
The Design and Implementation of GUMSMP:
a Multilevel Parallel Haskell Implementation

Malak Aljabri
School of Mathematical and Computer

Sciences, Heriot-Watt University
ma767@hw.ac.uk

Hans-Wolfgang Loidl
School of Mathematical and Computer

Sciences, Heriot-Watt University
H.W.Loidl@hw.ac.uk

Phil W. Trinder
School of Computing Science, College of

Science and Engineering, Glasgow
University

Phil.Trinder@glasgow.ac.uk

Abstract
The most widely available high performance platforms today are
multi-level clusters of multi-cores. The Glasgow Haskell Compiler
(GHC) provides a number of parallel Haskell implementations tar-
geting different parallel architectures. In particular, GHC-SMP
supports shared memory, and GHC-GUM supports distributed
memory machines. Both implementations use different, but re-
lated, runtime-environment (RTE) mechanisms. Good performance
results can be achieved on shared memory architectures and on net-
works individually. However, a combination of both, for networks
of multi-cores, is lacking.

We present the design and implementation of a new parallel
Haskell RTE implementation, GUMSMP, which exploits hierar-
chical platforms more effectively. It is designed to efficiently com-
bine distributed memory parallelism, using a virtual shared heap
over a cluster, with low-overhead shared memory parallelism on
the multi-cores. Key design objectives for realising this system are:
asymmetric load balance, effective latency hiding, and mostly pas-
sive load distribution.

We show that the automatic hierarchical load distribution poli-
cies must be carefully tuned to obtain good performance, show-
ing the impact of several policies, including work pre-fetching and
favouring inter-node work distribution.We present the initial per-
formance results for this implementation, demonstrating the good
scalability of a set of 8 benchmarks on up to 100 cores, and show
performance gains of up to 20% compared to GHC-GUM.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Run-time environments; D.3.2 [Programming languages]:
Applicative (functional) languages; C.1.4 [Processor architec-
tures]: Distributed architectures

Keywords Parallel Haskell, Virtual Shared Memory, Distributed
Architectures

1. Introduction
Multi- and many-core architectures have become the dominant gen-
eral purpose hardware. Moreover, current trend in parallel architec-
tures has shifted towards networks of multicores, in which several

[Copyright notice will appear here once ’preprint’ option is removed.]

multicores or NUMA architectures sharing memory are connected
via a network. In high-performance computing, a hybrid parallel
programming model is frequently used in order to best exploit
this architecture. This combination requires multilevel parallel pro-
gramming in both a shared memory model and a distributed mem-
ory model. For example, using directive-based parallelism through
OpenMP [6] on a physical shared-memory multicore node, com-
bined with message passing coordination, through MPI [28], to be
applied across the cluster of multicores. Thus, this combination
achieves multilevel parallelism, combining the ease of program-
ming of a shared memory model and the scalability of a distributed
memory model. However, managing two abstractions is a burden
for the programmer and increases the cost of porting to a new plat-
form.

In contrast, our new runtime environment (RTE) for parallel
Haskell, GUMSMP, provides a uniform, semi-explicit high-level
parallel programming model, with adaptive, automatic policies at
both levels of the hierarchy. The model relieves the programmer
from the burden of explicitly controlling coordination in a multi-
level hierarchy, delegating control almost entirely to the RTE.

Glasgow Parallel Haskell (GpH) [37] is a widely-used parallel
extension of Haskell, a lazy functional language. GPH is developed
to facilitate parallel programming by limiting the programmer’s
work to a few key aspects of high-level coordination primitives sup-
ported internally by language implementation. In GPH, parallelism
is expressed by two primitives added to the Haskell program, par
and pseq. To provide a high level control on parallelism, evalua-
tion strategies [25, 37] (polymorphic and higher order functions)
are used to abstract over these primitives.

There are two different implementations of the same semi-
explicit programming model, namely: GHC-SMP [24]; a low-
overhead physical shared-memory implementation integrated in
GHC, and GHC-GUM [36]; a virtual shared-memory implemen-
tation on clusters built on top of explicit message passing. A major
difference between these two implementations lies in the work dis-
tribution models that are supported. While both implementations
support a work-stealing approach, GHC-GUM distributes work
in the form of sparks communicated by messages passing, prefer-
ring to communicate larger grain computations than GHC-SMP.
In contrast, spark pools are shared in GHC-SMP and therefore idle
processors directly access these pools to steal sparks.

In this paper, we present the design of GUMSMP, a multilevel
parallel Haskell implementation. GUMSMP smoothly integrates
the work distribution policies of GHC-SMP and GHC-GUM,
thereby providing a platform for scalable parallelism not bounded
by the limitations of a physical shared memory. GUMSMP is moti-
vated by the work distribution of GHC-SMP, using a shared mem-
ory model within a single multicore, and by the work distribution of

1 2014/2/2

GHC-GUM, using a distributed memory model across a hierarchy
of multicores.

The main benefits of this multi-level design of GUMSMP over
current implementations (GHC-GUM, GHC-SMP) are:

• GUMSMP provides a scalable model, which works on large
distributed memory architectures.
• GUMSMP efficiently exploits the specifics of distributed and

shared memory on different levels of the hierarchy.
• GUMSMP provides a single programming model, which ren-

ders programming easier and achieves performance portability.

The main contributions of this paper are as follows:

• We present the design of GUMSMP, focusing on the improved,
hierarchy-aware load-distribution in Section 4.
• We present performance results over a set of 8 benchmarks for

the implementation of GUMSMP in Section 5, demonstrating
a speedup of up to 20% over GHC-GUM.
• We investigate two policies for improving the automatic hier-

archical load distribution: pre-fetching of work, showing im-
provements between 28% and 57%, and favouring inter-node
work distribution, showing an improvement between 4% and
16%, for two classes of benchmarks (Section 6).

2. Related Work
There is a diversity of languages and implementations for parallel
Haskell. At the language level, diversity is based on the different
supported abstractions. These vary in terms of how explicitly they
control parallelism, e.g. implicit, semi-explicit, and fully explicit
approaches. At the implementation level, diversity is based on
different classes of architectures with different characteristics, e.g.
clusters, multicores, etc.

Of the parallel Haskell extensions, GpH provides a model of
semi-explicit parallelism, where potential parallelism is identified
in the code, but all coordination aspects are managed automati-
cally by the RTE. In contrast, the Par Monad [26] uses explicit
monadic control of concurrency, providing a programming model
for pure deterministic parallel computations. Cloud Haskell [10] is
a domain-specific language for distributed memory systems, that
emulates Erlang style, explicit message passing communication.
HdpH [22] is a High-level Distributed-Memory Parallel Haskell ex-
tension, influenced by Cloud Haskell, but providing higher-level
coordination and targeting hierarchical architectures. Eden [20]
is another semi-explicit parallel Haskell extension, in which pro-
cesses are explicit but communication is implicit. For a more de-
tailed language comparison see [22].

The implementations of Cloud Haskell and HdpH are entirely
at the Haskell level and are separate from the GHC RTE; thereby
enhancing maintainability and facilitating the development of ad-
ditional functionality. The GUMSMP, GHC-GUM, GHC-SMP,
and Eden implementations are all GHC RTE extensions. The
GHC-SMP implementation uses physical shared memory prim-
itives; whereas, the implementations of GUMSMP, GHC-GUM,
and Eden use message passing primitives to automatically man-
age synchronisation and communication between parallel threads.
While GHC-GUM and GUMSMP implement a virtual shared
heap model, Eden relies on distributed heaps and channel-based,
implicit communication. A more detailed comparison of imple-
mentations is given in Section 3.

The advantage of using a low level language to implement the
runtime environment is improved performance. However, imple-
mentation maintenance is challenging and needs to be continuously
updated. A different approach is the use of Concurrent Haskell
to implement functionality, instead of modifying the GHC run-

time system; thereby trading performance with maintainability and
ease of development. Examples include CloudHaskell, Par-Monad,
HdpH and the light-weight concurrency substrate of GHC [35].

Another parallel Haskell dialect is Data Parallel Haskell [31].
This evolved out of earlier work on Nepal [4], which in itself was
heavily influenced by the NESL [3] system. With the focus on data
parallel applications, hierarchical networks are less of a concern in
its design. In fact, one important aspect of the DPH implementation
is flattening transformations. This aims to bring parallelism over
nested data structures into a flat format, so that they can be more
efficiently exploited by massively parallel hardware. SAC [34] is
another functional, data-parallel language. Its syntax is based on
C, but it uses a single assignment semantic, and is therefore ref-
erentially transparent. It also heavily utilises program transforma-
tions to improve the efficiency of the data parallelism generated. It
mainly targets numerical applications and achieves excellent speed-
ups on the NAS benchmark suite.

These most closely related languages are all dialects of Haskell.
Other parallel functional languages with a shared design or im-
plementation concerns are discussed below. Manticore [11] is a
parallel implementation for ML and provides implicitly-threaded
parallelism [12] that can be combined with Concurrent ML’s [32]
explicit synchronisation and coordination on a large scale. In sup-
porting two levels of abstraction, the implementation is sufficiently
flexible to support hierarchical networks. Futures and data paral-
lel constructs are key abstractions to manage local parallelism. An
early parallel Lisp implementation was MulT [17], which intro-
duced the notion of lazy task creation [27]. This concept was also
employed in the design of GHC-GUM. It allowed threads to sub-
sume the evaluation of the data, for which potential parallelism was
then generated. This concept is crucial for the efficient management
of divide-and-conquer parallelism. The work on Lazy Threads [13]
explores different methods for encoding and distributing potential
parallelism. The representation of parallelism in GHC-GUM and
GHC-SMP, in the form of sparks, represents one point in this spec-
trum, with a focus on low-overheads.

Several other systems have involved similar design decisions
when producing systems for dynamic and adaptive management of
parallelism. Filaments [21] was an early system focusing on light-
weight threads, potentially combined with distributed shared mem-
ory, encouraging an approach to parallelisation that exposes mas-
sive amounts of parallelism, determining at runtime whether or not
to exploit specific parallelism, rather than to restrict them at appli-
cation level. The object-oriented Charm++ system [16] builds on
top of C++ and provides an asynchronous message-driven orches-
tration, together with an adaptive runtime system. It has been used
for numerous, large-scale applications; for example biomolecular
simulations from the domain of molecular dynamics.

The current state-of-the-art in high-performance computing is
to use different programming models at cluster and at node lev-
els of a hierarchical architecture. A typical model might be MPI
message passing at cluster level, together with OpenMP on each
node, and [38] reports a performance case study. The complexity
associated with managing two different parallel programming ab-
stractions restricts this approach to parallel programming to high-
performance computing areas. An early attempt to unify program-
ming models in this setting was the implementation of an early def-
inition of OpenMP on clusters of workstations [14], which were
built on the TreadMarks distributed shared memory implementa-
tion [1]. More recently, a commercial virtualisation solution was
provided by ScaleMP, in the form of the vSMP infrastructure. It
provides a “virtual symmetric multi-processing” over a cluster of
multi-cores through OpenMP or pthreads as programming abstrac-
tions. Its focus is on memory intensive applications, rather than
classical high-performance applications, and it is aimed at busi-

2 2014/2/2

nesses rather than computing centres; reflecting the transition of
parallel programming towards the mainstream. Using an Infiniband
network, performance measurements in [33] report a remote mem-
ory latency of 20 times local memory access. However, through
the aggregation of several remote memory accesses on the appli-
cation level, a bandwidth of 96GB/s has been achieved, resulting
in a good speedup of up to 80 on 104 cores. From a programming
model perspective, problems with load balancing in OpenMP ap-
plications have been identified, underlining the importance of load
balancing policies in virtual shared memory implementations.

The class of partitioned global address space (PGAS) languages
takes a data-centric view. It provides primitives for mapping dis-
tributed data structures across nodes and expresses computation at
named locations as the main mechanism for controlling parallelism.
PGAS languages provide a higher level of abstraction compared to
OpenMP, in that they hide the details of the coordination between
parallel activities. Similar to our design, they manage syncronisa-
tion and communication automatically inside the RTE. Prominent
examples of PGAS languages are Chapel [5] and X10 [7]. PGAS
concepts that have been integrated into mainstream languages in the
form of Unified Parallel C (UPC) [9] and Co-Array Fortran [29]. A
library-based implementation of asynchronous PGAS, in the form
of Global Futures [8] provides implicit synchronisation based on
future abstraction.

3. GPH Implementations
This section gives an overview of the design of GHC-GUM and
GHC-SMP, with special emphasis on thread management and load
distribution.

3.1 The distributed memory GHC-GUM implementation
GHC-GUM (Graph Reduction for a Unified Machine Model) [36]
is a portable implementation of an abstract graph reduction ma-
chine, based on explicit message passing and implementing a vir-
tual shared heap. It implements the GpH parallel Haskell extension.
GHC-GUM is built as an extension to the GHC (Glasgow Haskell
Compiler) runtime environment [23]. Parallelism is introduced by
the par primitive, indicating that the evaluation of an expression is
potentially parallel, and exploited by reducing separate sub-graphs
in parallel [30].

A key concept in GHC-GUM’s design is the virtual shared
heap, where the graph representing the program to be evaluated
in parallel is stored, and is implemented on top of a distributed
memory model. Another key characteristic is the dynamic and
adaptive management of both work and data. This enables the RTE
to adjust the dynamic behaviour of an application to the hardware
characteristics and to the dynamic behaviour of the program.

Based on this design, several components of GHC-GUM can
be identified:

1. Initialisation and Termination: responsible for controlling
start up and termination.

2. Thread Management: responsible for deciding when to gen-
erate a new thread and how to schedule the threads.

3. Load Distribution: responsible for distributing the potential
parallelism in the parallel system, so that the idle time of the
processing elements is minimised.

4. Memory Management: responsible for controlling access to
remote data and implementing a virtual shared heap.

5. Communication: responsible for transferring data and work
between processing elements (PEs).

Shared closures (nodes in the graph structure) can be either normal-
form closures, representing data, or thunks, representing work (un-

Figure 1: Passive Work Distribution in GHC-GUM

evaluated data). Access to shared closures is implicitly synchro-
nised to avoid two Haskell threads from evaluating the same thunk
simultaneously. If input data is under evaluation by another thread,
the requesting thread will implicitly block and will be awoken when
the evaluating thread updates the closure with the result. In cases
where the input data has not yet been evaluated, the requesting
thread will evaluate the data itself even if a spark has been cre-
ated for it. This mechanism is called “thread subsumption”, and its
behaviour is similar to lazy task creation, which is crucial for throt-
tling the level of parallelism in applications with massive amounts
of dynamically created parallelism.

Load Distribution: The load distribution model is designed
specifically to achieve an efficient and effective distribution of
the available potential parallelism in the form of sparks, without
generating an excessive number of messages. Spark generation in
GHC-GUM is cheap. It simply consists of adding a pointer to a
thunk, which is then added to the spark pool. Cheap “sparking” is
essential in order to reduce the parallelism creation overhead, as
well as to reduce the communication cost of sending sparks be-
tween PE. However, the cost of managing the thread pool is not
as low as that for spark pool management. The reason for this is
that additional information is required for a thread, such as a live
thread priority, which is essential if more flexible scheduling is to
be achieved.

Figure 1 presents the (passive) work distribution in GHC-
GUM, in a scenario where PE 1 needs to search for work:

Searching for Local Work: In the current version of GHC-
GUM, if there are no more threads to run in the thread pool,
the scheduler searches for a spark in its spark pool. If a spark is
found, it is then activated by turning it into a thread. A thread state
object (TSO) is generated in order to hold essential information
concerning the thread. If the running thread is blocked for uneval-
uated data, it will be placed in a queue. When the required data
arrives, the blocked thread will be awoken and transferred back to
the runnable pool. The data becomes available when it is either
reduced by a local thread on the same PE, or its value is sent after
being evaluated by another PE.

Searching for Remote Work: If there is no spark in the PE’s
spark pool (PE 1), the scheduler requests work by sending a FISH
message. The FISH message swims randomly from one PE to
another, searching for work. It includes the originating PE’s id
and age number, representing the maximum number of PEs to
visit. If the recipient PE has no spark in its spark pool (PE 2),
it forwards the message to another PE chosen at random (PE 3),
after increasing its age. If the recipient has a spark (PE 3), it sends
it to the requesting PE (PE 1) as a SCHEDULE message. If no
spark is found, and the message limit is reached, the unsuccessful
FISH is then returned to the originating PE. It then waits before
sending another FISH message, in order to avoid swamping the

3 2014/2/2

machine with FISH messages in cases where there are only a
few busy PEs. For the same reason, each PE only ever has a
limited number of outstanding FISH messages (the default number
is 1). This mechanism is termed “work stealing”, or “passive work
distribution”, since the work is requested by the idle PE.

3.2 The shared memory GHC-SMP implementation
GHC-SMP is an optimised shared memory implementation of
GpH, integrated in GHC [15, 24]. It assumes a physical shared
memory and uses mutexes for synchronisation between local
threads. GHC-SMP excels at the efficient handling of lightweight
threads. Millions of lightweight threads are supported by the GHC
runtime system. In order to achieve such high thread management
performance, the threads are multiplexed onto a handful of oper-
ating system threads, approximately one for each physical CPU.
A thread is represented by a thread state object (TSO), a heap al-
located structure holding the Haskell thread’s state including its
stack. The structure of the TSO is the same as in GHC-GUM.

A small set of operating system threads (worker threads, one
worker thread per core) execute the Haskell threads. One Haskell
Execution Context (HEC) is maintained for each core, owing to the
fact that the worker thread may frequently vary.

The HEC is the data structure where the data required by an OS
worker thread in order to execute Haskell threads is contained. Each
HEC has a spark-, thread-, and black-hole-queues, which have the
same structure as in GHC-GUM. The state required by a HEC
to perform ordinary execution of Haskell threads is local to the
HEC. This means that a HEC requires no synchronisation, locks,
or atomic instructions. Synchronisation is only needed for global
cooperation, such as load distribution, garbage collection, etc.

Load Distribution: An HEC’s spark pool is implemented as a
bounded work-stealing queue, in order to make spark distribution
cheap and asynchronous. A work-stealing queue is a lock-free data
structure where the owner can push and pop from one end of the
queue without synchronisation. Other threads can steal from the
other end of the queue, meaning that only one atomic instruction
is required. In order to avoid a race between popping and stealing
threads from the queue when it is almost empty, popping incurs
an atomic instruction. On the other hand, when the queue is full,
the new spark to be pushed is discarded. This means that potential
parallelism may be lost.

Figure 2: Work Distribution in GHC-SMP

As shown in Figure 2, when an HEC (CPU 1) has no assigned
work, it searches for a spark, either in its spark pool or in any other
HEC’s spark pool. If a spark is found, then the HEC creates a “spark
thread” in order to reduce the thread overhead, which in turn steals
the spark and starts evaluating it. Once this process has finished, it
will steal another spark. Thus, the spark thread will fully evaluate
sparks to weak head normal form (WHNF) sequentially until no
more sparks are found. At which point it exits, allowing the TSO

to be recovered by the GC. Active load distribution in the form of
work pushing is also available in GHC-SMP. In this mechanism,
if any HEC has sparks and/or runnable threads available, and there
are HECs without any work, those sparks and/or threads will be
pushed to the pools of the idle HEC’s.

4. GUMSMP Design
GUMSMP is designed to be multi-level, using different, tailored
technologies on the small-scale, physical shared-memory level
(multi-cores) and also on the large-scale, distributed memory level
(clusters). We build on the successful technologies that already
exist at both levels. In particular, we employ a mechanism of work-
stealing for passive load distribution, combined with an adaptive,
dynamic mechanism for automatically distributing work and data
on a cluster. Technically, we achieve this design by integrating the
functionalities of the existing GHC-SMP and GHC-GUM imple-
mentations of the RTE for GHC.

The main design objectives for GUMSMP are:

• Asymmetric load distribution: While striving for an even load
balance, we employ different load distribution policies at inter-
node and intra-node level, thus realising an asymmetric load
balancing design. At the inter-node level (where communica-
tion is expensive) we accept a significant imbalance. On the
intra-node level, within a multicore node (where communica-
tion is cheap) we aim to optimise for an even load balance, en-
abling GHC-SMP’s mechanism for spark pushing. Compared
to GHC-GUM, the load distribution mechanism in GUMSMP
is more aggressive, accounting for the availability of several
cores at each node in the network.
• Mostly passive load distribution: We refine the passive work

distribution policy between multicore nodes, where work is
only sent remotely when requested (work-stealing), enabling a
node to pre-fetch work, using a low-watermark mechanism on
the spark pool.
• Gateway routing and distribution: In our design, one HEC acts

as a gateway to the rest of the cluster. It is responsible for
communication and collects information concerning the remote
processor’s load. The advantage of this design is that only
one processor has to pay the additional cost for maintaining a
(partial) picture of the load across the network. The downside of
this design is that this processor may then become a bottleneck
for higher core numbers.
• Effective latency hiding: The system must be able to overlap

inter-processor communication with useful computation. Thus,
remote data lookup is implemented as a split-phase operation
with implicit synchronisation.

Throughout the remainder of this section, we present the GUMSMP
design, focusing on improved work distribution policies. In partic-
ular, we present the low-watermark mechanism for pre-fetching
work and a mechanism of favouring inter-node spark distribution.

4.1 Work Distribution Mechanism
The main objective of the work distribution mechanism is to bal-
ance the load between the multicores. Naturally, we are interested
in even load balancing to achieve the best utilisation of all comput-
ing resources. However, with a combination of multi-cores at the
lower level (where several local CPUs can execute tasks that may
in turn generate new parallelism), and a high-latency network con-
necting nodes at the higher level (which makes the transfer of work
and data expensive), we need to use different policies in order to
find a trade-off between even load distribution and communication
costs. At the cluster level, we use explicit FISH messages (as in

4 2014/2/2

Figure 3: Work Distribution in GUMSMP

GHC-GUM), with a tunable delay to acquire sparks from remote
processors. The delay needs to reflect the communication costs on
the network, in order to avoid flooding the system with FISH mes-
sages, while being able to react sufficiently quickly when becom-
ing idle. Within a multicore, the exchange of work is considerably
cheaper and therefore can be undertaken far more aggressively: an
idle HEC will directly access the spark pools of other HECs within
the same physical shared memory machine, and pick-up work from
there, if it has no sparks of its own. Additionally, an HEC with a
filled spark pool may actively push work to idle HECs in an effort to
more rapidly distribute work among all the HECs. This behaviour
is summarised in Figure 3.

In contrast to a flat network of single-cores, an idle multi-
core represents several unused computation engines. We therefore
provide a refinement to this pure model, in the form of pre-fetching
work, controlled by a low-watermark associated with the spark
pool, as shown in Figure 4 and discussed below.

In summary: we use a combination of active and passive load
distribution on the intra-node level, and passive load distribution
(including work pre-fetch) at the inter-node level. Most notably, the
GUMSMP design for load distribution is hierarchy-aware. When
looking for work, each HEC prefers local sparks from its own
spark pool, or directly steals sparks from the pools of other HECs
running on the same PE. Only if no local spark is available will
a FISH message be sent to another processor in the system. The
concrete work balancing algorithm for GUMSMP is presented in
the Function ScheduleFindWork, distinguishing the components
related to intra-node (GHC-SMP) and inter-node (GHC-GUM)
interaction.

Obtaining a spark: In the current implementation of GUMSMP,
when a FISH arrives from another PE, the HEC first searches the
spark pool of the main HEC, in order to serve the work-requesting
message.

This reflects our design using one dedicated gatewayin charge
of communication, but also identifying work to export.

The advantage of this is that this gateway has the most accurate
picture of the current system’s information, including the load on
different machines. Furthermore, as such a gateway to other nodes,
it can prefer to accumulate those sparks in its spark pool that would
be the most profitable to export, thus creating a finer distinction
between available sparks.

We do not make such a finer distinction between sparks in the
current implementation. Therefore, we have not yet profited from
the advantages of this design. An analysis of our initial perfor-
mance results in Section 5 will guide us in deciding whether the
potential benefits of the current design for the gateway HEC out-
weighs its overheads.

A further option would be to select a spark from the HEC with
the largest spark pool and send it as a response to the message.
However, this would require traversing all HECs in order to identify

1 void ScheduleFindWork(Capability *cap , Task
*task)

2 if emptyRunQueue(cap) then
3 // get local work; GHC-SMP-style
4 if anySpark(cap) then
5 for i← 0 to num capabilities do
6 if emptySparkPool(cap[i]) then
7 continue;
8 end
9 spark = tryStealSpark(cap[i]);

10 if spark != NULL then
11 break;
12 end
13 end
14 if spark != NULL then
15 tso = createSparkThread(cap,spark);
16 pushOnRunQueue(cap,tso);
17 end
18 else
19 // get remote work; GHC-GUM-style ;
20 pe = choosePE();
21 sendFISH(cap,pe);
22 end
23 end

Function ScheduleFindWork(Capability *cap, Task *task) in
GUMSMP, combining GHC-SMP and GHC-GUM func-
tionality

the one with the largest spark pool, therefore imposing additional
overheads in a common case, something that we wish to avoid.

Watermarks: One simple (but flexible) mechanism that gives bet-
ter control of spark distribution is to use low- and high-watermarks
for each spark pool. Using this approach, work offloading decisions
are based on the size of each spark pool, as shown in Figure 4. The
low-watermark specifies a minimum number of sparks that should
be held in the local spark pool. If the number of sparks falls be-
low this watermark, no sparks will be exported, and the PE will at-
tempt to obtain additional sparks from other PEs. This mechanism
is designed for high latency systems, with the aim of prefetching
work; thus, supporting effective latency hiding, which is one of our
main design principles. The high-watermark indicates the maxi-
mum number of sparks that should be held in a spark pool. If the
number of sparks exceeds this limit, the instance will attempt to
off-load sparks actively to other instances without receiving work
requests.

It will use SCHEDULE messages, in the same manner in which
spark pushing is performed between HECs within a PE. That is to
say, the PE will temporarily and locally switch from lazy load dis-
tribution to eager load distribution, until the spark pool size again
drops below the high-watermark. Where all instances have a large
number of sparks, a back-off mechanism will be used to introduce
a delay between each SCHEDULE message (as described above
for FISH messages). While a high-watermark mechanism is im-
plemented in GUMSMP, the runtime is sensitive to the concrete
setting of the watermark. If it is too high, excessive communication
is incurred, if it is too low it is ineffective. Further work is neces-
sary to find good settings, possibly based on previous monitoring
of the parallel execution.

Spark placement: Once a stolen spark arrives at a node, the
system should decide on a spark pool to place it in. The choice
currently taken in GUMSMP is to assign it to the spark pool

5 2014/2/2

Markers: Load Balancing Policy:

active with off−loading

passive without fishing

passive with fishing

Low Watermark

High Watermark

Spark Pool

Figure 4: Low- and High-watermark mechanisms for spark distri-
bution.

of the main HEC. Since HECs can exchange work cheaply in
their spark pools, this indirection of retrieving work should not
incur any significant delay. However, a general problem with work
distribution in a virtual shared heap model is the danger of heap
fragmentation. This can occur when data, that logically belongs
together, is spread over several nodes, mainly due to work-stealing
or a fetch request. One RTE parameter that is indicative of high
heap fragmentation is the size of the Global Indirection Table
(GIT).

A possible means of tackling heap fragmentation would be
to use a separate spark pool, dedicated to imported sparks, from
which other processors will steal work. This will keep related
pieces of work together in one pool, but it does require additional
stealing steps, in order to acquire external work. Such an additional
spark pool would also be useful in situations in which none of the
processors are idle at the time of the arrival of a new spark. This
can arise if a thread, that has previously been blocked on remote
data, has been awoken and then generated fresh sparks. Placing
the imported spark into a dedicated spark pool would defer the
placement decision to a later time, when idle processors would be
available. Committing too early would not be the best use of the
dynamic information of the system.

In the prototype GUMSMP implementation, we use the main
HEC of each PE as a gateway, mediating communication and the
distribution of work. The gateway can potentially use system in-
formation, such as load, to make decisions on work distribution. A
pragmatic reason for this initial design is its simplicity, since basic
communication operations are not required to be thread-safe. The
following section will analyse the performance implications of this
design. To improve load balance we primarily use a low-watermark
mechanism, as discussed in this section and analysed in the follow-
ing section.

5. Performance Results
5.1 Experimental Setup
To test the basic functionality and performance of the GUMSMP
prototype, we use the following micro-benchmarks that exhibit a
range of parallel patterns

• parfib is a divide-and-conquer program, which computes for
a given y the Fibonacci number fib y using a depth threshold
of x;
• coins is a divide-and-conquer program, which computes the

number of ways to pay a given value y from a fixed set of
coins [55, 88, 88, 99, 122, 177] (parameter x specifies
the program’s version and z the depth threshold);

• sumEuler is a data parallel program, which computes the sum
of the Euler totient function on the list interval [1..x] using a
cluster size of y.
• parmap-of-parfib is a data parallel program with nested

divide-and-conquer parallelism, computing x instances of a par-
allel fib 43 computation.
• worpitzky is a divide-and-conquer program, which checks the

Worpitzky property over Stirling numbers y z (parameter x
specifies the program’s version).

Additionally, we measure the performance of the following, larger
benchmarks1:

• minimax is a divide-and-conquer AI application that performs
an alpha-beta search in a 2-player game on a x×x board up to
depth y;
• maze is a nested data-parallel AI application for finding the path

through a fixed maze using a parallelism threshold of 5;
• mandelbrot is a data-parallel application for computing a man-

delbrot set over a given window size (parameters 5 and 6) and
number of iterations (parameter 7);

Program
Name

Paradigm Lines
of Code

Input Parame-
ters [x,y,z]

parfib D&C 18 33 52
coins D&C 29 7 5200 3
sumEuler Data par 28 100000 180
parmap-of-
parfib

Data par with
nested D&C

30 20 43

worpitzky D&C 33 2 27 20
minimax D&C 218 4 9
maze Nested Data par 41
mandelbrot Data par 106 -2.0 -2.0 2.0 2.0

4096 4096 3024

Our measurements are made on a Beowulf cluster of multi-
cores, where each node is an 8-core CPU (2 quad-core Xeon E5506
2.13GHz, with 256kB L2 and 4MB shared L3 cache). All 32 nodes
are connected via a non-specialised Gigabit ethernet connection.
All machines are running Linux CentOS 6.4. The implementation
of the GHC-SMP RTE is based on GHC 6.12.2, using GCC 4.4.7,
and PVM 3.4.5 for message passing.

5.2 Scalability Results
Figure 5 summarises the absolute speedup results from the micro-
benchmarks on up to 100 cores of the cluster. Each point in the
measurement represents the median of three runtimes. All execu-
tions use PVM as a communication library across the network.

All micro-benchmarks scale well up to 100 cores, which sig-
nificantly exceeds that of a single multi-core machine. Unsurpris-
ingly the simplest micro-benchmark, parfib, exhibits a very good
overall speedup of 81 on 100 cores, based on a sequential run-
time of 6900 seconds. It is only beaten by an improved version
of parmapfib, which achieves a speedup of almost 88 in this con-
figuration (we will discuss the improvements for this program in
Section 6.3). The coins benchmark, which is a less regular divide-
and-conquer program, achieves a speedup of 68 on 100 cores. For
the data-parallel sumEuler program, the speedup shows significant
variations over an increasing number of cores. This is mostly due
to the amount of parallelism being fixed (the number of blocks of
data items being processed), which means that for higher core num-
bers there is a greater risk of load imbalance towards the end of the
execution. In general, the RTE is designed to handle parallelism

1 These are from [25] and the nofib/parallel suite, respectively.

6 2014/2/2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. Cores

GUMSMP Speedup for the Micro-Benchmarks

parmapfib
parfib

sumEuler
coins

worpitzky

Figure 5: Speedup of micro-benchmarks using GUMSMP

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. of Cores

GUMSMP Speedup for the Benchmarks (LWM vs no-LWM)

Minimax-LWM
Minimax-noLWM

Mandel-LWM
Mandel-noLWM

Maze-LWM
Maze-noLWM

Figure 6: Speedup of larger benchmarks using GUMSMP
with(out) low-watermarks

dynamically and adaptively, and therefore divide-and-conquer pro-
grams that generate a significant amount of parallelism through-
out their execution are a better match than data-parallel programs.
Furthermore, with sumEuler it is crucial to use a low-water-mark
mechanism in order to achieve a speedup of 67 on 100 cores, as
shown in Figure 11.

The poorest performance results were from the worpitzky pro-
gram. This divide-and-conquer program uses several sources of
parallelism, resulting in sparks from both sources being combined
in the spark pool for a PE. This aspect hampers the effectiveness of
the thread subsumption. A distribution mechanism that attaches a
bound on the distance that a spark can travel in a network has been
developed in [2] but has not yet been integrated into GUMSMP.

Figure 6 shows the speedups of the larger benchmarks, run-
ning with and with-out low-watermarks (this mechanism is anal-
ysed in the next section). As anticipated, the speedups for these
three benchmarks are lower than for the micro-benchmarks, rang-
ing between 24 for mandelbrot and 27 for minimax, in their final
versions. The larger benchmarks involve significantly greater data
transfer, resulting in higher communication overheads: compared
to the sumEuler micro-benchmark, mandelbrot sends 15 times,

minimax sends 44 times and maze sends 125 times the amount of
data. Even more importantly, this data transfer also incurs higher
virtual shared memory management overheads, due to the data
structures being distributed. Evidence of this higher overhead is the
average size of the GIT during the execution, which is typically be-
tween 10 and 30 times higher than that for the micro-benchmarks.
In the case of the larger benchmarks, minimax performs best with
a speedup of 27 (the speedup increases further to 31 when enabling
inter-node sparks — see Section 6.3). With this program, however,
the speedup tails off above ca. 35 cores, due to the aforementioned
overhead. This is not an inherent limitation of the system, however,
as the two other benchmarks show: they still scale, but instead have
a flatter slope than the micro-benchmarks.

These results show that even without any specific tuning for
a large-scale hierarchical architecture it is possible to deliver
speedups on up to 100 cores, well beyond what has previously
been reported for such GpH benchmarks. The quantity of data ex-
change needed for these programs is substantially higher, and this
the main factor limiting the speedup. The implementations them-
selves were originally developed for flat moderate size clusters and
tested on up to 32 nodes; however, they have not been further tuned
to the hierarchical configurations used in this paper.

5.3 Single Multi-core performance
This section compares the performance of GUMSMP, GHC-
GUM, and GUMSMP on a single multi-core node of the cluster
used for the complete measurements. The goal of this comparison
is to assess the potential for improvement when moving from a
flat cluster design, as used in GHC-GUM to a hierarchical de-
sign as used in GUMSMP. By comparing the performance with
the existing shared memory implementation, GHC-SMP, we can
quantify the additional overheads of the GUMSMP design on a
single multi-core.

Figure 7 compares the performance for all three systems: GHC-
GUM, GUMSMP, and GHC-SMP. We observe that for all the
programs GHC-SMP yields the best performance. GUMSMP is
typically within 8% of GHC-SMP performance. While GHC-
GUM is usually close to the GUMSMP results, in the case of
minimax its performance is significantly lower. This is due to the
overheads associated with the virtual shared heap management,
which have to be paid in distributed memory GHC-GUM but not
in GUMSMP, which in this setup uses one PE of up to 7 HECs.
We observe that on one multi-core GUMSMP, outperforms GHC-
GUM in all cases, except parfib, where the difference is less than
4%.

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7

S
p
e
e
d
u
p

No. Cores

Speedup for GUM Vs GUMSMP Vs SMP

parfib-SMP
parfib-GUMSMP

parfib-GUM
sE-SMP

sE-GUMSMP
sE-GUM

minimax-SMP
minimax-GUMSMP

minimax-GUM

Figure 7: Speedup of all programs using GHC-GUM, GUMSMP,
and GHC-SMP on a single multi-core

7 2014/2/2

5.4 The Performance of GUMSMP vs GHC-GUM
The older GHC-GUM system can be configured to use a hierar-
chical network as a flat network; in essence running one instance
of the RTE for each available core. While this setup cannot make
use of the physical shared memory, it does provide a useful refer-
ence point for the GUMSMP performance results.

Figure 8 shows the speedups for all the test programs under
GUMSMP and GHC-GUM2. Notably, GUMSMP delivers bet-
ter speedups for all micro-benchmarks with an improvement of up
to 20% for sumEuler. For the larger benchmarks the behaviour
is similar with improvements of around 20% for minimax and
mandelbrot, and a slight slow-down of 4% for maze. In general,
GUMSMP performs better with data-parallel programs using the
refined load-distribution mechanisms, as presented in this paper. In
such single-source, data-parallel programs, with only one generator
for parallelism, it is beneficial to send off a large computation early,
with other capabilities collecting parallelism locally. This structure
of parallelism is a natural match for the hierarchically structured
RTE. Consequently, we observed a significant reduction in com-
munication, compared to the GHC-GUM instance; the number of
messages dropped by up to 41%.

Moreover, for all the benchmarks in Figure 8 we observe an
increasing performance gain of GUMSMP over GHC-GUM with
larger configurations. This provides evidence of the scalability ben-
efit, due to GUMSMP’s hierarchical design.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. Cores

Speedup for GUM Vs GUMSMP

parfib-GUMSMP
parfib-GUM

sE-GUMSMP
sE-GUM

coins-GUMSMP
coins-GUM

Mmax-GUMSMP
Mmax-GUM

Mandel-GUMSMP
Mandel-GUM

Maze-GUMSMP
Maze-GUM

Figure 8: Speedups of benchmarks using GUMSMP and GHC-
GUM

However, for nested data parallel programs, which generate
massive amounts of parallelism, such as maze, the speedup of
GUMSMP is by 4% smaller for GHC-GUM. Analysing the be-
haviour of maze on GUMSMP on 100 cores we observe an in-
crease of 5% in the number of messages sent in GUMSMP com-
pared to GHC-GUM. More importantly, over 30% of the received
sparks were no longer required; typically, because a thread, blocked
on remote data, has been awoken and then generated fresh sparks
locally. This percentage can serve as an indicator of whether the
load balancing policy is overly aggressive when distributing work,
resulting in increased communication and higher heap fragmenta-
tion. In the concrete case of maze, the incurred overhead is still not
to impede parallel performance seriously.

2 Note that no changes to the programs are necessary, since both systems
implement GpH

In general, however, the system needs to strike a balance be-
tween (pro-)actively distributing work and reducing communica-
tion costs in the execution; we discuss this aspect in more detail
in the next section. However, the percentage of no-longer-required
sparks can serve as an indication to the programmer that load distri-
bution is overly aggressive, and that better results may be achieved
by, for example, reducing the low-watermark.

6. Tuning Hierarchical Load Distribution
Load distribution on hierarchical architectures, like clusters of
multi-cores, is necessary to account for both multiple cores (PEs)
in each cluster node and large differences in latencies. For exam-
ple, the latencies between cluster nodes are far greater than within
the node. This requires adaptation of policies developed in GHC-
GUM, and designed for flat clusters. In particular, we look at mech-
anisms to pre-fetch work to enable the multiple cores on a node to
receive work as quickly as possible. Due to the referentially trans-
parent nature of the execution, sharing global data structures is not
problematic; all the data necessary for computation is integrated
in the transferred graph structure. In addition, the RTE provides a
mechanism for specifying how many thunks, i.e. unevaluated clo-
sures, should be transferred in a packet. Moreover, since GpH is
least prescriptive in the way it defines potentially parallel execu-
tions, the RTE has a large degree of flexibility when defining its
load distribution policy and, when determining whether to generate
parallelism or not.

6.1 A pre-fetching load-distribution policy using a
low-watermark mechanism

The low-watermark mechanism was designed to improve load dis-
tribution on hierarchical networks over the default load distribution
policy; it was initially designed for flat, single-processor networks.
In a flat network, passive load distribution, through sending a FISH
message when a PE becomes idle (as described in Sec 3.1), works
well for distributing work when needed. The danger with sending
work (pro-)actively is that there can be a drastic increase in the to-
tal amount of communication, due to the unnecessary movement of
work away from its input data. However, in a hierarchical system,
comprised of multi-core nodes, this default mechanism acquires the
amount of work necessary to feed all cores, only very slowly, as
shown by the data below.

To visualise this behaviour, Figures 9 and 10 show the per-PE
profiles of activities when running the mandelbrot program, with
and without low-watermarks (note the different x-scales in both
graphs). To clarify, dark green3 is good utilisation, light green is
low utilisation, and red is idle time. A per-PE profile shows PEs on
the y- and, time on the x-axis. This configuration shows 16 bars,
representing the 16 PEs used in the run. For each PE a total of
5 HECs is used, amounting to 80 cores in total. The darkness of
the green value at each point in time shows the utilisation (i.e. the
number of running HECs) as an average over a fixed time window.
A utilisation below 6% is shown as a red area, representing idle
time. The last line in the profile summarises the range of average
utilisation across the PEs.

In the concrete per-PE activity profile in Figure 9, we observe
that PE1 has considerably more work (dark green) and higher util-
isation compared to the other PEs, which only have sufficient work
to keep one HEC busy (light green). This behaviour is confirmed by
the average utilisation on PEs 2-16, which ranges between 40% and
49%. Moreover, Figure 9 shows several periods of idle (red) time.
The main reason for this behaviour is that mandelbrot is data par-
allel, where the main HEC of PE1 is the only one generating sparks

3 In the monochrome version, gray is used instead of green, i.e. darker gray
represents higher utilisation, and white for red, representing idle times.

8 2014/2/2

Mandelbrot with input -2.0 -2.0 2.0 2.0 4096 4096 3024 on 16 PEs, 5 cores each, and noLWM policy GUMSMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 50.0 k 100.0 k 150.0 k 200.0 k 250.0 k 300.0 k 350.0 k 400.0 k 450.0 k

Average Utilisation between 40% and 49%

Figure 9: mandelbrot load distribution
without low-watermark on GUMSMP

Mandelbrot with input -2.0 -2.0 2.0 2.0 4096 4096 3024 on 16 PEs, 5 cores each, and LWM policy GUMSMP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0 20.0 k 40.0 k 60.0 k 80.0 k 100.0 k 120.0 k 140.0 k 160.0 k 180.0 k 200.0 k 220.0 k

Average Utilisation between 84% and 146%

Figure 10: mandelbrot load distribution
with low-watermark on GUMSMP

at the beginning of the execution. Other PEs send FISH messages
asking for work from the PE 1. Using a pure work-stealing load
distribution policy in Figure 9 will only lead to the receipt of one
spark each time a work-requesting message is sent. Therefore, the
imported spark is executed by the main HEC, but the other HECs
will mostly remain idle, resulting in a delay in picking up sufficient
work to keep all 5 HECs on each PE busy. Thus, the average util-
isation of PEs 2–16 remains below 50% of the 500% possible in
this execution over 5 HECs. The utilisation numbers show percent-
ages of mutation time over the total runtime, not including the time
spent on garbage collection; therefore, they are not approaching the
maximum of 500% for executions running on 5 cores.

In contrast, Figure 10 illustrates the behaviour when enabling
low-watermarks; whereby the other PEs continue sending mes-
sages requesting work until the number of sparks in all local spark
pools reaches the low watermark. Thus, the average utilisation on
the other PEs is significantly higher, typically between 84% and
146%, shown as (darker green). Although some PEs are unused to-
ward the end of the computation, the high utilisation over most of
the execution results in a significant drop in runtime, from 496s to
238s (a drop by 52%).

In summary, the low-watermark policy enables the pre-fetching
of work, so that spark pools reach the low-watermark, which is typi-
cally set to the number of HECs available on a single PE, and there-
fore only depends on a static parameter of the architecture. This
results in swifter distribution of the available parallelism through-
out the computation, and, in turn, leads to a higher than average
utilisation on the other PEs. This is shown by the higher than av-
erage utilisation numbers, summarised at the bottom of the per-PE
graphs.

The low-watermark policy applies to all the PEs with the excep-
tion of the main PE, because it is less likely to require pre-fetching
in order to remain busy. Conversely, in the shut-down phase of the
execution, parallelism is scarce, and in this phase the withholding
of sparks starves other PEs of work. More desirable than entirely
disabling the low-watermark mechanism on the main PE would be
to adjust its value dynamically depending on the current system’s
load. Ideally, we want to decrease the value when the load drops.

The current implementation does not provide the necessary infor-
mation for this kind of monitoring yet, but we plan to integrate
such functionality together with more detailed per-thread statistics,
to improve the dynamic adaptability of GUMSMP.

In order to assess the impact of the low-watermark mechanism
on all programs; Figure 11 compares the speedups for the programs
using a low-watermark tailored to the number of cores to improve
the load-balance on this hierarchical network (ticked plots) with the
speedups in a setting without low-watermarks, using the default
passive load distribution mechanism (unticked plots). This com-
parison shows that the low-watermark mechanism consistently im-
proves performance, by up to 57% in the case of sumEuler.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. of Cores

GUMSMP Speedup for the Micro-Benchmarks (LWM Vs No LWM)

parfib-LWM
parfib-noLWM

sumEuler-LWM
sumEuler-noLWM

coins-LWM
coins-noLWM

worpitzky-LWM
worpitzky-noLWM

Figure 11: Speedup of GUMSMP with(out) low-watermarks

This behaviour is underlined by the results from the larger
benchmarks, as shown in Figure 6. All three benchmarks exhibit
consistently improved speedup when using low-watermarks, with
improvements between 16% and 28% on 100 cores, higher than
those for the micro-benchmarks. This reflects, across a range of

9 2014/2/2

core numbers, the improved load balance and the lower number of
idle periods throughout the computation, as shown in the per-PE
profile of Figure 10.

6.2 The impact of the FISH delay setting
Another important, tunable parameter for the RTE is the delay be-
tween receiving an own, unsuccessful FISH message and sending
another FISH message. When running these tests on GUMSMP,
we started using the default delay, established with GHC-GUM
on flat networks. It transpired that reducing this delay improves
performance on a hierarchical network using the GUMSMP RTE.
A setting for the FISH delay that strikes a balance between obtain-
ing work as quickly as possible, and avoiding swamping the ma-
chine with FISH messages as this endangers the scalability of the
system, is required. Similarly, the low-watermark mechanism is ad-
vantageous in GUMSMP in order to send FISHes more quickly, to
obtain sufficient parallelism to feed all cores on a multi-core. Both
policies reflect the need for a more aggressive load distribution in
GUMSMP.

In GUMSMP, the role of the fish delay value (inherited from
GHC-GUM) is more aggravated, due to the role of the gateway
HEC in mediating any communication to other PEs. Thus, if the
gateway HEC is in a delay period, it will not immediately send a
FISH, even though the request is originating from a different HEC.
This is reflected by longer idle times with moderate FISH delay
values compared to GHC-GUM executions. In all of the results
presented, we used small values for the fish delay. These were
typically approximately half the value used by default in GHC-
GUM.

6.3 Asymmetric load distribution policies
Using the same load distribution policy both on the inter- and
intra-node level bears the danger that local HECs may steal large-
grained parallelism, which would be more productively executed
on another PE in a network.

The parmapfib micro-benchmark exhibits this behaviour, as
well does the minimax benchmark. In both cases, the saturation
with parallelism across PEs is poor, with other PEs only picking
up small (nested) computations generated by large computations.
In order to tackle this issue, we use an asymmetric load balancing
policy to block intra-node spark exchange in the start-up phase of
the parallel execution. This prevents other capabilities from pick-
ing up work on the main PE, which would then monopolise the
parallelism on the main PE. Specifically, we ensure that we send
out at least n sparks to other PEs, before other capabilities on the
main PE are permitted to pick up work. This refinement of the de-
fault load distribution policy accounts for the multi-level structure
of the architecture, favouring inter-node spark exchanges initially,
to achieve large-scale distribution of large work, and causing sig-
nificant improvements to the performance of (nested) data parallel
programs.

In order to quantify the impact of this policy, Figure 12 shows
the speedups for parmapfib, coins and minimax using low-
watermarks (LWM), favouring inter-node spark distribution (inter-
node sparks) and a combination of both; consistently delivering the
best results. For the parmapfib micro-benchmark we observe an
improvement in performance of up to 16% and for the minimax
benchmark of up to 4%, all on a 100 core configuration. We expect
this policy to be beneficial in general for nested data-parallel pro-
grams, where the outer parallelism should be off-loaded to another
node. For non-nested data-parallelism, however, it is not neces-
sary to disable the intra-node load distribution, which then risks
increased idle time during the start-up phase of the parallel execu-
tion. Indeed, we did not observe any improvements for sumEuler
in excess of the low-watermark mechanism discussed previously.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
u
p

No. Cores

Speedup for GUMSMP

Parmapfib-LWM
Parmapfib-LWM + inter-node sparks

Coins-LWM
Coins-LWM + inter-node sparks

Minimax-LWM
Minimax-LWM + inter-node sparks

Figure 12: Speedups of GUMSMP using an asymmetric load dis-
tribution policy, enabling inter-node sparks

6.4 The role of spark placement
Currently an imported spark is added to the spark pool of the
gateway HEC. Since the distribution of work between HECs on
one multi-core is fairly cheap, it does not cause problems from a
load balancing perspective. However, mixing local and imported
sparks in the same pool can prove problematic in terms of heap
fragmentation, leading to more inter-processor pointers, and thus
more communication. As yet we have been unable to quantify this
aspect of the parallel execution based on these results. We plan to
analyse the impact of the spark placement policy in future work,
and then revisit the policy for the placement of imported sparks
based on this assessment.

A possible design alternative would be to add an additional “im-
port” spark pool to control the placement of sparks. Sparks in this
pool might then be further annotated according to their originating
PE, or possibly by user-provided information encapsulating infor-
mation on desirable co-location. In most cases, the scheduler would
prefer local sparks, but it can make use of the import spark pool in
situations when no local sparks are available. Once imported sparks
have been turned into threads, the scheduler may prefer other im-
ported sparks that have some affinity with the previous one, e.g.
those coming from the same PE.

Related to this separation of sparks into local and imported, is
the decision as to whether to duplicate work when sending sparks to
other PEs. The current design aims never to duplicate work because
of the obvious danger of degrading performance. However, in view
of the more aggressive load distribution policy that is necessary
for GUMSMP, it might be acceptable to duplicate some work, if
such work remains separate from the main pool of sparks and is
activated only if other methods of obtaining work fail. The current
implementation already provides a means to control potential work
duplication, by defining a globalisation policy and determining
which kinds of closures to generate a (unique) global address when
packing a graph structure. Combining an import spark pool, with
a globalisation policy of controlled work duplication, would be an
interesting direction for future work.

7. Conclusion
We have presented the design, implementation and early perfor-
mance results for the new multi-level parallel Haskell implemen-
tation GUMSMP, designed for scalable, high-performance com-
putations on networks of multi-cores. Our design focuses on flexi-

10 2014/2/2

ble work distribution policies in hierarchical architectures. In par-
ticular, we have performed asymmetric load balancing, using dif-
ferent load distribution policies at different levels of the hierar-
chy. At the cluster level we use a less aggressive policy, which
may produce some load imbalance but reduces the total amount of
communication. Within a multi-core node we use a more aggres-
sive load distribution policy which exploits the low communica-
tions overhead provided by physical shared-memory. Our system
mostly uses a refined work-stealing policy, applying the concept
of a low-watermark, allowing the system to pre-fetch work at the
cluster level. This proved to be crucial for the performance of some
of the test programs: for the micro-benchmarks runtime drops by
up to 57%, for the larger benchmarks by up to 28%. As an addi-
tional refinement we favoured inter-node load distribution in the
start-up phase of the parallel execution; thereby ensuring that early
work, which tends to be large, is picked up by other PEs, rather
than by other cores on the same machine. This policy significantly
improved the load balance of the nested data parallel applications:
on 100 cores the speedup improves by up to 16%.

More generally, we conclude that large, hierarchical architec-
tures require a more aggressive work distribution policy than flat
networks. We achieve such a policy by enabling pre-fetching of
work using a low-watermark that is tailored to the number of cores
per-node, and which yields a performance improvement for all pro-
grams, including the more communication intensive benchmarks.
We also identified the potential problem of a single multi-core
node monopolising all the parallelism, in particular in nested data-
parallel programs. Favouring inter-node spark distribution in the
start-up phase of such programs improves load distribution and
avoids this problem. Thus, this policy should be enabled whenever
running nested data-parallel programs.

Initial performance results on five micro-benchmarks and three
more communication intensive benchmarks demonstrate the scala-
bility of our multi-level design up to 100 cores, well beyond the size
of individual multi-cores. Our implementation enables the execu-
tion of GpH programs on networks, extending our previous work on
GHC-GUM, and these results represent the first systematic study
of GpH performance on the 100 core scale. For the nested data
parallel program, the multi-level load-distribution achieves a good
match between program structure and hardware topology. The final
speedups for the three larger benchmarks are between 24 and 31
on a 100 core machine. This is partly due to an increased amount
of communication inherent in the applications, which in turn also
increases the overhead for managing the virtual shared heap, but
is also partly due to the main HEC becoming a bottleneck in the
typically fine-grained, communication between nodes. We plan to
address this issue next when tuning the GUMSMP system.

Comparing the performance of the current GUMSMP imple-
mentation with the distributed memory GHC-GUM implemen-
tation shows a largely positive picture. Only one of the eight
benchmarks exhibits a lower performance; maze with a slow-
down of only 4%. For the remaining programs GUMSMP per-
formance exceeds that of GHC-GUM, with improvements of up
to 20%. A direct comparison of the single multi-core performance
of GUMSMP with GHC-GUM shows that it is within 8% of the
latter’s performance, and that it does not introduce a significant ad-
ditional overhead to the existing shared-memory implementation.

We are continuing to improve GUMSMP, and our current ob-
jectives are as follows. We are undertaking performance measure-
ments on a broader class of applications [19]. We plan to drop the
restriction that only the main HEC performs communication, in or-
der to eliminate this potential bottleneck. We are currently extend-
ing the monitoring support of GUMSMP to provide per-thread
statistics. The intention is to use this information to further tune
load distribution mechanisms in GUMSMP.

At a system level, we plan to explore some of the alternative
design choices discussed in Section 4. Based on the previous work
on the performance of the virtual shared memory abstraction [18],
we anticipate that a separate import spark pool would reduce heap
fragmentation, and thereby improve performance on large clusters.

Acknowledgments
We thank the anonymous referees for their detailed comments
that helped to improve the paper. This work has been supported
by the European Union grant IST-2011-287510 “RELEASE: A
High-Level Paradigm for Reliable Large-scale Server Software”,
and by the UK’s EPSRC grant EP/G055181/1 “HPC-GAP:High
Performance Computational Algebra and Discrete Mathematics”,
and by Saudi Arabian Ministry of Higher Education: Umm Al-Qura
University.

References
[1] C. Amza, A. L. Cox, H. Dwarkadas, P. Keleher, H. Lu, R. Rajamony,

W. Yu, and W. Zwaenepoel. Treadmarks: Shared Memory Computing
on Networks of Workstations. Computer, 29(2):18–28, 1996. doi:
10.1109/2.485843. URL http://dx.doi.org/10.1109/2.485843.

[2] M. Aswad, P. Trinder, and H.-W. Loidl. Architecture Aware Parallel
Programming in Glasgow Parallel Haskell (GPH). In ICCS12: In-
ternational Conference on Computational Science, pages 1807–1816,
Omaha, Nebraska, June 2012. doi: 10.1016/j.procs.2012.04.199. URL
http://doi.acm.org/10.1016/j.procs.2012.04.199.

[3] G. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha.
Implementation of a Portable Nested Data-Parallel Language. Jour-
nal of Parallel and Distributed Computing, 21(1):4–14, 1994. doi:
10.1006/jpdc.1994.1038. URL http://dx.doi.org/10.1006/jpdc.1994.
1038.

[4] M. M. T. Chakravarty and G. Keller. More Types for Nested Data
Parallel Programming. In In Proceedings ICFP 2000: International
Conference on Functional Programming, pages 94–105. ACM Press,
2000. doi: 10.1145/357766.351249. URL http://dx.doi.org/10.1145/
357766.351249.

[5] B. Chamberlain, D. Callahan, and H. Zima. Parallel Programmability
and the Chapel Language. Intl. J. High Perform. Comput. Appl.,
21:291–312, Aug. 2007. URL http://portal.acm.org/citation.cfm?id=
1286120.1286123.

[6] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon. Parallel Programming in OpenMP. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar. X10: An Object-oriented
Approach to Non-uniform Cluster Computing. SIGPLAN Not., 40
(10):519–538, Oct. 2005. ISSN 0362-1340. doi: 10.1145/1103845.
1094852. URL http://doi.acm.org/10.1145/1103845.1094852.

[8] D. Chavarria-Miranda, S. Krishnamoorthy, and A. Vishnu. Global
Futures: A Multithreaded Execution Model for Global Arrays-based
Applications. In Cluster, Cloud and Grid Computing (CCGrid), 2012
12th IEEE/ACM International Symposium on, pages 393–401, 2012.
doi: 10.1109/CCGrid.2012.105.

[9] T. El-Ghazawi and L. Smith. UPC: Unified Parallel C. In SC’06: Pro-
ceedings of the 2006 ACM/IEEE Conference on Supercomputing, New
York, NY, 2006. URL http://doi.acm.org/10.1145/1188455.1188483.

[10] J. Epstein, A. P. Black, and S. Peyton-Jones. Towards Haskell in the
Cloud. In Proceedings of the 4th ACM symposium on Haskell, Haskell
’11, pages 118–129, New York, NY, USA, 2011. ACM. ISBN 978-1-
4503-0860-1. doi: 10.1145/2034675.2034690. URL http://doi.acm.
org/10.1145/2034675.2034690.

[11] M. Fluet, M. Rainey, J. Reppy, A. Shaw, and Y. Xiao. Manticore: a
heterogeneous parallel language. In Proceedings of the 2007 workshop
on Declarative aspects of multicore programming, DAMP ’07, pages
37–44, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-690-

11 2014/2/2

http://dx.doi.org/10.1109/2.485843
http://doi.acm.org/10.1016/j.procs.2012.04.199
http://dx.doi.org/10.1006/jpdc.1994.1038
http://dx.doi.org/10.1006/jpdc.1994.1038
http://dx.doi.org/10.1145/357766.351249
http://dx.doi.org/10.1145/357766.351249
http://portal.acm.org/citation.cfm?id=1286120.1286123
http://portal.acm.org/citation.cfm?id=1286120.1286123
http://doi.acm.org/10.1145/1103845.1094852
http://doi.acm.org/10.1145/1188455.1188483
http://doi.acm.org/10.1145/2034675.2034690
http://doi.acm.org/10.1145/2034675.2034690

5. doi: 10.1145/1248648.1248656. URL http://doi.acm.org/10.1145/
1248648.1248656.

[12] M. Fluet, M. Rainey, J. Reppy, and A. Shaw. Implicitly threaded par-
allelism in Manticore. Journal of Functional Programming, 20:537–
576, 11 2010. ISSN 1469-7653. doi: 10.1017/S0956796810000201.
URL http://journals.cambridge.org/article S0956796810000201.

[13] S. Goldstein, K. Schauser, and D. Culler. Lazy Threads: Implementing
a Fast Parallel Call. Journal of Parallel and Distributed Computing,
37(1):5–20, 1996. doi: 10.1006/jpdc.1996.0104. URL http://dx.doi.
org/10.1006/jpdc.1996.0104.

[14] Y. Hu, H. Lu, A. Cox, and W. Zwaenepoel. OpenMP for Networks of
SMPs. Journal of Parallel and Distributed Computing, 60(12):1512–
1530, 2000. doi: 10.1.1.136.2705. URL http://dx.doi.org/10.1.1.136.
2705.

[15] D. Jones, Jr., S. Marlow, and S. Singh. Parallel Performance Tuning
for Haskell. In Proceedings of the 2nd ACM SIGPLAN symposium on
Haskell, Haskell ’09, pages 81–92, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-508-6. doi: http://doi.acm.org/10.1145/1596638.
1596649. URL http://doi.acm.org/10.1145/1596638.1596649.

[16] L. V. Kale and S. Krishnan. CHARM++: a Portable Concurrent
Object-oriented System Based on C++. In Proceedings of the Eighth
Annual Conference on Object-oriented Programming Systems, Lan-
guages, and Applications, OOPSLA ’93, pages 91–108, New York,
NY, USA, 1993. ACM. ISBN 0-89791-587-9. doi: 10.1145/165854.
165874. URL http://doi.acm.org/10.1145/165854.165874.

[17] D. A. Kranz, R. H. Halstead, Jr., and E. Mohr. Mul-T: a High-
Performance Parallel Lisp. SIGPLAN Not., 24(7):81–90, July 1989.
doi: 10.1145/74818.74825. URL http://dx.doi.org/10.1145/74818.
74825.

[18] H.-W. Loidl. The Virtual Shared Memory Performance of a Parallel
Graph Reducer. In CCGrid/DSM 2002 — Intl. Symp. on Cluster
Computing and the Grid, pages 311–318, Berlin, Germany, May 21–
24, 2002. IEEE Press. URL http://www.macs.hw.ac.uk/∼dsg/gph/
papers/ps/dsm02.ps.gz.

[19] H.-W. Loidl, P. Trinder, K. Hammond, S. Junaidu, R. Morgan,
and S. Peyton Jones. Engineering Parallel Symbolic Programs in
GPH. Concurrency and Computation: Practice and Experience, 11:
701–752, 1999. doi: 10.1002/(SICI)1096-9128(199910)11:12〈701::
AID-CPE443〉3.0.CO;2-P. URL http://www.macs.hw.ac.uk/∼dsg/
gph/papers/ps/cpe.ps.gz.

[20] R. Loogen, Y. Ortega-mallén, and R. Peña marı́. Parallel Functional
Programming in Eden. J. Funct. Program., 15:431–475, May 2005.
ISSN 0956-7968. doi: 10.1017/S0956796805005526. URL http:
//portal.acm.org/citation.cfm?id=1067405.1067409.

[21] D. K. Lowenthal and V. W. F. G. R. Andrews. Using Fine-grain
Threads and Run-time Decision Making in Parallel Computing. Jour-
nal of Parallel and Distributed Computing, 37(1), 1996. doi: 10.1006/
jpdc.1996.0106. URL http://dx.doi.org/10.1006/jpdc.1996.0106. Spe-
cial issue on multithreading for multiprocessors.

[22] P. Maier and P. Trinder. Implementing a High-Level Distributed-
Memory Parallel Haskell in Haskell. In A. Gill and J. Hage, ed-
itors, IFL’12: Implementation and Application of Functional Lan-
guages, LNCS 7257, pages 35–50. Springer Berlin Heidelberg, 2012.
doi: 10.1007/978-3-642-34407-7 3. URL http://dx.doi.org/10.1007/
978-3-642-34407-7 3.

[23] S. Marlow and S. Peyton Jones. The Architecture of Open Source
Applications, Vol 2, chapter The Glasgow Haskell Compiler. lulu.com,
2012. URL http://www.aosabook.org/en/ghc.html.

[24] S. Marlow, S. Peyton Jones, and S. Singh. Runtime Support for
Multicore Haskell. In Proceedings of the 14th ACM SIGPLAN in-
ternational conference on Functional programming, ICFP ’09, pages
65–78, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-332-
7. doi: http://doi.acm.org/10.1145/1596550.1596563. URL http:
//doi.acm.org/10.1145/1596550.1596563.

[25] S. Marlow, P. Maier, H.-W. Loidl, M. K. Aswad, and P. Trinder. Seq
no more: Better Strategies for Parallel Haskell. In Proceedings of the
third ACM Haskell symposium on Haskell, Haskell ’10, pages 91–
102, New York, NY, USA, 2010. ACM. ISBN 978-1-4503-0252-

4. doi: http://doi.acm.org/10.1145/1863523.1863535. URL http://doi.
acm.org/10.1145/1863523.1863535.

[26] S. Marlow, R. Newton, and S. Peyton Jones. A Monad for Deter-
ministic Parallelism. In Proceedings of the 4th ACM symposium on
Haskell, Haskell ’11, pages 71–82, New York, NY, USA, 2011. ACM.
ISBN 978-1-4503-0860-1. doi: 10.1145/2034675.2034685. URL
http://doi.acm.org/10.1145/2034675.2034685.

[27] E. Mohr, D. Kranz, and J. Halstead, R.H. Lazy task creation: a
technique for increasing the granularity of parallel programs. Parallel
and Distributed Systems, IEEE Transactions on, 2(3):264–280, July
1991. doi: 10.1109/71.86103. URL http://dx.doi.org/10.1109/71.
86103.

[28] MPI Forum. MPI 2: Extensions to the Message-Passing Interface.
Technical report, University of Tennessee, Knoxville, 1997.

[29] R. W. Numrich and J. Reid. Co-array Fortran for Parallel Program-
ming. SIGPLAN Fortran Forum, 17(2):1–31, Aug. 1998. ISSN 1061-
7264. doi: 10.1145/289918.289920. URL http://doi.acm.org/10.1145/
289918.289920.

[30] S. L. Peyton Jones. Parallel Implementations of Functional Pro-
gramming Languages. Comput. J., 32:175–186, April 1989. ISSN
0010-4620. doi: 10.1093/comjnl/32.2.175. URL http://portal.acm.org/
citation.cfm?id=63410.63418.

[31] S. L. Peyton Jones, R. Leschinsky, G. Keller, and M. M. T.
Chakravarty. Harnessing the Multicores: Nested Data Parallelism in
Haskell. In FSTTCS’08: Foundations of Software Technology and The-
oretical Computer Science, pages 383–414, Bangalore, India, 2008.
doi: 10.1007/978-3-540-89330-1 10. URL http://dx.doi.org/10.1007/
978-3-540-89330-1 10.

[32] J. H. Reppy. Concurrent ML: Design, application and semantics.
In P. Lauer, editor, Functional Programming, Concurrency, Simula-
tion and Automated Reasoning, LNCS 693, pages 165–198. Springer-
Verlag, 1993. doi: 10.1007/3-540-56883-2 10. URL http://dx.doi.org/
10.1007/3-540-56883-2 10.

[33] D. Schmidl, C. Terboven, A. Wolf, D. a. Mey, and C. Bischof. How to
scale nested openmp applications on the scalemp vsmp architecture.
In Proceedings of the 2010 IEEE International Conference on Cluster
Computing, CLUSTER ’10, pages 29–37, Washington, DC, USA,
2010. IEEE Computer Society. ISBN 978-0-7695-4220-1. doi: 10.
1109/CLUSTER.2010.38. URL http://dx.doi.org/10.1109/CLUSTER.
2010.38.

[34] S.-B. Scholz. Single Assignment C – Efficient Support for
High-level Array Operations in a Functional Setting. Jour-
nal of Functional Programming, 13(6):1005–1059, 2003. doi:
10.1017/S0956796802004458. URL http://dx.doi.org/10.1017/
S0956796802004458.

[35] K. Sivaramakrishnan, T. Harris, S. Marlow, and S. Peyton Jones.
Composable Scheduler Activations for Haskell. Technical report, July
2013. URL http://research.microsoft.com/en-us/um/people/simonpj/
papers/lw-conc/lwc-hs13.pdf.

[36] P. Trinder, K. Hammond, J. Mattson Jr., A. Partridge, and S. Pey-
ton Jones. GUM: a Portable Parallel Implementation of Haskell.
In PLDI’96 — Programming Languages Design and Implementa-
tion, pages 79–88, Philadelphia, PA, USA, May 1996. doi: 10.1145/
231379.231392. URL http://dx.doi.org/10.1145/231379.231392.

[37] P. W. Trinder, K. Hammond, H.-W. Loidl, and S. Peyton Jones. Al-
gorithm + Strategy = Parallelism. Journal of Functional Program-
ming, 8(1):23–60, Jan. 1998. doi: 10.1017/S0956796897002967. URL
http://dx.doi.org/10.1017/S0956796897002967.

[38] X. Wu and V. Taylor. Using Processor Partitioning to Evaluate
the Performance of MPI, OpenMP and Hybrid Parallel Applica-
tions on Dual- and Quad-core Cray XT4 Systems. In Proceed-
ings of the 2009 Cray Users’ Group Meeting, Atlanta, GA, May
2009. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.150.3035&rep=rep1&type=pdf.

12 2014/2/2

http://doi.acm.org/10.1145/1248648.1248656
http://doi.acm.org/10.1145/1248648.1248656
http://journals.cambridge.org/article_S0956796810000201
http://dx.doi.org/10.1006/jpdc.1996.0104
http://dx.doi.org/10.1006/jpdc.1996.0104
http://dx.doi.org/10.1.1.136.2705
http://dx.doi.org/10.1.1.136.2705
http://doi.acm.org/10.1145/1596638.1596649
http://doi.acm.org/10.1145/165854.165874
http://dx.doi.org/10.1145/74818.74825
http://dx.doi.org/10.1145/74818.74825
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/dsm02.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/cpe.ps.gz
http://www.macs.hw.ac.uk/~dsg/gph/papers/ps/cpe.ps.gz
http://portal.acm.org/citation.cfm?id=1067405.1067409
http://portal.acm.org/citation.cfm?id=1067405.1067409
http://dx.doi.org/10.1006/jpdc.1996.0106
http://dx.doi.org/10.1007/978-3-642-34407-7_3
http://dx.doi.org/10.1007/978-3-642-34407-7_3
http://www.aosabook.org/en/ghc.html
http://doi.acm.org/10.1145/1596550.1596563
http://doi.acm.org/10.1145/1596550.1596563
http://doi.acm.org/10.1145/1863523.1863535
http://doi.acm.org/10.1145/1863523.1863535
http://doi.acm.org/10.1145/2034675.2034685
http://dx.doi.org/10.1109/71.86103
http://dx.doi.org/10.1109/71.86103
http://doi.acm.org/10.1145/289918.289920
http://doi.acm.org/10.1145/289918.289920
http://portal.acm.org/citation.cfm?id=63410.63418
http://portal.acm.org/citation.cfm?id=63410.63418
http://dx.doi.org/10.1007/978-3-540-89330-1_10
http://dx.doi.org/10.1007/978-3-540-89330-1_10
http://dx.doi.org/10.1007/3-540-56883-2_10
http://dx.doi.org/10.1007/3-540-56883-2_10
http://dx.doi.org/10.1109/CLUSTER.2010.38
http://dx.doi.org/10.1109/CLUSTER.2010.38
http://dx.doi.org/10.1017/S0956796802004458
http://dx.doi.org/10.1017/S0956796802004458
http://research.microsoft.com/en-us/um/people/simonpj/papers/lw-conc/lwc-hs13.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/lw-conc/lwc-hs13.pdf
http://dx.doi.org/10.1145/231379.231392
http://dx.doi.org/10.1017/S0956796897002967
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.3035&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.3035&rep=rep1&type=pdf

	1 Introduction
	2 Related Work
	3 GpH Implementations
	3.1 The distributed memory GHC-GUM implementation
	3.2 The shared memory GHC-SMP implementation

	4 GUMSMP Design
	4.1 Work Distribution Mechanism

	5 Performance Results
	5.1 Experimental Setup
	5.2 Scalability Results
	5.3 Single Multi-core performance
	5.4 The Performance of GUMSMP vs GHC-GUM

	6 Tuning Hierarchical Load Distribution
	6.1 A pre-fetching load-distribution policy using a low-watermark mechanism
	6.2 The impact of the FISH delay setting
	6.3 Asymmetric load distribution policies
	6.4 The role of spark placement

	7 Conclusion

