
F28HS Hardware-Software Interface:
Systems Programming

Hans-Wolfgang Loidl

School of Mathematical and Computer Sciences,
Heriot-Watt University, Edinburgh

Semester 2 2017/18

0No proprietary software has been used in producing these slides
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2017/18 1 / 116

Outline

1 Tutorial 1: Using Python and the Linux FS for GPIO Control

2 Tutorial 2: Programming an LED

3 Tutorial 3: Programming a Button input device

4 Tutorial 4: Inline Assembler with gcc

5 Tutorial 5: Programming an LCD Display

6 Tutorial 6: Performance Counters on the RPi 2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface 2017/18 2 / 116

Tutorial 1: Using Python for GPIO Control

In this first tutorial we will get started with programming the RPi2
to control output devices.
We will use Python as programming language and existing
libraries for controlling the GPIO pins on the RPi2, which simplifies
the programming considerably.
The main learning objective for this course, however, is to achieve
such control by using C and Assembler, and we will focus on
these languages for the remaining tutorials.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 3 / 116

GPIO pins of the RPi2

The Raspberry Pi 2 has 40 General Purpose Input/Output
(GPIO) pins.
These can be used to control a range of devices, or to receive
data from such devices.
You need to use the jumper cables in the Raspberry Pi2 starter kit
to connect devices.
In this first tutorial we will attach an LED and make it blink

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 4 / 116

Map of the GPIO pins of a RPi2

0Available from http://pinout.xyz/
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 5 / 116

http://pinout.xyz/

Electronics basics and wiring diagrams

For a good, introductory discussion on how to wire-up external devices
to the Raspberry Pi 2 follow this link.
You can get a small CamJam EduKit, including LEDs, button, resistors
and jumper cables, from ThePiHut. These are all include in your RPi2
starter kit, so you don’t need these, but they may be useful for
experimentation.
The following slides summarise the main steps from this web page.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 6 / 116

https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins
https://thepihut.com/collections/camjam-edukit/products/camjam-edukit

Connecting an LED to the RPi2

As the first exercise in controlling an external LED we need:
a Breadboard
an LED
a 330 ohm resistor
two Male-Female jumper wires

0For details see this page
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 7 / 116

https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins

How to use a Breadboard

The breadboard is a way of connecting electronic components to each
other without having to solder them together.

Using a breadboard, like the one above, simplifies the wiring,
especially for larger projects (as in CW2).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 8 / 116

External devices: LED and Resistor

In this tutorial, we only want to connect an LED to
the RPi2, using a breadboard.
Note that the LED has two legs of different lengths.
The longer leg, is always connected to the positive
supply of the circuit.
The shorter leg is connected to the negative side
of the power supply, known as ‘ground’.
You must protect the LED with a resistor, otherwise
the LED will try to draw more power than needed
and might burn out the RPi2.
Putting the resistors in the circuit will ensure that
only this small current will flow and the Pi will not be
damaged.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 9 / 116

Fritzing Diagrams

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 10 / 116

The Fritzing Diagram Explained

The Fritzing diagram on the previous slide shows how to wire-up
external devices, i.e. which pins to connect to which rows/columns on
the breadboard to complete a circuit.

Use one of the jumper wires to connect a ground pin to the rail,
marked with blue, on the breadboard. The female end goes on
the Pi’s pin, and the male end goes into a hole on the breadboard.
Then connect the resistor from the same row on the breadboard
to a column on the breadboard, as shown in the diagram.
Next, push the LEDs legs into the breadboard, with the long leg
(with the kink) on the right.
Lastly, complete the circuit by connecting pin 18 to the right hand
leg of the LED. This is shown here with the orange wire.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 11 / 116

Using Python to control a GPIO pin

Details of the software setup can be found in Chapter 8 of “Adventures
in Raspberry Pi”.

First install the Python library for GPIO support:

> sudo apt-get install python-RPi.GPIO

To test the version of the RPi you have do the following:

>>> import RPi.GPIO as GPIO
>>> GPIO.RPI_REVISION
2

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 12 / 116

Python code to control a GPIO pin

First we import all required libraries and set some constants, in
particular the pin number that we use for the LED. We need to specify
which numbering of the pins to use, and then setup the connection.
#!/usr/bin/python

External module imports
import RPi.GPIO as GPIO
import time

Pin Definitons:
ledPin = 23 # Broadcom pin 23 (P1 pin 16)

Pin Setup:
GPIO.setmode(GPIO.BCM) # Broadcom pin-numbering scheme
GPIO.setup(ledPin, GPIO.OUT) # LED pin set as output

Initial state for LEDs:
GPIO.output(ledPin, GPIO.LOW)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 13 / 116

Python code to control a GPIO pin (cont’d)

The main part of the program is the loop below, which continously
turns the LED on and off, using a delay of 75ms:

while True:
try:
GPIO.output(ledPin, GPIO.HIGH)
time.sleep(0.075)
GPIO.output(ledPin, GPIO.LOW)
time.sleep(0.075)

except KeyboardInterrupt: # If CTRL+C is pressed, exit
cleanly:

GPIO.cleanup() # cleanup all GPIO

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 14 / 116

Tutorial 1: Using the Linux FS for GPIO Control

One design principle in Linux is to control and view system
information through files.
We have seen this in class by, e.g. looking up details about the
CPU by cat /proc/cpuinfo

This tutorial will demonstrate how filesystem operations can be
used to easily control GPIO pins on the RPi 2

NB: You need a Linux kernel with support for SysFS. Raspbian 7, as
we use it in the kit handed out for this course, provides this.
To check whether SysFS is supported do:
> sudo sh -c "cat /lib/modules/‘uname -r‘/build/.config |

fgrep SYSFS"

and look for a line like this
> CONFIG_SYSFS=y

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 15 / 116

Basics of SysFS

The Linux kernel provides several RAM based file systems.
These file systems provide low-level hardware information and in
some cases a way to control these.
The basic programmer API is to use the system-level read(2)
and write(2) commands on the files in these file systems.
Each file has a special meaning to enable hardware interaction.
The read and write function calls, result in callbacks in the
Linux kernel which has access to the corresponding value.
The benefit of using the read and write functions is that the user
space has a lot of tools available to send data to the kernel space
(e.g. cat(1), echo (1)).

0From: Kernel Space - User Space Interfaces
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 16 / 116

http://people.ee.ethz.ch/~arkeller/linux/multi/kernel_user_space_howto-2.html

SysFS filesystem

SysFS was designed to represent the whole device model as
seen from the Linux kernel
It contains information about devices, drivers and buses and their
interconnections.
SysFS is heavily structured and contains a lot of links.

The main subdirectories of interest for us are:
sys/block/ all known block devices such as hda/ ram/ sda/
sys/class/ for each device type there is a subdirectory: for
example /printer or /sound
sys/device/ all devices known by the kernel, organised by the
bus they are connected to

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 17 / 116

Controlling GPIO pins using SysFS

We want to control the GPIO pins on the RPi2 using the SysFS
interface.
To this end we need to:

I tell the system that we want to access a specific pin (“export” this
device to the SysFS)

I configure the mode of the pin, as either in or out
I read/write from/to the device using standard tools such as echo

and cat
I finally, remove the device from the filesystem (“unexport” it from

SysFS)
All of these steps can be done as one-liners from the
command-line
No additional libraries need to be installed

NB: This interface is useful for testing a wiring or debugging the
hardware. The main learning objective of the course is to learn how to
do the above operations directly on the device (in C or Assembler),
without involving the operating system or an external library at all.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 18 / 116

The Shell Code for Controlling a GPIO
the pin to control
PIN=23

make this pin available through the SysFS
echo $PIN > /sys/class/gpio/export

now, set this pin to output
echo out > /sys/class/gpio/gpio${PIN}/direction

write a value to this pin
echo 1 > /sys/class/gpio/gpio${PIN}/value

wait for some seconds
sleep 3s

write a value to this pin
echo 0 > /sys/class/gpio/gpio${PIN}/value

make this pin unavailable through the SysFS
echo $PIN > /sys/class/gpio/unexport

NB: You need to run this as root, i.e. type sudo sh sysfs_23.sh
NB: Version with a pin as param: sudo sh sysfs.sh -p 23

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 19 / 116

Other useful information in the SysFS

You can get the information about the model like this:
> cat /sys/firmware/devicetree/base/model

You can get the information about the cache line size like this (not
enabled under Raspbian by default):
> cat /sys/devices/system/cpu/cpu0/cache/index0/coherency_line_size

On Debian-based systems, such as Ubuntu, you can also get this info
by typing:
> getconf -a

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 20 / 116

Useful information in the ProcFS filesystem

The /proc filesystem provides information about the processor:
> cat /proc/cpuinfo

gives detailed information about the processor, split by core, eg. each
core is an ARMv7 Processor and the neon instruction set is enabled.
Detailed information about the memory is available via:

> cat /proc/meminfo

shows that the total memory is 949408 kB, i. e. ca. 1GB.

> cat /proc/iomem

shows the structure of the memory, including the location of the GPIO
memory.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 21 / 116

The ProcFS filesystem

There is a special subdirectory: /proc/sys. It allows to configure a
lot of parameters of the running system.

> cat /proc/sys/kernel/osrelease

tells us that the kernel version is 3.18.11-v7+.
There are a lot of files in this directory, showing the current state of the
kernel. For interacting with the kernel, the sysctl interface should be
used.
The sysctl infrastructure is designed to configure kernel parameters
at run time. E. g.

> sysctl --all

lists all kernel parameters.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 22 / 116

Further Reading & Deeper Hacking

Kernel Space - User Space Interfaces, Ariane Keller
ProcFS Kernel Docu
Linux Device Drivers, 3rd ed, Jonathan Corbet, Alessandro
Rubini, Greg Kroah-Hartman
More detailed documentation on SysFS
Shell code samples with SysFS

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 1: GPIO Control 23 / 116

http://people.ee.ethz.ch/~arkeller/linux/multi/kernel_user_space_howto-2.html
https://www.kernel.org/doc/Documentation/filesystems/proc.txt
http://www.oreilly.com/openbook/linuxdrive3/book/
https://www.kernel.org/doc/Documentation/gpio/sysfs.txt
http://elinux.org/RPi_GPIO_Code_Samples#Shell

Tutorial 2: Programming an LED

This tutorial will deal with programming an LED output device.
This is the “hello world” program for external devices.
It will deal with programming techniques common to other output
devices.
The learning objective of this exercise is to learn how to directly
control an external device through C and Assembler programs.
We will also cover easier ways of external control, however these
should only be used to test your hardware/software configuration
and don’t replace the programming component.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 24 / 116

The high-level picture

From the main chip of the RPi2 we want to control an (external)
device, here an LED.
We use one of the GPIO pins to connect the device.
Logically we want to send 1 bit to this device to turn it on/off.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 25 / 116

The low-level picture

Programmatically we achieve that, by
memory-mapping the address space of the GPIOs into user-space
now, we can directly access the device via memory read/writes
we need to pick-up the meaning of the peripheral registers from
the BCM2835 peripherals sheet

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 26 / 116

BCM2835 GPIO Peripherals

The meaning of the registers is (see p90ff of BCM2835 ARM
peripherals):

GPFSEL: function select registers (3 bits per pin); set it to 0 for
input, 1 for output; 6 more alternate functions available
GPSET: set the corresponding pin
GPCLR: clear the corresponding pin
GPLEV: return the value of the corresponding pin

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 27 / 116

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf
https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

GPIO Register Assignment

The GPIO has 48 32-bit registers (RPi2; 41 for RPi1).
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 28 / 116

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

GPIO Register Assignment

GPIO registers (Base address: 0x3F200000)

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12GPFSEL0

GPFSEL1
GPFSEL2
GPFSEL3
GPFSEL4
GPFSEL5

—
GPFSET0
GPFSET1

—
GPFCLR0
GPFCLR1

—

0See BCM Peripherals, Chapter 6, Table 6.1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 29 / 116

Locating the GPFSEL register for pin 47 (ACT)

This table explains the meaning of the bits in register GPFSEL4.
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 30 / 116

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 31 / 116

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 31 / 116

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 31 / 116

Accessing a GPIO Pin

Now we want to control the on-chip LED, called ACT, that normally
indicates activity.
The pin number of this device on the RPi2 is: 47
We need to calculate registers and bits corresponding to this pin
The GPFSEL register for pin 47 is 4 (per docu, this register covers
pins 40-49 (Tab 6-6, p. 94)
For each register 3 bits are used to select the function of that pin:
bits 0–2 for register 40 etc
Thus, bits 21–23 cover register 47 (7 × 3)
The function that we need to select is OUTPUT, which is encoded
as the value 1
We need to write the value 0x01 into bits 21–23 of register 4

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 31 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio? Answer: gpio+4
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
Answer: *(gpio+4)
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
Answer: *(gpio + 4) & ˜(7 << 21)

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: 7

0 1 1 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: 7 << 21

0 0 0 0 0 0 0 0 1 1 1 0
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: ˜(7 << 21)

1 1 1 1 1 1 1 1 0 0 0 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: (*(gpio + 4) & ˜(7 << 21))

&1 1 1 1 1 1 1 1 0 0 0 1
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?

C code: (*(gpio + 4) & ˜(7 << 21))

0 0 0
28 24 20 16 12 8 4 0

How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
Answer: (1 << 21)

How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?

(*(gpio + 4) & ˜(7 << 21)) | (1 << 21)

0 0 1
28 24 20 16 12 8 4 0

How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

Accessing GPIO Pin 47

We want to construct C code to write the value 0x01 into bits
21–23 of register 4
What’s the address of register 4 relative to the base address in
gpio?
How do we read the current value from this register?
How do we blank out bits 21–23 from this register?
How do we get the value 0x01 into bits 21–23 of a 32-bit word?
How do we put only these bits into the contents of register 4?

(gpio + 4) = ((gpio + 4) & ˜(7 << 21)) | (1 << 21)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 32 / 116

C Code: constants and memory mapping
// constants for RPi2
gpiobase = 0x3F200000 ;

// memory mapping
// Open the master /dev/memory device, and map it to address

gpio

if ((fd = open("/dev/mem", O_RDWR | O_SYNC | O_CLOEXEC))< 0)
return failure (FALSE, "Unable to open /dev/mem: %s\n",

strerror(errno)) ;

// gpio is the mmap’ed device memory
gpio = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|PROT_WRITE,

MAP_SHARED, fd, gpiobase) ;
if ((int32_t)gpio == -1)
return failure (FALSE, " mmap (GPIO) failed: %s\n",

strerror(errno)) ;

Now, gpio is the address of the device memory that we can access
directly (if run as root!).

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 33 / 116

Registers for the GPIO peripherals: GPFSEL

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

pin 47

Write into these bits (21–23) to set the function for pin 47

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 34 / 116

Registers for the GPIO peripherals: GPFSEL

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

4 23 22 21

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 34 / 116

C Code: setting the mode of the pin

// setting the mode for GPIO pin 47
fprintf(stderr, "setting pin %d to %d ...\n", pinACT, OUTPUT)

;
fSel = 4; // GPIO 47 lives in register 4 (GPFSEL)
shift = 21; // GPIO 47 sits in slot 7 of register 4, thus

shift by 7*3 (3 bits per pin)

(gpio + fSel) = ((gpio + fSel) & ˜(7 << shift)) | (1 <<
shift) ; // Sets bits to one = output

// *(gpio + fSel) = (*(gpio + fSel) & ˜(7 << shift)) ;
// Sets bits to zero = input

Now, pin 47 (the on-board ACT LED) is set as an output device.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 35 / 116

Essentials

Register no.: 4
Bits: 21–23

Function: 1 (output)

C Code: setting the mode of the pin

// setting the mode for GPIO pin 47
fprintf(stderr, "setting pin %d to %d ...\n", pinACT, OUTPUT)

;
fSel = 4; // GPIO 47 lives in register 4 (GPFSEL)
shift = 21; // GPIO 47 sits in slot 7 of register 4, thus

shift by 7*3 (3 bits per pin)

(gpio + fSel) = ((gpio + fSel) & ˜(7 << shift)) | (1 <<
shift) ; // Sets bits to one = output

// *(gpio + fSel) = (*(gpio + fSel) & ˜(7 << shift)) ;
// Sets bits to zero = input

Now, pin 47 (the on-board ACT LED) is set as an output device.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 35 / 116

Essentials

Register no.: 4
Bits: 21–23

Function: 1 (output)

GPIO Registers for Turning the LED on/off

We now need to access the GPSET and GPCLR register for pin 47.
0See BCM Peripherals Manual, Chapter 6, Table 6.1

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 36 / 116

Turning the LED on or off

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

GPCLR1 pin 47

Write into this bit (15) to clear pin 47

GPSET1 pin 47

Write into this bit (15) to set pin 47

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 37 / 116

Turning the LED on or off

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

11 15

Write into this bit (15) to clear pin 47

8 15

Write into this bit (15) to set pin 47

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 37 / 116

Code: blinking LED

for (j=0; j<1000; j++) {
theValue = ((j % 2) == 0) ? HIGH : LOW;
// write the value into the location corresp. to pin 47
if ((pinACT & 0xFFFFFFC0) == 0) // sanity check
{

if (theValue == LOW) { // GPCLR
// GPCLR for GPIOs 32-53 is register 11
clrOff = 11; // register for clearing a pin value

*(gpio + clrOff) = 1 << (pinACT & 31) ;
} else { // GPSET
// GPSET for GPIOs 32-53 is register 8
setOff = 8; // register for setting a pin value

*(gpio + setOff) = 1 << (pinACT & 31) ;
}

} else { fprintf(stderr, "only supporting on-board pins\n
"); exit(1); }

// delay for howLong ms, using a Linux system function
...

}
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 38 / 116

Discussion

In each iteration of the loop, we toggle theValue between the
constants HIGH and LOW

This is not the value written to a register, but a flag for the control
flow
If theValue is LOW, we write a 1 into the corresponding GPCLR
register, to turn the LED off
If theValue is HIGH, we write a 1 into the corresponding GPSET
register, to turn the LED off
Note, that we determine the bit location in these registers by
pinACT & 31, which is the same as taking pinACT modulo 32
We then wait for a certain amount of time to control the blinking
frequency

See sample source: tut led.c

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 39 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/tut_led.c

The main registers that you need to know about

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 40 / 116

FctSelect

0
1
2
3
4
5

Set Registers

7
8

Clear Registers

10
11

The main registers that you need to know about

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 40 / 116

FctSelect

0
1
2
3
4
5

Set Registers

7
8

Clear Registers

10
11

Controlling the LED in Assembler
@ ... mmap boilerplate here
ADD R3, R3, #4 @ add 4 for block 1
LDR R2, [SP, #16] @ get virtual mem addr
ADD R2, R2, #16 @ add 16 for block 4
LDR R2, [R2, #0] @ load R2 with value at R2
BIC R2, R2, #0b111<<21 @ Bitwise clear of three bits
STR R2, [R3, #0] @ Store result in Register
LDR R3, [SP, #16] @ Get virtual mem address
ADD R3, R3, #16 @ Add 16 for block 4
LDR R2, [SP, #16] @ Get virtual mem addr
ADD R2, R2, #4 @ add 16 for block 4
LDR R2, [R2, #0] @ Load R2 with value at R2
ORR R2, R2, #1<<21 @ Set bit....
STR R2, [R3, #0] @ ...and make output
LDR R3, [SP, #16] @ get virt mem addr
ADD R3, R3, #32 @ add 32 to offset for GPSET1
MOV R4, #1 @ get 1
MOV R2, R4, LSL#15 @ Shift by pin number
STR R2, [R3, #0] @ write to memory

See sample source: gpio47on.s
0From: Bruce Smith “Raspberry Pi Assembly Language: Raspbian”, Ch 25

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 41 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/gpio47on.s

Summary

Controlling a simple external device means logically sending 1 bit
of information (on/off)
Realising this control means physically writing into special
registers which have special meaning
The information on the special meaning is usually in bulky
hardware-description documentation
Once uncovered, the code for direct device control is fairly short
The sample sources show a C and an Assembler version of
turning pin 47 (ACT) on/off

Thanks to Gordon Henderson for his sterling work on the wiringPi
library!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 2: Prging an LED 42 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/
http://wiringpi.com/
http://wiringpi.com/

Tutorial 3: Programming a Button input device

In this tutorial we want to use a button, connected through a
breadboard as an input device.
This is the simplest input device that we will cover.
The code needed to control is typical for such devices.
This tutorial deals with programming a button as input device.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 43 / 116

Core Techniques

In the LED tutorial, we have seen that we first need to identify the
registers that give control to the device.
For that we will again look into the BCM Peripherals
documentation.
We will then go through a simple example of

I reading button input data,
I blinking an LED on button press.

We want to connect the button with pin 24, using a breadboard.
These simple activities, will also be at the core of CW2.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 44 / 116

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

GPIO Register Assignment

0See BCM Peripherals Manual, Chapter 6, Table 6.1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 45 / 116

Registers

13
14

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

GPIO Register Assignment

0See BCM Peripherals Manual, Chapter 6, Table 6.1
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 45 / 116

Registers

13
14

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

BCM2835 GPIO Peripherals

The main registers that we need in this case are (see p90ff of
BCM2835 ARM peripherals):

GPFSEL: function select registers (3 bits per pin); set it to 0 for
input, 1 for output; 6 more alternate functions available
GPSET: set the corresponding pin
GPCLR: clear the corresponding pin
GPLEV: return the value of the corresponding pin

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 46 / 116

https://www.raspberrypi.org/wp-content/uploads/2012/02/BCM2835-ARM-Peripherals.pdf

Define the button pin as an INPUT device

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

pin 24

Write into these bits (12–14) to set the function for pin 24

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 47 / 116

Define the button pin as an INPUT device

12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
3: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
2: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
1: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
0: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

2 14 13 12

Write into these bits (12–14) to set the function for pin 24

NB: Recall, each GPFSEL register controls 10 pins (1–10, 11–20, etc);
for each pin, 3-bits control the behaviour.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 47 / 116

Define the button pin as an INPUT device

12:
11:
10:
9:
8:
7:
6:
5:
4:
3:
2:
1:
0:

2 0 0 0

NB: To set a pin to input we need to write the value 0 into it.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 47 / 116

Reading from the button input

GPIO registers (Base address: 0x3F200000)

15:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
14:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
13:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

GPLEV0 pin 24

Read this bit (24)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 48 / 116

Contents:

Bit positions

Reading from the button input

GPIO registers (Base address: 0x3F200000)

15:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
14:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
13:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
12:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
11:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
10:31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
9: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
8: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
7: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
6: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
5: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8
4: 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8

13 24

Read from this bit (24)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 48 / 116

Contents:

Bit positions

Reading from the button input

GPIO registers (Base address: 0x3F200000)

15
14
13
12
11
10
9
8
7
6
5
4

1

Input: HIGH

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 48 / 116

Contents:

Bit values

Reading from the button input

GPIO registers (Base address: 0x3F200000)

15
14
13
12
11
10
9
8
7
6
5
4

0

Input: LOW

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 48 / 116

Contents:

Bit values

Sample C code: Button input

First we define some constants that we will need.

// Tunables:
// PINs (based on BCM numbering)
#define LED 23
#define BUTTON 24
// delay for loop iterations (mainly), in ms
#define DELAY 200

#define INPUT 0
#define OUTPUT 1

#define LOW 0
#define HIGH 1

This assumes that we have wired-up the button with GPIO pin 24 and
the LED with GPIO pin 23.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 49 / 116

Using a breadboard

To control an external LED, you could directly connect GPIO pins with
the LED and a resistor using jumper cables.
However, a breadboard is a more flexible way of wiring peripherals,
such as LEDs or buttons, to the RPi.
You need to understand how the columns and the rows on a
breadboard are connected, though.

For a good basic intro on how to use a breadboard follow this link
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 50 / 116

https://thepihut.com/blogs/raspberry-pi-tutorials/27968772-turning-on-an-led-with-your-raspberry-pis-gpio-pins

The wiring as a Fritzing diagram

To describe a specific wiring, we use Fritzing diagrams like this:

An LED, as output device, is connected to the RPi2 using GPIO pin
23.
A button, as input device, is connected to GPIO pin 24.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 51 / 116

Sample C code: Button input

We memory-map the addresses for the GPIO registers (as before).

gpiobase = 0x3F200000;
// memory mapping
if ((fd = open ("/dev/mem", O_RDWR | O_SYNC |

O_CLOEXEC)) < 0)
return failure (FALSE, "setup: Unable to open /

dev/mem: %s\n", strerror (errno)) ;
// GPIO:
gpio = (uint32_t *)mmap(0, BLOCK_SIZE, PROT_READ|

PROT_WRITE, MAP_SHARED, fd, gpiobase) ;
if ((int32_t)gpio == -1)
return failure (FALSE, "setup: mmap (GPIO)

failed: %s\n", strerror (errno)) ;

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 52 / 116

Sample C code: Button input

We set the modes for the LED pin (OUTPUT) and the button pin
(INPUT).

// setting the mode
fSel = 2; // register 2 (GPFSEL2)
shift = 9; // slot 3 (shift 3*3)
// set the above pin to output mode

(gpio + fSel) = ((gpio + fSel) & ˜(7 << shift))
| (1 << shift) ; // Sets bits to one = output

fSel = 2; // register 2 (GPFSEL2)
shift = 12; // slot 4 (shift 4*3)
// set the above pin to input mode

(gpio + fSel) = ((gpio + fSel) & ˜(7 << shift))
; // Sets bits to zero = input

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 53 / 116

Sample C code: Button input

Inside the main loop, we first read from the bit associated with the
button input in the GPLEV0 register.

for (j=0; j<1000; j++) {
if ((*(gpio + 13 /* GPLEV0 */) & (1 << (BUTTON &

31))) != 0)
theValue = HIGH ;

else
theValue = LOW ;

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 54 / 116

Sample C code: Button input

Further down the loop, we write to the bit associated with the LED
output in the GPLCR0 or GPSET0 register.

if (theValue == LOW) {
clrOff = 10; // GPCLR0 for pin 23

*(gpio + clrOff) = 1 << (LED & 31); // 23-rd bit
in the register

} else {
setOff = 7; // GPSET0 for pin 23

*(gpio + setOff) = 1 << (LED & 31); // 23-rd bit
in the register

}
// delay ...

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 55 / 116

Sample C code: Button input

Finally, we want to clean-up by setting the LED to LOW. Which kind of
code do we need here?

// clean-up by setting the LED pin to LOW

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 56 / 116

Summary

Reading input from a button works in the same way as writing to
the LED:

I We need to identify the relevant registers and bits for our pin
I We declare the pin an INPUT device in the GPFSEL register
I We read from the associated bit in the GPLEV register to get the

input

With the button you have a basic input device to communicate
with the system
In the CW we will combine a button (for input), an LED (for output)
and an LCD display (for nicer output) and implement a small app
for this configuration.

See sample source: tut button.c

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 3: Prging a Button 57 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/tut_button.c

Tutorial 4: Inline Assembler with gcc

So far we have developed either C or Assembler programs
separately.
Linking the compiled code of both C and Assembler sources
together we can call one from the other.
This is ok, but sometimes inconvenient because

I errors occur only at link time, and carry little information
I we can’t easily parameterise the Assembler code (e.g. with the
gpio base address)

In this tutorial we will cover how to embed assembler code into
a C program, using the gcc and the GNU toolchain

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 58 / 116

A Simple Example

Look-up the value in val and copy it to val3:

static volatile int val = 1024, val3;
asm(/* multi-line example of value look-up and return

*/
"\tMOV R0, %[value]\n" /* load the address

into R0 */
"\tLDR %[result], [R0, #0]\n" /* get and return

the value at that address */
: [result] "=r" (val3) /* output parameter */
: [value] "r" (&val) /* input parameter */
: "r0", "cc"); /* registers used */

fprintf(stderr, "Value lookup at address %x (expect %d)
: %d\n", &val, val, val3);

0Sample source in sample0.c; see also ARM inline assembly blog
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 59 / 116

Essentials

val provides the input
asm code returns its value
val3 receives the output

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sample0.c
http://www.ethernut.de/en/documents/arm-inline-asm.html

Example explained

The asm command defines a block of assembler code that is put
at that location into the C code (embedded).
The assembler code itself is written as a sequence of strings,
each starting with a TAB (\t) and ending with a newline (\n) to
match usual assembler code formatting.
Inside the strings, the code can refer to arguments provided in the
“output parameter” and “input parameter” sections.
These sections define a name (e.g. result) that can be used in
the assembler code (e.g. %[result]), and which is bound to a
concrete variable or value (e.g. val3).
Think of these in the same way as formatting strings in printf
statements.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 60 / 116

Example explained (cont’d)

For example the line
: [result] "=r" (val3)
says “the name result, which is referred to in the assembler
code as %[result], is bound to the C variable val3; moreover,
it should be represented as a register ("r")”
So, what this example code does is to load the address of the C
variable val into the register R0, and then to load the value at this
address, i.e. the contents of the C variable val, into the C variable
val3, which should be kept in a register ("r")
The last section of the asm block defines which registers are
modified by this assembler block. This information is needed by
the compiler when doing register allocation.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 61 / 116

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
: OutputOperands

[: InputOperands
[: Clobbers]])

0See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 62 / 116

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
: OutputOperands

[: InputOperands
[: Clobbers]])

AssemblerTemplate: This is a literal string that is the template for
the assembler code. It is a combination of fixed text and tokens that
refer to the input, output, and goto parameters.

0See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 62 / 116

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
: OutputOperands

[: InputOperands
[: Clobbers]])

OutputOperands: A comma-separated list of the C variables
modified by the instructions in the AssemblerTemplate. An empty list is
permitted.

0See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 62 / 116

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
: OutputOperands

[: InputOperands
[: Clobbers]])

InputOperands: A comma-separated list of C expressions read by
the instructions in the AssemblerTemplate. An empty list is permitted.

0See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 62 / 116

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

GCC Extended Assembler Commands

Using gcc you can embed assembler code into your C programs, i.e.
write “inline assembler” code in C.
The format for the inline assembler code is

asm [volatile] (AssemblerTemplate
: OutputOperands

[: InputOperands
[: Clobbers]])

Clobbers: A comma-separated list of registers or other values
changed by the AssemblerTemplate, beyond those listed as outputs.
An empty list is permitted.

0See GCC Manual, Section “Extended Asm”
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 62 / 116

https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html

Another Example
Using a pair data structure, the function below computes the sum of
both fields.

typedef struct {
ulong min; ulong max;

} pair_t;

ulong sumpair_asm(pair_t *pair) {
ulong res;
asm volatile(/* sum over int values */

"\tLDR R0, [%[inp], #0]\n"
"\tLDR R1, [%[inp], #4]\n"
"\tADD R0, R0, R1\n"
"\tMOV %[result], R0\n"
: [result] "=r" (res)
: [inp] "r" (pair)
: "r0", "r1", "cc");

return res;
}Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 63 / 116

Essentials

C variable pair is passed as inp
"r": keep in register
"=r": the register is written to

Modifiers and constraints to the input/output operands

When mapping names to C variables or expressions, the following
constraints and modifiers can be specified:
Constraint Specification

f Floating point registers f0 . . . f7
r General register r0 . . . r15
m Memory address
I Immediate value

Modifier Specification
= Write-only operand, usually used for all output operands
+ Read-write operand, must be listed as an output operand
& A register that should be used for output only

E.g. : [result] "=r" (res)
means that the name result should be a register in the assembler
code, and that it will be written to, by the assembler code.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 64 / 116

Modifiers and constraints to the input/output operands

When mapping names to C variables or expressions, the following
constraints and modifiers can be specified:
Constraint Specification

f Floating point registers f0 . . . f7
r General register r0 . . . r15
m Memory address
I Immediate value

Modifier Specification
= Write-only operand, usually used for all output operands
+ Read-write operand, must be listed as an output operand
& A register that should be used for output only

E.g. : [result] "=r" (res)
means that the name result should be a register in the assembler
code, and that it will be written to, by the assembler code.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 64 / 116

Extended inline assembler: Example
Using a pair data structure, the function below puts the smaller value
into the min and the larger value into the max field:

typedef struct {
ulong min; ulong max;

} pair_t;

void minmax_c(pair_t *pair) {
ulong t;
if (pair->min > pair->max) {
t = pair->min;
pair->min = pair->max;
pair->max = t;

}
}

0Sample source: sumav1 asm.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 65 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sumav1_asm.c

Extended inline assembler: Example

void minmax_asm(pair_t *pair) {
pair_t *res;
asm volatile("\tLDR R0, [%[inp], #0]\n"

"\tLDR R1, [%[inp], #4]\n"
"\tCMP R0, R1\n"
"\tBLE done\n"
"\tMOV R3, R0\n"
"\tMOV R0, R1\n"
"\tMOV R1, R3\n"
"done: STR R0, [%[inp], #0]\n"
"\tSTR R1, [%[inp], #4]\n"
: [result] "=r" (res)
: [inp] "r" (pair)
: "r0", "r1", "r3", "cc");

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 66 / 116

Discussion

inp needs to be in a register, because it contains the base
address in a load operation (LDR)
we don’t use res in this case, but it usually needs the "=r"
modifier and constraint
the clobber list must name all registers that are modified in the
code: r0, r1, r3

we could pass in an immediate value sizeof(ulong) and use it
instead of the literal #4 to make the code less
hardware-dependent

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 67 / 116

Summary

With gcc’s in-line assembler commands (asm) you can embed
assembler code into C code.
This avoids having to write code in separate files and then link
them together.
The assembler code can be parameterised over C variables and
expressions, to simplify passing arguments.
Care needs to be taken to define constraints and modifiers
(keep data in registers or memory)
Registers that are modified need to be explicitly identified in the
“clobber list”.
It is recommended to use such in-line assembler code for CW2,
where you need to develop an applicaion in C and assembler.

Sample sources: sample0.c, and sumav1 asm.c
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 4: Inline Assembler 68 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sample0.c
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/srcs/sumav1_asm.c

Tutorial 5: Programming an LCD Display

This tutorial will focus on programming a simple output device:

an 16x2 LCD display using an Hitachi HD44780U controller

This will be an exercise of controlling a device slightly more
complicated than the LED and button devices so far.
The principles of programming are the same as before.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 69 / 116

Overview

We will cover:
1 Connecting an LCD display to the RPi2
2 Low-level interface in assembler (digitalWrite)
3 Medium-level interface in C (lcdClear etc)
4 Sending characters and strings (lcdPutChar, lcdPuts)
5 Character data (defining own characters)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 70 / 116

Acknowledgements

The code in this tutorial is mostly taken directly from the wiringPi
library for the Raspberry Pi, by Gordon Henderson.
If you have downloaded the sources, you can look-up examples in the
directory wiringPi/examples (e.g. lcd.c) and the code for the
LCD functions in wiringPi/devLib (also lcd.c)

* wiringPi:

* Arduino look-a-like Wiring library for the Raspberry Pi

* Copyright (c) 2012-2015 Gordon Henderson

* Additional code for pwmSetClock by Chris Hall <chris@kchall.plus.com>

*
* Thanks to code samples from Gert Jan van Loo and the

* BCM2835 ARM Peripherals manual, however it’s missing

* the clock section /grr/mutter/

* This file is part of wiringPi:

* https://projects.drogon.net/raspberry-pi/wiringpi/

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 71 / 116

Function dependencies

Here is a simple picture of the dependencies of the API functions:

digitalWrite(pin, bit)

sendDataCommand(lcd, byte)

putCommand(lcd, byte)

lcdHome(lcd) lcdClear(lcd) lcdPutChar(lcd, chr)

lcdPuts(lcd, string)

lcdCharDef(lcd,id,buf)

NB: only the lowest level, digitalWrite is in assembler, the rest is
in C

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 72 / 116

LCD commands

We need some constant definitions and boilerplate code:
Here is a list of instructions for the Hitachi HD44780U controller:

#define LCD_CLEAR 0x01
#define LCD_HOME 0x02
#define LCD_ENTRY 0x04
#define LCD_CTRL 0x08
#define LCD_CDSHIFT 0x10
#define LCD_FUNC 0x20
#define LCD_CGRAM 0x40
#define LCD_DGRAM 0x80

0See Table 6 and Figure 11 in the HD4478 Technical Reference
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 73 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/Docu/HD44780.pdf

1. The wiring

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 74 / 116

The wiring: encoded

To encode this wiring in the program we define:

#define STRB_PIN 24
#define RS_PIN 25
#define DATA0_PIN 23
#define DATA1_PIN 17
#define DATA2_PIN 27
#define DATA3_PIN 22

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 75 / 116

Data structure for the LCD-connection

The following data structure stores the pin numbers and cursor
position:

struct lcdDataStruct
{
int bits, rows, cols ;
int rsPin, strbPin ;
int dataPins [8] ;
int cx, cy ;

} ;

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 76 / 116

2. Low-level Assembler interface

This code is essentially the same as in the blinking LED example, i.e.
we want to “send” one bit to a pin that’s an argument to the interface:

Set the mode of the pin to output (before calling the function)
Identify the register and bit to write to
Write one bit (1) into this location
It is recommended that you use inline assembler to implement this
function

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 77 / 116

2. Low-level Assembler interface

asm volatile(/* inline assembler version of setting/clearing LED to
ouput" */

"\tB _bonzo0\n"
"_bonzo0: NOP\n"
"\tLDR R1, %[gpio]\n"
"\tADD R0, R1, %[off]\n" /* R0 = GPSET/GPCLR register */
"\tMOV R2, #1\n"
"\tMOV R1, %[pin]\n" /* NB: this works only for pin 0-31 */
"\tAND R1, #31\n"
"\tLSL R2, R1\n" /* R2 = bitmask set/clear reg %[act] */
"\tSTR R2, [R0, #0]\n" /* write bitmask */
"\tMOV %[result], R2\n"
: [result] "=r" (res)
: [pin] "r" (pin)
, [gpio] "m" (gpio)
, [off] "r" (off*4)

: "r0", "r1", "r2", "cc");

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 78 / 116

3. Medium-level interface

Sending data uses digitalWrite to send bits over the 4 pins:
void sendDataCmd (const struct lcdDataStruct *lcd, unsigned char data)
{
unsigned char i, d4 ;

d4 = (myData >> 4) & 0x0F;
for (i = 0 ; i < 4 ; ++i)
{

digitalWrite (lcd->dataPins [i], (d4 & 1)) ;
d4 >>= 1 ;

}
strobe (lcd) ;

d4 = myData & 0x0F ;
for (i = 0 ; i < 4 ; ++i)
{

digitalWrite (lcd->dataPins [i], (d4 & 1)) ;
d4 >>= 1 ;

}
strobe (lcd) ;

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 79 / 116

Sending a command

Sending a command works like sending a byte, except that we only
need 4 bits to encode the command, and therefore only one loop in the
body:
void lcdPut4Command (const struct lcdDataStruct *lcd, unsigned char

command) {
register unsigned char myCommand = command ;
register unsigned char i ;

digitalWrite (lcd->rsPin, 0) ;

for (i = 0 ; i < 4 ; ++i) {
digitalWrite (lcd->dataPins [i], (myCommand & 1)) ;
myCommand >>= 1 ;

}
strobe (lcd) ;

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 80 / 116

Move cursor home

Now that we can send a command, we can create instances for each
of the commands that are specified for the HD44780U controller:

void lcdHome (struct lcdDataStruct *lcd) {
lcdPutCommand (lcd, LCD_HOME) ;
lcd->cx = lcd->cy = 0 ;
delay (5) ;

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 81 / 116

4. Sending characters and strings

Sending a character involves, sending the char as a byte, moving to
the next position, and updating the position on the LCD display:

void lcdPutchar (struct lcdDataStruct *lcd, unsigned
char data) {

digitalWrite (lcd->rsPin, 1) ;
sendDataCmd (lcd, data) ;

if (++lcd->cx == lcd->cols) {
lcd->cx = 0 ;
if (++lcd->cy == lcd->rows)
lcd->cy = 0 ;

lcdPutCommand (lcd, lcd->cx + (LCD_DGRAM | (lcd
->cy>0 ? 0x40 : 0x00) /* rowOff [lcd->cy]

*/)) ;
}

}Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 82 / 116

Writing strings

Once we can send characters, we only need a loop on top of it to send
entire strings:

void lcdPuts (struct lcdDataStruct *lcd, const char

*string) {
while (*string)
lcdPutchar (lcd, *string++) ;

}

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 83 / 116

5. Putting things together

In the main function we:
Memory-map the GPIO address into user space (gpio)
Configure an lcd data structure with the pin numbers for our
wiring
Initialise the connection to this lcd
Initialise the display using lcdClear() and lcdHome()

Write “Hello World” using lcdPuts

See the lcd-hello.c sample program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 84 / 116

5. Putting things together

In the main function we:
Memory-map the GPIO address into user space (gpio)
Configure an lcd data structure with the pin numbers for our
wiring
Initialise the connection to this lcd
Initialise the display using lcdClear() and lcdHome()

Write “Hello World” using lcdPuts

See the lcd-hello.c sample program.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 5: Prging an LCD 84 / 116

Tutorial 6: Performance Counters on the RPi 2

Performance counters are hardware support for monitoring basic
operations on the CPU
They are very accurate and useful for monitoring resource
consumption
It is possible to count cycles, but also cache misses,
(mispredicted) branches etc
In this tutorial we will cover how to use performance counters to
get a precise measure of the runtime of a program

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 85 / 116

Architecture Support

Both the BCM2835 (of the RPi 1) and BCM2836 (of the RPi 2)
provide a Performance Monitoring Unit (PMU) as a
co-processor on the chip
The unit supports in total 4 counter registers and a separate cycle
counter register.
These 4 registers can be configured to count a range of low-level
events.
There are 2 different interfaces for accessing this information.

I the APB interface, which uses memory mapping and access
registers on the PMU directly

I the CP15 interface, which uses special assembler instructions for
communicating between processor and PMU

The PMU operations are usually not available for user programs
(trying to run them directly will trigger an SIGILL exception)
However, we can write a simple Linux kernel module to enable this
functionality, and then use it through assembler instructions in our
user code.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 86 / 116

Overview: How to use the PMU

We need to go through the following steps:
1 Find out how to interact with the PMU
2 Enable access to the PMU from “user space”
3 Define what we want to monitor
4 Use access to the PMU to measure programs

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 87 / 116

Step 1: Find out how to interact with the PMU

The PMU is a co-processor, called CP15, separate from the main
processor, but on the same chip.
The special assembler instructions MRC and MCR transfer data between
processor register (R) and co-processor (C).

0From Linux Magazin 05/2015: Kerntechnik
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 88 / 116

http://www.linux-magazin.de/static/listings/magazin/2015/05/kerntechnik/

Instructions for data transfer between processor and
co-processor

The ARM instruction set provides 2 instructions for the
I MCR: Move to Coproc from ARM Reg
I MRC: Move to ARM Reg from Coproc

The technical reference manual describes the instructions like this:

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 241

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 89 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Step 2: Enabling PMU access through a kernel
module

By default, the PMU can only be accessed in “privileged mode”,
but this can be changed
We need to construct a small Linux kernel module that enables
the access to the PMU
In essence, we need to embed some assembler instructions into
an API pre-scribed by the Linux kernel
For details on how to build a Linux kernel module see

I The Linux Kernel Module Programming Guide, Peter Jay Salzman
I Building instructions from a course on “Introduction to Embedded

Computing” at Univ of California, San Diego, by Tajana Simunic
Rosing

Here, I’ll just shortly summarise the steps needed, and how to use
performance monitoring in a simple example program

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 90 / 116

http://linux.die.net/lkmpg/index.html
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf
http://cseweb.ucsd.edu/classes/wi16/cse237A-a/project/part1/Part1.Instructions.pdf

Table 11-1: PMU registers

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 237

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 91 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Table 11-1: PMU registers

The two main registers that we need to access are PMCR and
PMUSERENR

I PMCR: controls access to the PMU in general
I PMUSERENR: is the User Enable Register that needs to be

configured to allow user code to access the PMU

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 237

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 92 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Table 11-1: PMU registers

The two main registers that we need to access are PMCR and
PMUSERENR

I PMCR: controls access to the PMU in general
I PMUSERENR: is the User Enable Register that needs to be

configured to allow user code to access the PMU

0See Cortex A7 MPcore Technical Reference Manual, Table 11-1 PMU register
summary, p 237

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 92 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

Structure of the PMCR register

To enable access to the PMU, we need to access the PMCR register.
The Performance Monitor Control Register (PMCR) defines the
core behaviour of the PMU:

0See Cortex A7 MPcore Technical Reference Manual, Figure 11-2 Performance
Monitor Control Register bit assignments, p 240

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 93 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf

The bits in the PMCR

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 94 / 116

Configuring the PMCR register

We are almost there!

The encoding for the PMCR register is (see Table 11-1): c9, c12, 0

We now configure the PMCR by setting the E, P, C, and X bits.
These are bits 0, 1, 2, and 4 in the PMCR register.
This means we need a bitmask of 0b00010111 or 0x17.

Here is the code:

mov r2, #0x17 @ store bitmask 0x17 in reg r2
mcr p15, 0, r2, c9, c12, 0 @ transfer to PMCR

NB: For longer running programs you probably also want to enable the
D bit, which divides the cylce counter by 64!

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 95 / 116

The PMUSERENR register

0See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.81, PMUSERENR,
Performance Monitors User Enable Register, p 1924

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 96 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU

We can enable access to the PMU from “user space”, from normal
applications that are running outside the Linux “kernel space”, by
setting the lowest bit in the PMUSERENR:

mov r2, #0x01 @ store bitmask 0x01 in reg r2
mcr p15, 0, r2, c9, c14, 0 @ transfer r2 to PMUSERENR

The MCR instruction transfers a value in a register to the co-processor.
To find the encoding of the PMUSERENR we look up Table 11-1:
c9, c14, 0

0See also ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table
B5-11: Summary of PMSA CP15 register descriptions, p 1796

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 97 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU
We also need to configure the following registers

PMCNTENSET: Count Enable Set Register1:
Purpose: The PMCNTENSET register enables the Cycle
Count Register, PMCCNTR, and any implemented event
counters, PMNx. Reading this register shows which counters
are enabled. This register is a Performance Monitors register.

PMOVSR: Overflow Status Register PMCNTENSET: Count Enable
Set Register2:

Purpose: The PMOVSR holds the state of the overflow bits for:

I the Cycle Count Register, PMCCNTR
I each of the implemented event counters, PMNx.

Software must write to this register to clear these bits.
This register is a Performance Monitors register.

1See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.74, p 1910
2See ARM Architecture Reference Manual Cortex-A7, Sec B6.1.78, p 1908

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 98 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Table 11-1: PMCNTENSET and PMOVSR registers

We now have to find the register encodings for PMCNTENSET and
PMOVSR.

2See either Cortex A7 MPcore Technical Reference Manual, Figure 11-2
Performance Monitor Control Register bit assignments, p 240
or ARM Architecture Reference Manual Cortex-A7, Sec B5.8.2, Table B5-11:
Summary of PMSA CP15 register descriptions, p 1796

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 99 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0464F_cortex_a7_mpcore_r0p5_trm.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Bits in PMCNTENSET and PMOVSR registers

The PMCNTENSET register enables the Cycle Count Register,
PMCCNTR, and any implemented event counters, PMNx3

The PMOVSR holds the state of the overflow bit for: (i) the Cycle
Count Register, PMCCNTR; (ii) each of the implemented event
counters, PMNx.4

3See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1676
4See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1685Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 100 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Bits in PMCNTENSET and PMOVSR registers

The PMCNTENSET register enables the Cycle Count Register,
PMCCNTR, and any implemented event counters, PMNx3

The PMOVSR holds the state of the overflow bit for: (i) the Cycle
Count Register, PMCCNTR; (ii) each of the implemented event
counters, PMNx.4

3See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1676
4See ARM Architecture Reference Manual Cortex-A7, Sec B4.1.116, p 1685Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 100 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf
http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DDI0406C_C_arm_architecture_reference_manual.pdf

Enabling access to the PMU

Almost there!

Both registers hold bitmasks over the event counters, to enable them
and to control overflow.
We want to turn on the bit for every counter.
We have 4 counters in total, so we need to set the 4 least significant
bits: we need a bitmask of 0b1111 or 0x0f

Finally, here is the code to set the PMCNTENSET and PMOVSR registers:

mov r2, #0x0f @ store bitmask 0x0f in reg r2
mcr p15, 0, r2, c9, c12, 1 @ transfer to PMCNTENSET
mov r2, #0x0f @ store bitmask 0x0f in reg r2
mcr p15, 0, r2, c9, c12, 3 @ transfer to PMOVSR

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 101 / 116

Step 3: Defining what to monitor

Now that the PMU is enabled we need to decide what we want to
monitor
The PMU contains one cycle counter register, which we can use
without special configuration: PMCCNTR
The PMU contains 4 configurable counter registers
For each of these registers we need to specify an event type to
monitor

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 102 / 116

Table 16-1: PMU monitor events

4From ARM Cortex-A Programmer’s Guide, Table 16-1, p222
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 103 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf

Table 16-1: PMU monitor events

4From ARM Cortex-A Programmer’s Guide, Table 16-1, p222
Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 104 / 116

http://www.macs.hw.ac.uk/~hwloidl/Courses/F28HS/DEN0013D_cortex_a_series_PG.pdf

Defining what to monitor

We can define the events we want to monitor like this:

mov r2, #0x00 @ counter #0
mcr p15, 0, r2, c9, c12, 5 @ transfer to PMSELR
mov r2, #0x11 @ event type #11: cycle count
mcr p15, 0, r2, c9, c13, 1 @ transfer to PMXEVTYPER

The first 2 lines identify counter no. 0 (0x00) as the counter we are
configuring.
The next 2 lines specify that this counter should monitor event no.
0x11: instruction cycles.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 105 / 116

Defining what to monitor

We can define the events we want to monitor like this:

mov r2, #0x00 @ counter #0
mcr p15, 0, r2, c9, c12, 5 @ transfer to PMSELR
mov r2, #0x11 @ event type #11: cycle count
mcr p15, 0, r2, c9, c13, 1 @ transfer to PMXEVTYPER

The first 2 lines identify counter no. 0 (0x00) as the counter we are
configuring.
The next 2 lines specify that this counter should monitor event no.
0x11: instruction cycles.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 105 / 116

The complete kernel module
// 1. Enable "User Enable Register"
asm volatile("mcr p15, 0, %0, c9, c14, 0\n\t" :: "r" (0

x00000001));

// 2. Reset Performance Monitor Control Register(PMCR), Count
Enable Set Register, and Overflow Flag Status Register

asm volatile ("mcr p15, 0, %0, c9, c12, 0\n\t" :: "r"(0
x00000017));

asm volatile ("mcr p15, 0, %0, c9, c12, 1\n\t" :: "r"(0
x8000000f));

asm volatile ("mcr p15, 0, %0, c9, c12, 3\n\t" :: "r"(0
x8000000f));

// 3. Disable Interrupt Enable Clear Register
asm volatile("mcr p15, 0, %0, c9, c14, 2\n\t" :: "r" (˜0));

// 4. Read how many event counters exist
asm volatile("mrc p15, 0, %0, c9, c12, 0\n\t" : "=r" (v)); //

Read PMCR
printk("pmon_init(): have %d configurable event counters.\n", (

v >> 11) & 0x1f);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 106 / 116

Build the module

You first need to download the kernel sources.
To build the module, get the sample sources from PMU pmuon and do
this:

sudo make clean
sudo make
sudo insmod ./pmuon.ko
dmesg | tail
sudo rmmod pmuon

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 107 / 116

Step 4: Use the PMU in a user program

First we define macros for assembler 1-liners, which reset all counters
(by writing to PMCR) and read the counters from the PMU:

#define armv7_reset_counters \
asm volatile ("mcr p15, 0, %0, c9, c12, 0\n\t" :: "r"(0

x00000017)) /* write to PMCR */

#define armv7_read_ccr(val) \
asm volatile("mrc p15, 0, %0, c9, c13, 0" : "=r"(val)

)

#define armv7_read_cr0(val) \
asm volatile("mcr p15, 0, %0, c9, c12, 5" :: "r"(0x00

)); /* select counter #0 */ \
asm volatile("mrc p15, 0, %0, c9, c13, 2" : "=r"(val)

) /* read its value */

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 108 / 116

Measuring a simple C loop

The core of our user program is a counting loop:

armv7_reset_counters;
armv7_read_ccr(before_ccr);
armv7_read_cr0(before_cr0);

for (i=0; i<n; i++) /* nothing */ ; // code to measure

armv7_read_ccr(after_ccr);
armv7_read_cr0(after_cr0);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 109 / 116

Example: running the measurement

> gcc -DCP15 -o rpi2-pmu01 rpi2-pmu01.c
> sudo ./rpi2-pmu01 10
Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10
ccr: 338 (before: 0 after: 338) CYCLES
cr0: 338 (before: 6 after: 344) CYCLES
cr1: 12 (before: 0 after: 12) BRANCHES
cr2: 48 (before: 3 after: 51) CACHE HITS (Data read or write

operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 32 (before: 0 after: 32) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011
Done.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 110 / 116

Measuring assembler code
This is an assembler version of the counting loop:
armv7_reset_counters;
armv7_read_ccr(before_ccr);
armv7_read_cr0(before_cr0);

asm volatile(/* inline assembler version of a counting loop */
"_measure_me_asm_%=:\n"
"\t MOVS R3, #0x00 @ initialise counter

register\n"
"\t B TEST%= @ uncond. jump\n"
"LOOP%=: @ loop over counter R3\

n"
"\t ADD R3, R3, #1 @ increment counter

\n"
"TEST%=: CMP R3, %[n] @ test end value\n"
"\t BLT LOOP%=\n"
"\t MOV %[res], R3 @ done \n"
: [res] "=r" (i) : [n] "r" (n) : "r3", "cc");

armv7_read_ccr(after_ccr);
armv7_read_cr0(after_cr0);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 111 / 116

Output

> gcc -DCP15 -o rpi2-pmu01 rpi2-pmu01.c
> sudo ./rpi2-pmu01 10
Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10
ccr: 249 (before: 0 after: 249) CYCLES
cr0: 249 (before: 6 after: 255) CYCLES
cr1: 12 (before: 0 after: 12) BRANCHES
cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write

operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011
Done.

NB: we get precise runtime in machine-cycles; because we execute
the loop 10 times (plus entry and exit), the branch counter shows 12;
most operations work in registers, only a few memory access are
needed and most of them can use the cache

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 112 / 116

armv7_reset_counters;
armv7_read_ccr(before_ccr);
armv7_read_cr0(before_cr0);

asm volatile(/* inline assembler version of a counting loop
with bad branch prediction */

"_measure_me_asm_%=:\n"
"\t MOVS R3, #0x00 @ initialise counter

register\n"
"TEST%=: CMP R3, %[n] @ test end value\n"
"\t BGE LEAVE%= @ leave loop (BAD

BRANCH PRED!) \n"
"\t ADD R3, R3, #1 @ increment counter

\n"
"\t B TEST%= @ unconditional jump \

n"
"LEAVE%=: MOV %[res], R3 @ done \n"
: [res] "=r" (i) : [n] "r" (n) : "r3", "cc");

armv7_read_ccr(after_ccr);
armv7_read_cr0(after_cr0);

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 113 / 116

Output

> gcc -DCP15 -o rpi2-pmu01 rpi2-pmu01.c
> sudo ./rpi2-pmu01 10
Raspberry Pi 2 performance monitoring, using CP15 interface
The result is: 10
ccr: 116 (before: 0 after: 116) CYCLES
cr0: 116 (before: 6 after: 122) CYCLES
cr1: 21 (before: 0 after: 21) BRANCHES
cr2: 7 (before: 3 after: 10) CACHE HITS (Data read or write

operation that causes a cache access at (at least) the
lowest level of data or unified cache)

cr3: 1 (before: 0 after: 1) CACHE MISSES (Data read
architecturally executed)

PMCR=41072011
Done.

NB: In this case we have 21 rather than 12 branches, for the same
kind of counting loop; this is because each iteration resulted in a
mis-predicted branch, which was partially executed by the
processor-pipeline, but then had to be aborted.

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 114 / 116

A larger user program: sum-and-average

Code example: sumav3 asm pmu.c

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 115 / 116

Summary

The ARM Cortex-A7 has an on-chip co-processor for hardware
performance monitoring (PMU)
The PMU can be configured to count a range of low-level events,
e.g. cycles, branches, cache hits
The PMU needs to be enabled from within a kernel module, so
that user space programs can access it
Once configured, inline assember instructions can be used to
start/stop counting and read values
The relevant assembler instructions are MCR and MRC, with a
bespoke formatting of specifying registers on the CP15
co-processor (and on other on-chip co-processor)

Hans-Wolfgang Loidl (Heriot-Watt Univ) F28HS Hardware-Software Interface Tutorial 6: Perf Counters 116 / 116

	Tutorial 1: Using Python and the Linux FS for GPIO Control
	Tutorial 2: Programming an LED
	Tutorial 3: Programming a Button input device
	Tutorial 4: Inline Assembler with gcc
	Tutorial 5: Programming an LCD Display
	Tutorial 6: Performance Counters on the RPi 2

