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Abstract—This paper tackles the issue of increasing depend-
ability of distributed systems in the presence of mobile code.
To this end we present a complete Proof-carrying-code (PCC)
infrastructure for independent and automatic certification of
resource bounds of mobile JVM programs. This includes a
certifying compiler for a high-level language, which produces a
certificate of bounded heap consumption, and independent certifi-
cate validation, realised via proof-checking, on the code-consumer
side. Thus, we are now in a position to automatically infer linear
upper bounds on the heap consumption of a strict, first-order
functional language, generate a certificate encoding a formal
proof of such bounded heap consumption and independently
validate this certificate at the consumer side by checking the
certificate. This prevents mobile code from exhausting resources
on the local machine.

Keywords-proof-carrying-code; resource analysis; program
verification;

I. INTRODUCTION

Ensuring dependability of distributed systems in the pres-
ence of mobile code is a significant challenge in the design
of complex systems. In particular, the design should ensure
that mobile code, for example downloaded from the internet,
does not harm the local machine. Most approaches to tackle
this challenge build on an authentication mechanism, which
ensures the identity of the alleged author of the code. However,
in the end the decision whether or not to execute the code is
delegated to the user: only if he/she trusts the author in not
providing (inadvertently) malicious code, the execution of the
program will be permitted.

Our approach to the design of dependable, distributed
systems does not rely on such a trust relationship. Instead
the mobile code is directly checked for possibly harmful
behaviour, and execution is only permitted if the code comes
with a certificate of not being malicious. To achieve this, we
use a proof-carrying-code (PCC) approach [1], where mobile
code is transmitted together with a certificate. In particular,
we are interested in the bounded resource consumption of
mobile code, and we present a PCC infrastructure for resource
bounded code. On a foundational level this requires a program
logic to formalise the properties of interest. On a system level
this requires tools for automatically generating a certificate
and for checking the certificate attached to a piece of code.

In this paper we present a complete infrastructure for proof-
carrying-code on distributed systems based on the Java Virtual
Machine (JVM).

The formal basis for proving resource bounds on JVM code
consists of a resource-aware program logic for (a subset of) the
JVM machine that has been proven sound and complete w.r.t.
an operational semantics for the JVM. On top of this logic
we have developed a heap space logic, which is tailored for
proving statements on heap consumption. This logic is used as
the basis for automatic certificate generation. In the validation
phase we use our formalisation of these logics in Isabelle/HOL
together with a generic tactic for checking the certificate.

Our main contribution is the design and implementation of
an entire PCC infrastructure for the safe execution of resource
bounded code. Examples demonstrate the feasibility of this
foundations-driven approach and the advantages compared to
authentication based approaches. The main, novel components
in the implementation of the infrastructure are:
• The automatic inference of linear heap bounds for the

functional language Camelot (this builds on the stand-
alone inference presented in [2]).

• The automatic generation of certificates by the compiler.
• The validation of a certificate, which is a condensed

version of a formal proof.
The infrastructure presented in this paper uses commonly

available tools and OpenSource software to make the results
of our research widely available. It is available as an on-line
demo, together with a user’s guide and a set of exercises.

II. RELATED WORK

A. Proof-carrying-code.

The concept of proof-carrying-code (PCC) originated in the
doctoral thesis of George Necula [3], where he developed the
logical theory of PCC and then applied it in the development
of a certifying compiler for a subset of C. This work was
extended and generalised in a series of papers: in [4], Necula
and Lee use PCC to certify the memory safety of operating
system kernel extensions written in assembly language; in [1]
(the standard PCC reference), Necula describes the use of
PCC to implement safe assembly-language extensions to a
runtime system for Standard ML; in [5], a compiler from



Java to annotated x86 assembler language is described, which
adds information on loop invariants such as register types,
variable bounds, and modified registers, to prove that the code
is well-behaved. Technical details of the logical methods used
in Necula’s PCC implementation can be found in [6]. Necula
and Lee also consider mobile programs in [7], where PCC is
applied to the problem of checking the security of untrusted
mobile agents scanning a database.

Necula’s approach (sometimes referred to as Classical PCC)
is based on having a specialised logic for the property one is
interested in, together with programs called a proof checker
and a verification condition generator (VCG) for the logic
(see [1] for details). These components are tailored to the logic,
and must be reimplemented when a new logic is introduced.
Moreover, they form part of the Trusted Code Base (TCB):
the soundness of the PCC system depends on the correctness
of these components, and errors in implementation could
compromise the system and allow unsafe programs to be
executed. Similarly, one must also assume that the logic does
in fact correctly describe the required safety property. To
deal with these issues, Appel [8] has proposed the concept
of Foundational PCC, in which the operational semantics
of the target machine are encoded in a theorem prover, and
safety proofs are expressed with respect to this formalisation.
This approach reduces the TCB to a minimum, but increases
the size of proofs, which may lead to scalability problems.
Applications and further developments of FPCC can be found
in [9], [10], and also in several publications on the FLINT
project, e.g. [11]–[13].

A different approach to the logical foundations of PCC
has been explored by Wildmoser and Nipkow [14], who
develop a PCC framework involving a VCG which has been
formally verified in the Isabelle/HOL theorem prover. This
framework is parametric and can be instantiated with respect
to a specific programming language and safety property:
for example, in [15] it is applied to safety properties for
arithmetical operations in Java bytecode.

An interesting variation on the PCC idea is Abstraction
Carrying Code [16], in which mobile programs are equipped
with fixpoints of static analyses which then enable the code
consumer to check a safety property simply by checking that
the annotations are in fact fixed under appropriate operations.

B. Resource Analysis

The problem of statically predicting resource usage has a
long history, with early work mostly focusing on prediction
of execution time. In 1975 Wegbreit [17] developed a system
to automatically find bounds for execution times of LISP
programs, based on systems of recurrence equations. Further
work on LISP was carried out by Le Métayer [18] and
Rosendahl [19]. Cost inference for logic programs has been
studied in [20] and elsewhere. A great deal of work has also
been done on worst case execution time (WCET) for real-
time systems: see the recent paper of Wilhelm et al. [21] for
a comprehensive survey.

Research on memory allocation is more recent, and initially
focused on functional languages: see for instance the sized
types of Pareto and Hughes [22], or the languages of Hof-
mann [23] and Aspinall-Hofmann [24], where type systems
enforce good behaviour for heap allocated data structures. The
type system of Hofmann and Jost (described below) allows
static prediction of memory bounds, and has recently been
extended by Campbell [25] to the context of stack usage. An-
other functional language where various resource-prediction
schemes have been developed is the Hume language, which
will be discussed later. More recently, there has been work
on memory prediction for object-oriented languages such as
Java. One approach is due to Hofmann and Jost [26], and
involves the concept of amortised costs; the AHA project [27]
at Nijmegen proposes to extend this work to Java and to
produce an implementation. An interesting recent development
is the use of geometric methods to predict Java memory usage
by Braberman et al. [28], [29].

III. THE PCC INFRASTRUCTURE

We start with a short characterisation of the languages
involved in the infrastructure:

• Camelot is the high-level language, used by the program-
mer to generate resource-safe code [30]. It is a strict,
first-order language, similar in syntax to ML and with
object-oriented extensions. These extensions allow the
use of a destructive match operator, with an implicit
free-list management of the reclaimed cells. Additionally,
reclaimed cells can be named and re-used, thus enabling
to code in-place operations, e.g. for sorting, in Camelot.

• Grail is a subset of the JVM language [31], covering a
large fragment of the sequential instructions that exist in
the JVM. Because it contains more structural information
about the programs, for example tail-recursive functions
encoding goto-based loops in the JVM, it is more suitable
for the development of a program logic, which is a central
piece of our infrastructure. Since it covers almost all
JVM instructions, it can also be used on most plain JVM
code, i.e. code not generated through compilation from
Camelot. The latter opens the possibility for manually, or
semi-automatically, generating certificates for such code.

• JVM bytecode is used for transferring mobile code. There
is a one-to-one correspondence between Grail and our
JVM fragment, and thus Grail code can be reconstructed
out of the JVM class file on the consumer side.

• Isabelle proof scripts are used as the encoding of the
certificate generated by the certifying compiler. We will
show in Section IV that the information required in the
proof script is small, mainly invariants for the functions.

The prototype infrastructure is shown in Figure 1. The left
hand side shows the code producer with a certifying compiler
as its main component. The right hand side shows the code
consumer with a proof checker as its main component.



Fig. 1. A complete proof-carrying-code infrastructure for resources

A. Certifying Compiler.

On the producer side a certifying compiler translates high-
level Camelot programs into the Grail intermediate code and
additionally generates a certificate of its heap consumption.
To construct the latter, a type-system based space inference
is performed, which infers linear upper bounds on the heap
consumption of the Camelot program (see Section III-B).
The result of this inference is translated into a statement
on bounded resource consumption, formalised as a lemma in
the heap space logic for Grail [32]. A close correspondence
between this analysis and the heap space logic, that is used for
encoding the generated certificates, is crucial for the simplicity
of the certificates. In essence the certificate validation phase
can replay the same proof rules on the logic level, that have
been used in the heap space inference on the Camelot level.
The Grail code is processed by an assembler, the Grail de-
functionaliser (gdf), to generate JVM bytecode. This bytecode
is transmitted together with the Isabelle proof script as the
certificate of its heap consumption to the consumer.

B. Automatic inference of heap consumption.

The inference on heap consumption is an implementation
of the static program analysis of Hofmann and Jost [2]. The
method allows the fully automatic determination of upper
bounds on heap space consumption, where the bound may
linearly depend on the input sizes of a program.

This type-based analysis is performed in two steps: in
the first step a standard type derivation is augmented with

constraints in the form of inequalities over rational numbers;
in the second step these constraints are solved using a standard
linear programming package (the lp_solve package [33]).
This approach leads to a very efficient analysis that scales
well for increasingly complex programs.

The key to any feasible program analysis lies in trading
precision for clarity and efficiency in a sensible manner, since
it is generally infeasible to track all possible program states.
The solution employed here is especially radical, since we
abstract the entire machine state into a single, non-negative
rational number, referred to as the potential of the machine
state.

It is important to note that one will never actually compute
this number, the potential, for any actual machine state other
than the initial state. Instead, the analysis only tracks the
relative effect of a program step on the overall potential. The
idea is to assign the potential in a clever way such that for
each instruction in each possible machine state, the change in
potential caused amortises the actual cost for that instruction
at that particular machine state. Thereby, the amortised cost
of an instruction, i.e. the actual cost plus the difference in
potential caused, can become a constant independent of the
machine state, if the potential is cleverly chosen. The cost of
executing a program is then simply the sum of the (constant)
amortised costs plus the potential of the initial state, which is
shown in the examples in Section IV.

The manual application of this technique is known in
complexity theory as the “Amortised Analysis” technique [34].



The significant challenge of applying it lies in finding the
abstraction of the machine state into the potential. This prob-
lem is solved in our system by using linear programming, at
the expense of restricting the potential so that it must depend
linearly on the sizes of the input data (a restriction which is
not inherent to the amortised analysis). The benefit of linear
constraints is of course that highly efficient solvers are readily
available.

An important factor in the embedding of this inference into
the infrastructure is that the potential models the memory free-
list as used in the Camelot compiler (see [30]). The potential
represents an upper bound on the free-list size, expressed in
terms of the existing data objects. In a coarse sense, each data
object is associated by the static analysis with a certain portion
of the free-list. Processing a particular data object may only
use its associated portion of the free-list, although there is no
requirement to track these notions at runtime.

C. Logics

The formal basis for our infrastructure is a hierarchy of
logics (discussed in more detail in [35]).

The heap space logic is a domain-specific derivation system,
tailored to reason about heap consumption. Its rules amount
to Grail-level interpretations of the high-level typing rules in
Camelot. Judgements take the form Γ� e : JU,n, [G] I T,n′K,
relating a (Grail) expression e in some proof context Γ to
its type T (an interpretation of an extended Camelot-type),
initial and final constant heap size descriptions n and n′, and a
Grail-level (linear) interpretation (U,G) of a Camelot typing
context, mapping variables to extended types. The proof rules
over such resource assertions have only simple side-conditions
and therefore simplify proofs performed on this level.

The general purpose program logic can be used to reason
about functional correctness as well as resource consumption.
It has judgements of the form Γ � e : A. Assertions A in this
logic are predicates on the components of Grail’s operational
semantics, namely a variable environment, a pre-heap, a post-
heap, and a result value.

The resource-aware operational semantics is the basis of
our hierarchy and formally models the execution of Grail code
together with its resource consumption. Both a functional and
an imperative semantics, as well as a cost model, have been de-
veloped. We have proven in previous work the correspondence
between the functional and an imperative semantics [31].

Crucial for the safety of our infrastructure is the encoding
of all levels of this hierarchy into the Isabelle/HOL theo-
rem prover. Based on these formalisations we have proven
soundness and completeness of the program logic w.r.t. the
operational semantics, using the Kleymann-Nipkow-Hofmann
technique [35]. We have also proven soundness of the heap
space logic w.r.t. the program logic. Because of these general
soundness results, the operational semantics is the only com-
ponent of the hierarchy that is part of the trusted code base. If
the consumer does not trust the heap space logic, it would be
possible, in principle, to send the soundness proofs together
with the certificate and check these soundness statements, too.

Thus, our formally-grounded design helps to minimise the
trusted code base in a similar style as in the foundational PCC
approach [8].

Certificates are represented as Isabelle/HOL proof scripts,
operating on the highest, namely the resource logic level.
They encode a condensed summary of the analysis result,
additional control flow information, and formal, automatically
generated lemmas. These proof scripts make use of pre-
implemented verification tactics, and thus reduce the size of
the certificate considerably. Since a certificate may (on request)
be expanded to a more foundational guarantee in any of
the lower level formalisms, we combine the advantages of
classic PCC (ease of reasoning) with those of foundational
PCC (formalised soundness of the logic and a small trusted
code base). Another benefit of the higher certificate levels
concerns proof complexity. Each justification of a formalism
with respect to its predecessor hides verification complexity,
for example by instantiating existential quantifiers once and
for all, or by prescribing a particular (in our case: linear)
interpretation of Camelot contexts.

Although the implemented infrastructure restricts the input
language to one with lists and trees as composed data types
and only deals with heap space consumption, we have in the
meantime extended the formalisation of the logic to cover
arbitrary data types, and to deal with resources in a more
abstract way, encoding for example time consumption and
traces of function calls.

D. Validation.

On the consumer side, the Grail code is retrieved via a
disassembler, the Grail functionaliser (gf). The proof checker
is Isabelle/HOL, used in batch mode, to automatically validate
the certificate w.r.t. a resource bound that is specified by the
code consumer. An overall resource statement establishes that
the proven bound is smaller than the specified bound. Once
this has been confirmed the code can be executed safely on
the consumer side.

One basic design decision for our PCC infrastructure was
to minimise the size of the generated certificates and to
accept a comparatively large trusted code base in return.
This is based on our observation that previously reported
certificate sizes pose a considerable problem in the acceptance
of PCC in general. We believe that a large trusted code-
base with a fairly heavy-weight certificate validation phase
is acceptable in large-scale, distributed environments such as
Grid architectures [36], where individual machines are very
powerful already.

IV. WORKED EXAMPLE

The following small example shows key aspects in the
process of analysing and compiling a Camelot program,
transferring it and validating the resource consumption on
the consumer side. The example is an in-place insertion sort
program over a user-defined list structure. The annotation in
the !Nil constructor indicates that this value is represented as
a nil-pointer rather than a pointer to a heap location.



(* define lists of integers *)
type iList = !Nil | Cons of int * iList

(* insert a into the list l *)
let ins a l = match l with

Nil -> Cons(a,Nil)
| Cons(x,t)@_ -> (* NB: destructive match *)

if a < x
then Cons(a,Cons(x,t))
else Cons(x, ins a t)

(* insertion sort (in-place) *)
let sort l = match l with

Nil -> Nil
| Cons(a,t)@_ -> (* NB: destructive match *)

ins a (sort t)

The matches annotated with @_ represent destructive match
operations: the heap cell that was matched against is returned
to the free-list before entering the right-hand side of the Cons
branch. Thus, the application of Cons on the right hand side
can re-use this cell. In the case of ins, this means that only
one additional cell is required in the then branch, and that
no additional space is consumed in the else branch (with any
additional cells available being handed down to the recursive
call). Since the sort function also uses a destructive match
and makes one cell available when calling ins, the overall
heap consumption of sort is 0.

A. Space Inference:

The analysis, as discussed in Section III-B, infers an
annotated type, representing a linear closed cost formula
bounding a program’s memory usage. For example, if the
type of a function processing a list of integers is specified as
(x,List[int,#,y]→ List[int,#,u],v) then executing that function
requires at most x+y · |l| memory cells to compute, where |l|
refers to the length of the input list.

Note that list types are not built into the analysis. Hence the
name of a datatype is followed by a list enclosed in square
brackets and separated by |, showing all argument types for
each constructor. The symbol # recursively stands for the
enclosing type itself, with identical annotation values. Each
constructor carries its own annotation. For another example a
type like Bool[17|4] among the argument types tells us that
executing this function with False requires up to 17 memory
cells, but executing it with True requires only up to 4 cells.

Furthermore, we can also see that the list processing func-
tion shown above returns at least u · |l′|+v heap cells after the
computation, where |l′| denotes the length of the result. These
memory cells may stem from destructive matches on input or
intermediate data, or they are handed down unused from the
memory cells initially requested.

Resource constraints: 26 inequalities in 25 variables.

Solution yields the following enriched types:
ins : 1, int -> List[0|int,#,0] -> List[0|int,#,0], 0;
sort: 0, List[0|int,#,0] -> List[0|int,#,0], 0;

Total processing time: 0.01 seconds.

Shown above is the output of the analysis for the insertion
sort example. Most annotations are zero, so sort does not
require any additional memory resources during computation.
In other words, the list is sorted in place. We also see that
calling ins requires a memory cell regardless of the actual
input. However, this information is only relevant if we would
call ins directly, since the type of sort already accounts for
all subsequent calls. The memory cell requested by ins is
gained from the initial destructive match performed by sort,
as we have seen in the initial discussion of this example.

B. Certificate Generation:

In the next step the certifying compiler emits Grail code,
which is then translated down to JVM code, and also a
certificate. The latter is a fragment of an Isabelle proof script,
but contains only those pieces of information that cannot
automatically be reconstructed on the consumer side. As
a consequence we have light-weight certificates, which are
proven by a heavy-weight proof checking environment. In our
example the main part of the certificate looks like this:

Dominates
InsSort · ins 7→ false InsSort · sort 7→ false f1 7→ false

Spec
InsSort · ins 7→ J{l},1, [{l 7→ L(0)}] I L(0),0K
InsSort · sort 7→ J{l},0, [{l 7→ L(0)}] I L(0),0K

Context
InsSort · ins([a, r2]) 7→ sMST InsSort · ins [a, r2]
InsSort · sort([r1]) 7→ sMST InsSort · sort [r1]
InsSort · ins([v2, l]) 7→ sMST InsSort · ins [v2, l]

The first table, Dominates, carries information about the con-
trol flow of the program for user-defined and automatically
generated functions. It is used to improve the performance
of the certificate check, avoiding a duplication of proofs that
might be needed otherwise. Since our compiler is a whole-
program compiler, it generates only one class (InsSort) for
the user-defined code and all methods inhabit this class. The
second table, Spec, defines a table mapping JVM methods
(represented as class, method pairs) to their resource asser-
tions, carrying information about space consumption. These
resource assertions are directly generated from the annotated
types produced by our space inference. Its components (for
InsSort · ins) encode the set of free variables ({l}), the constant
component of the heap space bound (1), a typing context
mapping all free variables to annotated types ({l 7→L(0)}), the
annotated result type of the function (L(0)), and the constant
component of the free heap space bound after execution (0).
The third table, Context, maps all call sites in the program to
their corresponding resource assertions. To obtain the latter,
the sMST function essentially performs a lookup on the
Spec table. Additionally, the environment in the assertion
is initialised with bindings for the specified arguments. The
structure of this table is fairly schematic and could also be
generated automatically. The essence of the certificate are the
resource assertions in the Spec table.



In total, 3 files are transmitted in a JAR file from the producer
to the consumer:
• An application class file, with the JVM code of the

Camelot program
• A memory management class file, with the JVM code for

explicitly managing a free-list by the Camelot compiler
• A certificate on the heap space consumption of the

program (the Isabelle proof fragment shown above).
It might be surprising to realise how little information needs
to be encoded in this certificate to allow for a validation on
the consumer side. The key step in achieving such a small
certificate is the design of the heap space logic, tailored to the
space inference on the high-level language. Since they share
the overall structure, a single Isabelle tactic can be used for
validation. This tactic uses the same path through the proof tree
that was generated by the inference. In the case of recursive
functions, the inferred heap bounds on the functions are used
as invariants.

The infrastructure has to be secure against man-in-the-
middle attacks, where the transmitted JAR file is intercepted
and the certificate in it is replaced by a fake certificate. We
achieve this by using a formally-grounded proof checker in the
validation phase. If the fake certificate claims a resource bound
that is too low, the proof checker will fail to prove the resource
property with this certificate and hence execution will be
prohibited. On the other hand, if the resource bound is fulfilled
even for the fake certificate, validation will succeed and the
code will be allowed to execute on the grounds that the bound
in the certificate is provably met by the transmitted code. Thus,
by only considering the behaviour of the transmitted program,
rather than its authorship, we gain an unforgeable format of
certificates.

C. Certificate validation:

To perform certificate validation on the consumer side, the
Grail code is reconstructed. Furthermore, those components of
the logical certificate that can be reconstructed out of the code
and the transmitted certificate are reconstructed. The latter part
contains the lemmas on the heap consumption, referring to the
values in the Spec table shown above. A theory file combining
these components is then passed to Isabelle/HOL to perform
the check of the certificate.

Several auxiliary lemmas, for example establishing finite-
ness of the context, are proven first. In our example two main
lemmas on the space consumption are proven next: one for
the ins and one for the sort function. These lemmas state
that the bodies of the functions ins and sort fulfil their
specifications in the Spec table. A lemma on Context has
to be proven, stating that this context is strong enough to
prove all method, specification mappings contained in it. In
particular, this means that the context contains entries for all
sets of mutually recursive functions (see [35] for details). The
main theorem that is proven in validating the certificate is
resourceStatement below, which makes a statement of the
overall heap consumption of the program, without referring to
the extended types used in inference and heap space logic:

theorem resourceStatement:
|> InsSort.init(INPUT) : initSpecDA
==> |> LET l1 =InsSort.init(INPUT)

IN InsSort.sort([l1]) END
: % E h hh v p.

ALL n.
h = emptyheap & E = emptyenv &
n = length INPUT -->
HSize hh < int 7

SUCCESS: Resource property proven
Elapsed time: 25.194sec

The code to be proven consists of an initialisation function
init, that transfers the input data structure into the heap,
which is specified as a resource assertion in initSpecDA.
The body is a call to the function of interest: InsSort.sort.
The assertion (after %, which represents a λ) states that
if the execution starts with an empty heap and an empty
environment, and if the input is a list of length n, then the heap
consumption is strictly bounded by 7 heap cells. This upper
bound 7 is specified on the consumer side. The proof of this
overall bound directly builds on the proofs for the resource
assertions of all functions, encoding resource bounds on their
heap consumptions.

As a bigger example we can also certify and validate
heap bounds on a heap-sort algorithm with in-place tree
manipulation. The type inferred for this program is

HeapSort : 0, iList[0|int,#,0] -> iList[0|int,#,0], 0;

yielding the resource assertion Jl,0, [l 7→ L(0)] I L(0),0K. As
before, L(0) encodes the extended type of lists, with the
weight 0 attached to the Cons constructor. Certificate checking
is significantly more complex for this example. The use of
non-empty dominator sets helps to reduce the checking time.

Table I summarises the data on the costs of certificate
generation and validation. Our test machine was a 3.4GHz
Intel Xeon, with 4GB main memory and 2MB cache. The
proof checker is Isabelle 2003, run in batch mode, with Polyml
4.1.3, using a heap image that encodes all rules of the resource
logic. We use a selection of list- and tree-based programs,
named in the first column and sorted by bytecode size. The
sizes of the generated bytecode and certificate, the latter
compressed with gzip, are given in columns two and three,
and the ratio in column four. We observe that for most of the
programs, the size of the certificate is between 21% and 31%,
with the latter value representing the most significant example,
namely heap-sort. Only for the tiny example programs are
the ratios higher. Column five lists the time for compilation
and certificate generation. It is never higher than about half
a second. This demonstrates the strength of our infrastructure
in producing small certificates with low generation overhead.
The final two columns specify the time (in seconds) and
memory footprint (in MB of resident memory) needed at the
consumer side for validating the certificate. Here the overhead
is much higher because we use an entire theorem prover to
perform validation. This adds high constant overhead, as can
be seen by the memory footprint, which is about 20MB even
for small programs. For the heap-sort example we observe



TABLE I
RUNTIME AND MEMORY FOOTPRINT OF CERTIFICATE GENERATION AND VALIDATION

Program Code Certificate Cert size/ Cert. gen. Validation
size (kB) size (kB) Code size time (sec) time (sec) memory (MB)

Clone 0.67 0.54 80.7% 0.03 1.5 21
Mirror 0.87 0.56 64.2% 0.05 2.5 20
Flatten 1.11 0.68 61.2% 0.06 6.0 22
RevApp 2.62 0.57 21.8% 0.12 2.4 23
Twice 2.75 0.64 23.2% 0.13 4.0 26
EvenOdd 2.81 0.62 22.1% 0.13 4.5 24
InsSort 2.87 0.74 25.8% 0.14 9.7 26
Nub 2.95 0.76 25.9% 0.17 6.9 69
Merge 3.32 0.76 22.8% 0.22 11.4 76
HeapSort 4.81 1.49 31.0% 0.52 135.7 190

ca. 2 minutes validation time, consuming 190MB. While such
high costs for validation are a major weakness of our current
implementation, they are not inherent to our approach. Since
we do not use automated proof search during validation, there
is no fundamental obstacle in implementing a stand-alone
proof checker. This would drastically reduce the costs on
the consumer side and further improve the usefulness of our
infrastructure. Also, our main application domain is distributed
systems, with powerful machines on code consumer side. For
embedded systems we do not expect to support on-device
validation, and rather delegate the off-line validation process
to a third party machine.

An on-line demo of our PCC infrastructure, together with
Camelot example programs and a set of exercises can be found
at: http://projects.tcs.ifi.lmu.de/mrg/demo.php

V. SUMMARY AND FUTURE WORK

Our PCC infrastructure achieves a high degree of depend-
ability of distributed systems with mobile code, by attaching
certificates, in the form of condensed formal proofs of bounded
resource consumption, to the JVM code that is transmitted.
By this foundations-driven design, we gain an unforgeable
format of certificates, we are not relying on a trust relationship
between producer and consumer, and we achieve a scalable
system without a centralised verification agency.

Our complete PCC infrastructure contains a certifying com-
piler, which automatically infers linear upper bounds on the
heap consumption of programs in a strict, first-order func-
tional language and generates certificates for bounded heap
consumption. These certificates are then independently and
automatically checked on the consumer side before executing
the program. This infrastructure greatly increases the depend-
ability in large distributed networks, by preventing mobile
code from exhausting available resources. Our technique of
embedding certificates in a theorem prover is flexible enough
to allow a manual generation of certificates where they cannot
be generated automatically (if for example the heap consump-
tion is quadratic) or for other forms of resources.

In continuation of our work on resource analysis, a type
system that encodes heap space consumption for a small
object-oriented language RAJA has been developed [26] and
type checking has been implemented [37]. Refinements of

the resource analysis for predicting stack space have been
developed for a Camelot-like language [25].

Several projects build on the techniques presented here to
apply them to real-world applications. The most ambitious of
these is the Mobius project [38], which aims to provide safety
and security guarantees for Java-enabled mobile devices. This
project has studied a number of foundational PCC techniques,
including a formalisation of the JVM bytecode language
in the Coq proof assistant [39]; type systems for resource
consumption and information flow, and their integration with
program logics [38]; and a technique whereby provably correct
on-device checkers are extracted from Coq developments of
various static analyses [40]. In the context of Grid computation
the ReQueST project [41] focused on scientific applications
involving large databases, which are too large for users to
have individual copies: instead, mobile programs are used to
perform analyses on central databases. The project has ad-
dressed the problem of certifying time and space requirements,
using Java bytecode as source language. The logical basis
has been an executable Coq formalisation of the JVM [42],
obtained through automated code extraction. In the context of
embedded systems the EmBounded project [43] has extended
our resource analysis to the expression layer of Hume, a strict,
higher-order language with algebraic data types. For concrete
embedded systems control and computer vision applications,
this analysis infers good bounds on heap, stack and worst-case
execution time [44].
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