timer interrupt */
/* Timer frequency = Clk/256 * 0x400 */
RPI_GetArmTimer()->Load = 0x400;

/* Setup the ARM Timer */
RPI_GetArmTimer()->Control =

RPI_ARMTIMER_CTRL_23BIT |
RPI_ARMTIMER_CTRL_ENABLE |
RPI_ARMTIMER_CTRL_INT_ENABLE |
RPI_ARMTIMER_CTRL_PRESCALE_256;

/* Enable interrupts! */
_enable_interrupts();

/* Never exit as there is no OS to exit to! */
while(1)
{

}
}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 8: Interrupt Handling 237 / 276



Summary

Interrupts trigger an exceptional control flow, to deal with
special situations.
Interrupts can occur at several levels:

I hardware level, e.g. to report hardware faults
I OS level, e.g. to switch control between processes
I application level, e.g. to send signals within or between processes

The concept is the same on all levels: execute a short sequence
of code, to deal with the special situation.
Depending on the source of the interrupt, execution will continue
with the same, the next instruction or will be aborted.
The mechanisms how to implement this behaviour are different:
in software on application level, in hardware with jumps to entries
in the interrupt vector table on hardware level

2Complete bare-metal application: Valvers: Bare Metal Programming in C (Pt4)
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Lecture 9.
Miscellaneous Topics
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Bare-metal programming

Bare-metal programming means “programming directly on the
hardware”, i.e. on a system that doesn’t run an operating system.
This is the most common scenario for embedded systems
programming.
In this course we used Raspbian on the RPi2 mainly for
convenience (tool support etc)
Embedded systems in industry usage are often too small to run
any OS
For time-critical operations you don’t want an OS because in order
to meet real-time constraints.
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What’s different?

A lot:
You have to control the boot process yourself
You have to manage all aspects of the hardware directly:

I memory (no virtual memory!)
I external devices

You need to produce stand-alone executables, i.e. no dynamically
linked libraries
You typically need to cross-compile your code
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What are the advantages?

You have direct control over the hardware:
I For our LED etc examples, you don’t need mmap to access the

devices, rather you directly write to the hardware registers.
I You can access aspects of the hardware that might not be

accessible otherwise.

Better suited for real-time constraints: no OS overhead,
predictable performance
Very small code size of the entire application
Typically lower energy consumption
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How does the application code differ?

Looking at our example code from the course
No mmap is needed to access the GPIO pins
You can’t use external libraries: everything must be part of the
application
This means that in general you need to write your own device
drivers for external devices such as a monitor
The code typically needs to be cross-compiled, i.e. the machine
that you are compiling on is different from the machine that you
are compiling for.

And of course there are a lot of differences in terms of usability.
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Further Reading & Deeper Hacking

“Embedded Linux”, by Jürgen Quade (Textbook on embedded
systems programming, using a bare-metal approach)
Baking Pi, by Alex Chadwick (a course on bare-metal
programming on the Rasbperry Pi at Cambridge University (only
for RPi1))
Valvers: Bare Metal Programming in C
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Rust: an alternative systems programming language

Rust is a systems programming language that runs blazingly
fast, prevents segfaults, and guarantees thread safety.

2Rust
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Rust Features

zero-cost abstractions
move semantics
guaranteed memory safety
threads without data races
trait-based generics
pattern matching
type inference
minimal runtime
efficient C bindings
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Internet of Things

The amount of processors used in all kinds of settings is
increasing rapidly.
Examples are “smart homes” with configurable/programmable
devices such as smart TVs etc
These typically use small, embedded devices
These devices want to exchange data, e.g. to monitor the
environment and react to changes
Therefore, these systems are inter-connected, building an
Internet of Things
These systems increasingly use a full operating system
underneath
Thus, a RPi 2 running Raspbian is a good case study
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OS choices for the Internet of Things

Rapbian, while useful as an interactive OS, comes with a lot of
unnecessary packages if it should be used on one of these
networked, embedded devices.
Smaller, configurable Linux versions are often a better choice, e.g.
Arch Linux (also available for RPi2).
These reduce the resource consumption of the system, and
improve maintainability.
Several new3 OS’s target this market: for example MinocaOS

3There are also several old OS’s that fit this characterisation: see Minix and RISC
OS.
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Main features of MinocaOS

MinocaOS is a completely new OS, matching standard interfaces
such as POSIX.
MinocaOS is advertised as: Modular, Lean, Flexible
MinocaOS supports RPi1 and RPi2/3 in 2 different images that
can be downloaded
There is no 64-bit support available yet4

MinocaOS is also provided as a Quemu-based virtual machine,
for experimentation on a laptop
MinocaOS has a very small resource footprint, and works well
even on older RPi1’s
MinocaOS has good hardware support and fairly good tool
support

4See the slides at the end for a link on how to build your own 64-bit kernel on an
RPi3
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MinocaOS

Some notable features of MinocaOS are:
Most command-line tools are based on GNU versions: bash, ls,
cat, chmod, nano (use --help to get info)
It uses package management similar to Debian-based systems
(opkg as package manager; packages have extension .ipkg)
The list of available packages and repos can be edited in
/var/opkg-lists/

No graphical user interface at the moment (not necessary for IoT
context)

A Guided Tour is available on the MinocaOS web page.

4Material from Raspberry Pi Geek 04/2017
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UBOS: easy configuration

UBOS is a Linux distribution for easy management of several web
services on an Rpi.
Very flexible, being based on Arch Linux
Features (as advertised):

I With UBOS, web applications can be installed, and fully configured
with a single command.

I UBOS fully automates app management at virtual hosts
I UBOS pre-installs and pre-configures networking and other

infrastructure.
I Systems that have two Ethernet interfaces can be turned into a

home router/gateway with a single command.
I UBOS can backup or restore all, or any subset of installed

applications on a device
I UBOS uses a rolling-release development model
I UBOS itself is all free/libre and open software.

5
5Material from Raspberry Pi Geek 04/2017
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Compiling an 64-bit kernel for RPi3

A detailed discussion on how to build a 64-bit kernel on a Rasberry
Pi 3 is given in the Raspberry Pi Geek 04/2017.
A pre-pared 64-bit image for the RasPi 3 is here
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Lecture 10:
Revision
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A simple picture of the CPU

The ALU executes arithmetic/logic operations with arguments in
registers
Load and store instructions move data between memory and
registers
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Three-stage pipelined computation hardware

The computation is split into stages A, B, and C. The stages for
different instructions can be executed in an overlapping way.

5From Bryant, Chapter 4
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Stages of executing an assembler instruction

Processing an assembler instruction involves a number of operations:
1 Fetch: The fetch stage reads the bytes of an instruction from

memory, using the program counter (PC) as the memory address.
2 Decode: The decode stage reads up to two operands from the

register file.
3 Execute: In the execute stage, the arithmetic/logic unit (ALU)

either performs the operation specified by the instruction,
computes the effective address of a memory reference, or
increments or decrements the stack pointer.

4 Memory: The memory stage may write data to memory, or it may
read data from memory.

5 Write back: The write-back stage writes up to two results to the
register file.

6 PC update: The PC is set to the address of the next instruction.
NB: The processing depends on the instruction, and certain stages
may not be used.
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Pipelining and branches

How can a pipelined architecture deal with conditional branches?
In this case the processor doesn’t know the successor instruction
until further down the pipeline.
To deal with this, modern architectures perform some form of
branch prediction in hardware.
There are two forms of branch prediction:

I static branch prediction always takes the same guess (e.g. guess
always taken)

I dynamic branch prediction uses the history of the execution to take
better guesses

Performance is significantly higher when branch predictions are
correct
If they are wrong, the processor needs to stall or inject bubbles
into the pipeline
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Example: bad branch prediction

.global _start

.text
_start: MOVS R1, #0 @ load 0 =>

LSR R1, #1 @ LSR yields zero =>
BNE target @ Not taken
MOV R0, #0 @ fall through
MOV R7, #1
SWI 0

target: MOV R0, #1 @ return: branch taken?
MOV R7, #1
SWI 0

Branch prediction: we assume the processor takes an always taken
policy, i.e. it always assumes that that a branch is taken
NB: the conditional branch (BNE) will NOT be taken, because the right
shift (LSR) will set the zero flag according to the right-most bit, which is
0 in this case. This is a deliberately bad example for the branch
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Example: good branch prediction

.text
_start: MOVS R1, #1 @ load 1 =>

LSR R1, #1 @ LSR yields one =>
BNE target @ Branch taken
MOV R0, #0 @ fall through
MOV R7, #1
SWI 0

target: MOV R0, #1 @ return: branch taken?
MOV R7, #1
SWI 0

Branch prediction: we assume the processor takes an always taken
policy, i.e. it always assumes that that a branch is taken
NB: now the conditional branch (BNE) WILL be taken, because the
right shift (LSR) will set the zero flag according to the right-most bit,
which is 1 in this case. This is better for the branch predictor and gives
better performance.
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Performance: good vs bad branch prediction

We now measure the performance of doing these two versions inside
two nested loops (0x10000 iterations, each).
Good Case: branch taken:

> hawopi[167](4.2)> as -o bonzo15.o bonzo15.s
> hawopi[168](4.2)> ld -o bonzo15 bonzo15.o
> hawopi[169](4.2)> time ./bonzo15
real 0m30.091s
user 0m29.980s
sys 0m0.000s

> hawopi[170](4.2)> echo $?
1
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Performance: good vs bad branch prediction

We now measure the performance of doing these two versions inside
two nested loops (0x10000 iterations, each).
Bad Case: branch NOT taken:

> hawopi[171](4.2)> as -o bonzo15.o bonzo15.s
> hawopi[172](4.2)> ld -o bonzo15 bonzo15.o
> hawopi[173](4.2)> time ./bonzo15
real 0m36.188s
user 0m34.900s
sys 0m0.090s

> hawopi[174](4.2)> echo $?
0

NB: a difference in runtime of ca. 16.8%
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Processing mispredicted branch instructions.

Predicting “branch taken”, instruction 0x014 is fetched in cycle 3,
and instruction 0x018 is fetched in cycle 4.
In cycle 4 the branch logic detects that the branch is not taken
It therefore abandons the execution of 0x014 and 0x018 by
injecting bubbles into the pipeline.
The result will be as expected, but performance is sub-optimal!

5Adapted from Bryant, Figure 4.62
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Lec 10: Revision 262 / 276



The Current Program Status Register (CPSR)

The Current Program Status Register (CPSR) contains flags
(V,Z,N,C) that are set by certain assembler instructions.
For example, the CMP R0, R1 instruction compares the values of
registers R0 and R1 and sets the zero flag (Z) if R0 and R1 are equal.

5See ARM’s Programmer Guide, p. 3-8
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Caches and Memory Hierarchy

Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 

and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(distributed file systems, Web servers)

Local disks hold files 
retrieved from disks on 
remote network servers.

Main memory holds disk 
blocks retrieved from local 
disks.

L2 cache 
(SRAM)

L1 cache holds cache lines retrieved 
from the L2 cache.

CPU registers hold words retrieved from 
cache memory.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 

costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from memory.

L6:
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Discussion

As we move from the top of the hierarchy to the bottom, the devices
become slower, larger, and less costly per byte.

The main idea of a memory hierarchy is that storage at one level
serves as a cache for storage at the next lower level.

Using the different levels of the memory hierarchy efficiently is crucial
to achieving high performance.

Access to levels in the hierarchy can be explicit (for example when
using OpenCL to program a graphics card), or implicit (in most other
cases).
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Importance of Locality

Being able to look at code and get a qualitative sense of its locality is a
key skill for a professional programmer!

Which of the following two version of sum-over-matrix has better
locality (and performance):

Traversal by rows: Traversal by columns:
int i, j; ulong sum;
for (i = 0; i<n; i++)
for (j = 0; j<n; j++)

sum += arr[i][j];

int i, j; ulong sum;
for (j = 0; j<n; j++)
for (i = 0; i<n; i++)
sum += arr[i][j];
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The high-level picture

From the main chip of the RPi2 we want to control an (external)
device, here an LED.
We use one of the GPIO pins to connect the device.
Logically we want to send 1 bit to this device to turn it on/off.
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The low-level picture

Programmatically we achieve that, by
memory-mapping the address space of the GPIOs into user-space
now, we can directly access the device via memory read/writes
we need to pick-up the meaning of the peripheral registers from
the BCM2835 peripherals sheet
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BCM2835 GPIO Peripherals

The meaning of the registers is (see p90ff of BCM2835 ARM
peripherals):

GPFSEL: function select registers (3 bits per pin); set it to 0 for
input, 1 for output; 6 more alternate functions available
GPSET: set the corresponding pin
GPCLR: clear the corresponding pin
GPLEV: return the value of the corresponding pin
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GPIO Register Assignment

The GPIO has 48 32-bit registers (RPi2; 41 for RPi1).
5See BCM Peripherals Manual, Chapter 6, Table 6.1
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GPIO Register Assignment

GPIO registers (Base address: 0x3F200000)

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12GPFSEL0

GPFSEL1
GPFSEL2
GPFSEL3
GPFSEL4
GPFSEL5

—
GPFSET0
GPFSET1

—
GPFCLR0
GPFCLR1

—

5See BCM Peripherals, Chapter 6, Table 6.1
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Locating the GPFSEL register for pin 47 (ACT)

This table explains the meaning of the bits in register GPFSEL4.
5See BCM Peripherals Manual, Chapter 6, Table 6.1
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Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4
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as the value 1
We need to write the value 0x01 into bits 21–23 of register 4
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio? Answer: gpio+4
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
Answer: *(gpio+4)
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
Answer: *(gpio + 4) & ˜(7 << 21)

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: 7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: 7 << 21

0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: ˜(7 << 21)

1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: (*(gpio + 4) & ˜(7 << 21))

&1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: (*(gpio + 4) & ˜(7 << 21))

0 0 0
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
Answer: (1 << 21)

How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?

(*(gpio + 4) & ˜(7 << 21)) | (1 << 21)

0 0 1
28 24 20 16 12 8 4 0

How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?
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Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

*(gpio + 4) = (*(gpio + 4) & ˜(7 << 21)) | (1 << 21)
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GPIO programming

The previous slides discussed how to control an LED with a GPIO
pin.
Similar code is used to use a button as an input device, and to
read a bit from the right GPIO pin
For the exam you need to understand the main steps that are
needed
You must be able to perform the above steps to explain, e.g. how
to set the mode of a pin
The LCD device is controlled in a similar way, but always sending
8 bits as the byte to be displayed.
You should expect specific code questions about GPIO
programming, either in C or Assembler
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Summary

Check the detailed tutorial slides about controlling external
devices
Look-up the sample sources (both C and Asm) for the tutorials
You need to have a solid understanding of this code and be
able to answer questions about it!
Focus on the main concepts that we covered in the lectures:

I Computer architecture, in particular pipelining
I Memory hierarchy, in particular caching

You need to be able to explain how these concepts impact
performance of some sample programs.
Be prepared for small-scale coding questions
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