
PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Proof-Carrying-Code
Applying formal methods in a distributed world

Hans-Wolfgang Loidl

LFE Theoretische Informatik, Institut für Informatik,
Ludwig-Maximilians Universität, München

June 25, 2007

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

1 PCC for Resources

2 Camelot: the High-level Language

3 Space Inference

4 Grail: the Intermediate Language

5 A Program Logic for Grail

6 Heap Space Logic

7 Certificate Generation

8 Summary

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivation

Resource-bounded computation is one specific instance of PCC.

Safety policy: resource consumption is lower than a given bound.

Resources can be (heap) space, time, or size of parameters to
system calls.

Strong demand for such guarantees for example in embedded
systems.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Mobile Resource Guarantees

Objective:
Development of an infrastructure to endow mobile code with
independently verifiable certificates describing resource behaviour.

Approach:
Proof-carrying code for resource-related properties, where
proofs are generated from typing derivations in a resource-aware
type system.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivation

Restrict the execution of mobile code to those adhering to a
certain resource policy.

Application Scenarios:

A user of a handheld device might want to know that a
downloaded application will definitely run within the limited
amount of memory available.

A provider of computational power in a Grid
infrastructure may only be willing to offer this service upon
receiving dependable guarantees about the required resource
consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Proof-Carrying-Code with High-Level-Logics

Our approach to PCC: Combine high-level type-systems with
program logics and build a hierarchy of logics to construct a logic
tailored to reason about resources.

Everything is formalised in a theorem prover.

Classic vs Foundational PCC: best of both worlds

Simple reasoning, using specialised logics;

Strong foundations, by encoding the logics in a theorem
prover

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Proof-Carrying-Code with High-Level-Logics

Specialised Logic

Termination Logic

Program Logic

Operational Semantics E ` h, e ⇓ (h′, v , p)

Γ B e : A

`T {P} e ↓
B ptq : D(G , τ)

High-Level Type System G `H t : τ

��

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

High-level language: ML-like.

Safety policy: well-formed datatypes.

Define a predicate h |=t a, expressing that an address a in heap h
is the start of a (high-level) data-type t.

Prove: f :: τ list → τ list adheres to this safety policy.

Directly on the program logic

B f (x) : λE h h′ v . h |=list E 〈x〉 −→ h′ |=list v

NOT: reasoning on this level generates huge side-conditions.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v . h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ) B pt2q : D(Γ, τ list)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v . h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ) B pt2q : D(Γ, τ list)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Motivating Example of this Hierarchical
Approach

Instead, define a higher-level logic `H that abstracts over the
details of datatype representation, and that has the property

G `H t : τ =⇒ Bptq : D(Γ, τ)

We specialise the form of assertions like this

D({x : list, y : list}, list) ≡
λE h h′ v . h |=list E 〈x〉 ∧ h |=list E 〈y〉 −→

h′ |=list E 〈x〉 ∧ h′ |=list E 〈y〉 ∧ h′ |=list v

Now we can formulate rules, that match translations from the
high-level language:

Bpt1q : D(Γ, τ) B pt2q : D(Γ, τ list)

Bpcons(t1, t2)q : D(Γ, τ list)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

A Proof-Carrying-Code Infrastructure for
MRG

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Camelot

Strict, first-order functional language with CAML-like syntax
and object-oriented extensions

Compiled to subset of JVM (Java Virtual Machine) bytecode
(Grail)

Memory model: 2 level heap

Security: Static analyses to prevent deallocation of live cells in
Level-1 Heap: linear typing (folklore + Hofmann), readonly
typing (Aspinall, Hofmann, Konencny), layered sharing
analysis (Konencny).

Resource bounds: Static analysis to infer linear upper bounds
on heap consumption (Hofmann, Jost).

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Example: Insertion Sort

Camelot program:

let ins a l = match l with
Nil -> Cons(a,Nil)

| Cons(x,t)@_ -> if a < x then Cons(a,Cons(x,t))
else Cons(x, ins a t)

let sort l = match l with Nil -> Nil
| Cons(a,t)@_ -> ins a (sort t)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

In-place Operations via a Diamond Type

Using operators, such as Cons, amounts to heap allocation.

Additionally, Camelot provides extensions to do in-place
operations over arbitrary data structures via a so called diamond
type � with d ∈ �:

match l with Nil@d => e1

| Cons (h,t)@d => ... Cons (x,t)@d ...

The memory occupied by the cons cell can be re-used via the
diamond d.
Note:

� is an abstract data-type

structured use of diamonds in branches of pattern matches

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

How does this fit with referential
transparency?

Using a diamond type, we can introduce side effects:

type ilist = Nil | Cons of int*ilist
let insert1 x l =

match l with Nil -> Cons (x, l)
| Cons(h,t)@d ->

if x <= h then Cons(x, Cons(h,t)@d)
else Cons(h, insert1 x t)@d

let sort l = match l with Nil -> Nil
| Cons(h,t) -> insert1 h (sort t)

Now, what’s the result of

let start args = let l = [4,5,6,7] in
let l1 = insert1 6 l in
print_list l

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

How does this fit with referential
transparency?

Using a diamond type, we can introduce side effects:

type ilist = Nil | Cons of int*ilist
let insert1 x l =

match l with Nil -> Cons (x, l)
| Cons(h,t)@d ->

if x <= h then Cons(x, Cons(h,t)@d)
else Cons(h, insert1 x t)@d

let sort l = match l with Nil -> Nil
| Cons(h,t) -> insert1 h (sort t)

Now, what’s the result of

let start args = let l = [4,5,6,7] in
let l1 = insert1 6 l in
print_list l

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Linearity saves the day

We can characterise the class of programs for which referential
transparency is retained.

Theorem

A linearly typed Camelot program computes the function
specified by its purely functional semantics (Hofmann, 2000).

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types
with layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot
yourself in the foot. We need a powerful type system to prevent
this, and want a static analysis to predict resource consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types
with layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot
yourself in the foot. We need a powerful type system to prevent
this, and want a static analysis to predict resource consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Beyond Linearity

But: linearity is too restrictive in many cases; we also want to use
diamonds in programs where only the last access to the data
structure is destructive.

More expressive type systems to express such access patterns are
readonly types (Aspinall, Hofmann, Konecny, 2001) and types
with layered sharing (Konecny 2003).

As with pointers, diamonds can be a powerful gun to shoot
yourself in the foot. We need a powerful type system to prevent
this, and want a static analysis to predict resource consumption.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Space Inference

Goal: Infer a linear upper bound on heap consumption.

Given Camelot program containing a function

start : string list -> unit

find linear function s such that start(l) will not call new() (only
make()) when evaluated in a heap h where

the freelist has length not less than s(n)

l points in h to a linear list of some length n

the freelist which forms a part of h is well-formed

the freelist does not overlap with l

Composing start with runtime environment that binds input to,
e.g., stdin yields a standalone program that runs within
predictable heap space.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Extended (LFD) Types

Idea: Weights are attached to constructors in an extended
type-system.

ins : 1, int -> list(...<0>) -> list(...<0>), 0

says that the call ins x xs requires 1 heap-cell plus 0 heap cells
for each Cons cell of the list xs.

sort : 0, list(...<0>) -> list(...<0>), 0

sort does not consume any heap space.

start : 0, list(...<1>) -> unit, 0;

gives rise to the desired linear bounding function s(n) = n.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

High-level Type System: Function Call

A,B,C are types, k, k ′, n, n′ ∈ Q+, f is a Camelot function and
x1, . . . , xp are variables, Σ is a table mapping function names to
types.

Σ(f) = (A1, . . . ,Ap, k) −→ (C , k ′)
n ≥ k n − k + k ′ ≥ n′

Γ, x1 : A1, . . . , xp : Ap, n ` f(x1, . . . , xp) : C , n′ (Fun)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Grail

Grail is an abstraction over virtual machine languages such as the
JVM.

e ∈ expr ::= null | int i | var x | prim p x x | new c [t1 := x1, . . . , tn := xn] |
x .t | x .t:=x | c � t | c � t:=x | let x = e in e | e ; e |
if x then e else e | call f | x ·m(a) | c �m(a)

a ∈ args ::= var x | null | i

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Example: Insertion sort

Grail code:

method static public List ins (int a, List l) = ...Make(..,..,..)...
method static public List sort (List l) =
let fun f(List l) =
if l = null then null

else let val h = l.HD
val t = l.TL
val () = D.free (l)
val l = List.sort (t)

in List.ins (h, l) end
in f(l) end

This is a 1-to-1 translation of JVM code

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Judgement of the Operational Semantics

Modelling resources: Resources are an extra component in
operational and axiomatic semantics (“resource record”).

p ∈ RRec = Lclock : nat, callcount : nat, invokedepth : nat, maxstack : natM

A judgement in the functional operational semantics

E ` h, e ⇓n (h′, v , p)

is to be read as “starting with a heap h and a variable enviroment
E , the Grail code e evaluates in n steps to the value v , yielding the
heap h′ as result and consuming p resources.”

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Judgement of the Operational Semantics

Modelling resources: Resources are an extra component in
operational and axiomatic semantics (“resource record”).

p ∈ RRec = Lclock : nat, callcount : nat, invokedepth : nat, maxstack : natM

A judgement in the functional operational semantics

E ` h, e ⇓n (h′, v , p)

is to be read as “starting with a heap h and a variable enviroment
E , the Grail code e evaluates in n steps to the value v , yielding the
heap h′ as result and consuming p resources.”

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Operational Semantics: Let- and Call-rules

E ` h, e1 ⇓n (h1, w , p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓m (h2, v , q)

E ` h, let x = e1 in e2 ⇓max(n,m)+1 (h2, v , p1 ^ p2)
(let)

E ` h, bodyf ⇓n (h1, v , p)

E ` h, call f ⇓n+1 (h1, v , 〈1 1 0 0〉 ⊕ p1)
(call)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Operational Semantics: Let- and Call-rules

E ` h, e1 ⇓n (h1, w , p) w 6= ⊥ E〈x := w〉 ` h1, e2 ⇓m (h2, v , q)

E ` h, let x = e1 in e2 ⇓max(n,m)+1 (h2, v , p1 ^ p2)
(let)

E ` h, bodyf ⇓n (h1, v , p)

E ` h, call f ⇓n+1 (h1, v , 〈1 1 0 0〉 ⊕ p1)
(call)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

A Program Logic for Grail

VDM-style logic with judgements of the form Γ B e : A, meaning

“in context Γ expression e fulfills the assertion A”

Type of assertions (shallow embedding):

A ≡ E → H → H → V → R→ B

No syntactic separation into pre- and postconditions.

Semantic validity |= e : A means

“whenever E ` h, e ⇓ (h′, v , p) then A E h h′ v p holds”

Note: Covers partial correctness; termination orthogonal.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

A Program Logic for Grail

Simplified rule for parameterless function call:

Γ, (Call f : A) B e : A+

Γ B Call f : A
(CallRec)

where e is the body of the function f and

A+ ≡ λ E h h′ v p.A(E , h, h′, v , p+)

where p+ is the updated cost component.
Note:

Context Γ: collects hypothetical judgements for recursion

Meta-logical guarantees: soundness, relative completeness

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Program Logic Rules

Γ B e1 : P Γ B e2 : Q

Γ B let x = e1 in e2 : λ E h h′ v p. ∃ p1 p2 h1 w . P E h h1 w p1 ∧ w 6= ⊥ ∧
Q (E〈x := w〉) h1 h′ v p2) ∧
p = p1 ^ p2

(vlet)

Γ ∪ {(call f , P)}B bodyf : λ E h h′ v p. P E h h′ v 〈1 1 0 0〉 ⊕ p1,

Γ B call f : A
(vcall)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Program Logic Rules

Γ B e1 : P Γ B e2 : Q

Γ B let x = e1 in e2 : λ E h h′ v p. ∃ p1 p2 h1 w . P E h h1 w p1 ∧ w 6= ⊥ ∧
Q (E〈x := w〉) h1 h′ v p2) ∧
p = p1 ^ p2

(vlet)

Γ ∪ {(call f , P)}B bodyf : λ E h h′ v p. P E h h′ v 〈1 1 0 0〉 ⊕ p1,

Γ B call f : A
(vcall)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Specific Features of the Program Logic

Unusual rules for mutually recursive methods and for
parameter adaptation in method invocations

(Γ, e : A) goodContext

B e : A
(Mutrec)

(Γ, c �m(a) : MS c m a) goodContext

Bc �m(b) : MS c m b
(Adapt)

Proof via admissible Cut rule, no extra derivation system

Global specification table MS, goodContext relates entries in
MS to the method bodies

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Example: Insertion sort

Specification:

insSpec ≡ MS List ins [a1, a2] =

λ E h h′ v p .∀ i r n X .

(E〈a1〉 = i ∧ E〈a2〉 = Ref r ∧ h, r |=X n
−→ |dom (h)|+ 1 = |dom (h′)| ∧

p ≤ . . .)

sortSpec ≡ MS List sort [a] =

λ E h h′ v p .∀ i r n X .

(E〈a〉 = Ref r ∧ h, r |=X n −→ |dom (h)| = |dom (h′)| ∧ p ≤ . . .)

Lemma:
insSpec ∧ sortSpec −→ B List � sort([xs]) : MS List sort [xs]

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Discussion of the Program Logic

Expressive logic for correctness and resource consumption

Logic proven sound and complete

Termination built on top of a logic for partial correctness

Less suited for immediate program verification: not fully
automatic (case-splits, ∃-instantiations,. . .), verification
conditions large and complex

Continue abstraction: loop unfolding in op. semantics →
invariants in general program logics → specific logic for
interesting (resource-)properties

Aim: exploit structure of Camelot compilation (freelist) and
program analysis

List.ins : 1, IL(0) → L(0), 0

List.sort : 0,L(0) → L(0), 0

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Heap Space Logic (LFD-assertions)

Translation of Hofmann-Jost type system to Grail, types
interpreted as relating initial to final freelist

Fixed assertion format JU, n, [∆] I T ,mK

List.ins : J{a, l}, 1, [a 7→ I, l 7→ L(0)] I L(0), 0K
List.sort : J{l}, 0, [l 7→ L(0)] I L(0), 0K

LFD types express space requirements for datatype
constructors, numbers n, m refer to the freelist length

Semantic definition by expansion into core bytecode logic,
derived proof rules using linear affine context management

Dramatic reduction of VC complexity!

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Semantic interpretation of JU , n, [∆] I T , mK

JU, n, [∆] I T , mK ≡
λ E h h′ v p.
∀ F N. (regionsExist(U, ∆, h, E) ∧ regionsDistinct(U, ∆, h, E) ∧

freelist(h, F , N) ∧ distinctFrom(U, ∆, h, E , F))
−→
(∃ R S M G . v , h′ |=T R, S ∧ freelist(h′, G , M) ∧ R ∩ G = ∅ ∧

Bounded((R ∪ G), F , U, ∆, h, E) ∧modified(F , U, ∆, h, E , h′) ∧
sizeRestricted(n, N, m, S , M, U, ∆, h, E) ∧ domh = domh′)

• Formulae defined by BC expansion:

regionsDistinct(U, ∆, h, E) ≡
∀ x y Rx Ry Sx Sy .

({x, y} ⊆ U ∩ dom ∆ ∧ x 6= y ∧ E〈x〉, h |=∆(x) Rx , Sx ∧ E〈y〉, h |=∆(y) Ry , Sy)

−→ Rx ∩ Ry = ∅
sizeRestricted(n, N, m, S, M, U, ∆, h, E) ≡
∀ q C . Size(E , h, U, ∆, C) ∧ n + C + q ≤ N −→ m + S + q ≤ M

• You don’t want to read this — and you don’t need to!

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Proof System

Proof system with linear inequalities and linear affine type system
(U,∆) that guarantees benign sharing;

∆(x) = T n ≤ m

Γ B var x : J{x}, m, [∆] I T , nK
(Var)

Γ B e1 : JU1, n, [∆] I T1, mK Γ B e2 : JU2, m, [∆, x 7→ T1] I T2, kK
U1 ∩ (U2 \ {x}) = ∅ T1 = L()

Γ B let x = e1 in e2 : JU1 ∪ (U2 \ {x}), n, [∆] I T2, kK
(Let)

∆(x) = L(k) l = n + k Γ B e : JU, l , [∆, t 7→ L(k)] I T , mK x /∈ U \ {t}
Γ B let t = x .TL in e : J(U \ {t}) ∪ {x}, n, [∆] I T , mK

(LetTL)

Note: Linearity relaxed in rules for compiled match-expressions

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Discussion of the Heap Space Logic

©..̂ Exploit program structure and compiler analysis: most effort
done once (in soundness proofs), application straight-forward

©..̂ “Classic PCC”: independence of derived logic from Isabelle
(no higher-order predicates, certifying constraint logic
programming)

©..̂ “Foundational PCC”: can unfold back to core logic and
operational semantics if desired

©.._ Generalisation to all Camelot datatypes needed

©.._ Soundness proofs non-trivial, and challenging to generalise to
more liberal sharing disciplines

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Certificate Generation

Goal: Automatically generate proofs from high-level types and
inferred heap consumption.

Approach: Use inferred space bounds as invariants. Use powerful
Isabelle tactics to automatically prove a statement on heap
consumption in the heap logic.

Example certificate (for list append):

Γ B snd (methtable Append append) : SPEC append
by (Wp append pdefs)

BAppend.append([RNarg x0, RNarg x1]) : sMST Append append [RNarg x0, RNarg x1]
by (fastsimp intro: Context good GCInvs simp: ctxt def)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Summary

MRG works towards resource-safe global computing:

check resource consumption before executing downloaded
code;

automatically generate certificate out of a Camelot type.

Components of the picture

Proof-Carrying-Code infrastructure

Inference for space consumption in Camelot

Specialised derived assertions on top of a general program
logic for Grail

Certificate = proof of a derived assertion

Certificate generation from high-level types

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Further Reading

David Aspinall, Stephen Gilmore, Martin Hofmann, Donald
Sannella and Ian Stark, Mobile Resource Guarantees for Smart
Devices in CASSIS04 — Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices, LNCS 3362, 2005.
http://groups.inf.ed.ac.uk/mrg/publications/mrg/cassis2004.pdf

David Aspinall and Lennart Beringer and Martin Hofmann and
Hans-Wolfgang Loidl and Alberto Momigliano, A Program
Logic for Resource Verification, in TPHOLs2004 —
International Conference on Theorem Proving in Higher Order
Logics, Utah, LNCS 3223, 2004.

Martin Hofmann, Steffen Jost, Static Prediction of Heap
Space Usage for First-Order Functional Programs, in POPL’03
— Symposium on Principles of Programming Languages, New
Orleans, LA, USA, Jan 2003.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Further Reading

K. Crary and S. Weirich, Resource Bound Certification in
POPL’00 — Symposium on Principles of Programming
Languages, Boston, USA, 2000.
http://www-2.cs.cmu.edu/ crary/papers/1999/res/res.ps.gz

Gilles Barthe, Mariela Pavlova, Gerardo Schneider, Precise
analysis of memory consumption using program logics in
International Conference on Software Engineering and Formal
Methods (SEFM 2005), 7–9 September 2005, Koblenz,
Germany.
http://www-sop.inria.fr/everest/soft/Jack/doc/papers/gmg05.pdf

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Approaches to Certificate Generation

One of the main problems of PCC is how to generate the proofs.

Different approaches are:

Type system (Necula, MRG)

Abstract interpretation (Certified A.I.)

Model checking

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Abstract Interpretation Based

Certified abstract interpretation is a technique for extracting a
static analyser from the constructive proof of its semantic
correctness, producing at the same time an analyser and a proof
object certifying its semantic correctness.

Main advantages

©..̂ additional flexibility

©..̂ foundational nature

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Abstract Interpretation Based

Certified abstract interpretation is a technique for extracting a
static analyser from the constructive proof of its semantic
correctness, producing at the same time an analyser and a proof
object certifying its semantic correctness.

Main advantages

©..̂ additional flexibility

©..̂ foundational nature

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Proof Checkers

Generic proof checkers (e.g. an LF checker) are strong and
flexible, but producing proof objects as LF terms is non-trivial.

Special purpose proof checkers (e.g. for Java bytecode
verification) are fast and small, with small certificates, but in
general not as trustworthy.

Idea: By using a PCC approach on the proof checker itself, we can
maintain a trustworthy core system and simplify certificate
generation.
=⇒ proof carrying proof checker.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Proof Checkers

Generic proof checkers (e.g. an LF checker) are strong and
flexible, but producing proof objects as LF terms is non-trivial.

Special purpose proof checkers (e.g. for Java bytecode
verification) are fast and small, with small certificates, but in
general not as trustworthy.

Idea: By using a PCC approach on the proof checker itself, we can
maintain a trustworthy core system and simplify certificate
generation.
=⇒ proof carrying proof checker.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Proof Checkers

Generic proof checkers (e.g. an LF checker) are strong and
flexible, but producing proof objects as LF terms is non-trivial.

Special purpose proof checkers (e.g. for Java bytecode
verification) are fast and small, with small certificates, but in
general not as trustworthy.

Idea: By using a PCC approach on the proof checker itself, we can
maintain a trustworthy core system and simplify certificate
generation.
=⇒ proof carrying proof checker.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

PCC with Certified Abstract Interpretation

Producer side

certified
checker

untrusted
post-fixpoint solver

untrusted
post-

fixpoint
compressor

Consumer side

semantics
+

safety policy

certified
checker

Coq type checker + Coq
extraction

extracted
checker

Safe ?

certified checker

(Coq file)

post-fixpoint

program

certificate
(binary format)

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Trusted Code Base

The trusted code base comprises:

a formalisation of the semantics of the language;

a (semantic) formalisation of the security policy;

a core proof checker to be applied on a proof carrying proof
checker;

The abstract interpretation machinery annotates a program with
properties at program points and finds a fixed point.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Components of this PCC architecture

Uses generic abstract interpretation machinery:

Abstract value: specific to the analysis

Complete certificate = set of program annotations, encoding
information on the abstract values

Abstract state = mapping of program points to abstract
memories

Validation = check that all annotations are fulfilled and that
the annotations imply the security policy

The proof checker performs fixpoint iteration over the
abstract domain, until the annotations are met

All this is implemented in the Coq theorem prover.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Components of this PCC architecture

Uses generic abstract interpretation machinery:

Abstract value: specific to the analysis

Complete certificate = set of program annotations, encoding
information on the abstract values

Abstract state = mapping of program points to abstract
memories

Validation = check that all annotations are fulfilled and that
the annotations imply the security policy

The proof checker performs fixpoint iteration over the
abstract domain, until the annotations are met

All this is implemented in the Coq theorem prover.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Reducing Certificate Size

In a naive implementation a certificate is a complete abstract
state, with an annotation at each program point.

Reduce certificate size: Program only sparsely annotated; a
reconstructions algorithm is run at consumer side to obtain all
annotations.

Reduce validation time: Attach to the certificate a strategy that
guides the reconstruction algorithm (e.g. where is it safe to drop
annotations during reconstruction). Similar to “oracle strings”.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Reducing Certificate Size

In a naive implementation a certificate is a complete abstract
state, with an annotation at each program point.

Reduce certificate size: Program only sparsely annotated; a
reconstructions algorithm is run at consumer side to obtain all
annotations.

Reduce validation time: Attach to the certificate a strategy that
guides the reconstruction algorithm (e.g. where is it safe to drop
annotations during reconstruction). Similar to “oracle strings”.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Reducing Certificate Size

In a naive implementation a certificate is a complete abstract
state, with an annotation at each program point.

Reduce certificate size: Program only sparsely annotated; a
reconstructions algorithm is run at consumer side to obtain all
annotations.

Reduce validation time: Attach to the certificate a strategy that
guides the reconstruction algorithm (e.g. where is it safe to drop
annotations during reconstruction). Similar to “oracle strings”.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Efficiency of Validation

Program checking time analyser/checker
(sec) (no. of constaints)

BubbleSort 0.015 440/110
HeapSort 0.050 8001/381
QuickSort 0.060 8910/405
Convolution 0.010 460/92
FloydWarshall 0.020 23114/163
PolynomProduct 0.010 150669/133

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Size of Certificates

Program .java .class complete compr’d bin bin cert/
fixpoint fixpoint cert .class

BubbleSort 440 528 3640 182 44 8.3%
HeapSort 1044 858 17352 332 63 7.3%
QuickSort 1078 965 25288 629 158 16.4%
Convolution 378 542 2942 195 52 9.6%
FloydWarshall 417 596 7180 346 134 22.5%
PolynomProduct 509 604 5366 308 87 14.4%

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Summary

PCC is a powerful, general mechanism for providing safety
guarantees for mobile code.

It provides these guarantees without resorting to a trust
relationship.

It uses techniques from the areas of type-systems, program
verification and logics.

It is a very active research area at the moment.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Current Trends

Using formal methods to check specific program properties.

Program logics as the basic language for doing these checks
attract renewed interest in PCC.

A lot of work on program logics for low-level languages.

Immediate applications for smart cards and embedded
systems.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Future Directions

Embedded Systems as a domain for formal methods.

Some of these systems have strong security requirements.

Formal methods are used to check these requirements.

Model checking is a very active area for automatically
checking properties.

Hans-Wolfgang Loidl Proof-Carrying-Code

PCC for Resources Camelot Space Inference Grail Program Logic Heap Space Logic Certificate Generation Summary

Links to other areas

Checking program properties is closely related to inferring
quantitative information.

Static analyses deal with extracting quantitative information
(e.g. resource consumption)

A lot of research has gone into making these techniques
efficient.

Model checking can deal with a larger class of problems
(e.g. specifying safety conditions in a system)

Just recently these have become efficient enough to be used
for main stream programming.

Reading List:
http://www.tcs.ifi.lmu.de/~hwloidl/PCC/reading.html

Hans-Wolfgang Loidl Proof-Carrying-Code

