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A Perspective Change via New Notation

Consider the λ-term P = (λyx.x).

Traditional presentations of the simply typed lambda calculus
(STLC) can derive this judgement:

∅ ` P : β → α → α

Instead, we will write such statements like this:

P : (∅ ` β → α → α)

typing

This perspective change will help prevent wrong thinking.

We say the typing t1 = (∅ ` β → α → α) can be assigned to P .
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More Typings for the Example (1)

(Memory from previous overheads)

P = (λyx.x) t1 = (∅ ` β → α → α)

The term P can also be assigned the typing

t2 = (∅ ` γ → γ → γ)

which can be obtained from t1 by a substitution:

S2 = {(α 7→ γ), (β 7→ γ)}

S2(t1) = t2
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More Typings for the Example (2)

(Memory from previous overheads)

P = (λyx.x) t1 = (∅ ` β → α → α)

Another typing for P = (λyx.x) is

t3 = ({z : δ → δ} ` (δ → δ) → δ → δ)

which can be obtained from t1 by a substitution and a weakening:

S3 = {(α 7→ δ), (β 7→ δ → δ)}

W3 = {z : δ → δ}

W3(S3(t1)) = t3
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Introducing Principal Typings
In fact, it turns out that every typing t that can be assigned to
P in STLC can be obtained from t1 by applying some
substitution S and some weakening W .
So t1 is called a principal typing for P .
If t2 = W (S(t1)), then t2 is often called an instance of t1.

STLC has principal typings, i.e., every typable term has one
(see Hindley [1997] for references).

In general, a principal typing in a system S for a term M is a
typing assignable to M which somehow represents all other
typings in S that can be assigned to M .
Part of this talk is about clarifying the “somehow”.

Principal typings turn out to be very useful when finding
types for untyped programs, as the following example shows.
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An Example Problem of Finding Types (1)

Consider these λ-terms:

M = λz.NP

N = λw.w(wz)

P = λyx.x

A bottom-up analysis algorithm Inf for STLC would do this on M :

Inf(M) = Cmbλ(z)

Inf(NP )

= Cmbλ(z)

Cmb@

Inf(N) Inf(P )

The subalgorithms Cmbλ and Cmb@ are used to combine the
results from recursively processing the subterms.
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An Example Problem of Finding Types (2)

(Memory from previous overheads)

M = λz.NP

N = λw.w(wz)

P = λyx.x

Inf(M) =











Cmbλ(z)

Cmb@

Inf(N) Inf(P )











Suppose Inf is designed by a naïve person like me and
Inf(P ) = t2 = (∅ ` γ → γ → γ). What happens?

Typing NP needs a typing for P like t4 = (∅ ` (δ → δ) → δ → δ).

Can Cmb@ figure out from t2 that t4 is also assignable to P?
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An Example Problem of Finding Types (3)

(Memory from previous overheads)

t2 = (∅ ` γ → γ → γ)

t4 = (∅ ` (δ → δ) → δ → δ)

If all we know about a term Q in STLC is that it can be assigned t2,
can we conclude that we can also assign it t4?

No, because here is a term which can be assigned t2 but not t4:

Q = λyx.(λz.x)(λw.wx(wyx))

The types of x and y are forced to be the same by the
applications (wx) and (wy). The term Q differs from P only by the
addition of some constraining subterms which have no
computational effect.
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Principal Typings Solve the Example Problem

(Memory from previous overheads)
N = λw.w(wz)

P = λyx.x

t1 = (∅ ` β → α → α)

t2 = (∅ ` γ → γ → γ)

t4 = (∅ ` (δ → δ) → δ → δ)

Inf(NP ) =

(

Cmb@

Inf(N)Inf(P )

)

Suppose instead of Inf(P ) = t2 we make Inf(P ) = t1, the
principal typing of P . Can Cmb@ deduce that it can legally use t4,
the typing needed for NP?

By principality, t4 = W (S(t1)) for some S and W . Is this enough?

Yes, because for any substitution or weakening X, if M ′ : t is
derivable in STLC, then M ′ : X(t) is also derivable.
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PT Example with Intersection Types (1)

Consider this λ-term:

M = λxyz.x(yz)

In many systems with intersection types, the principal typing of
M is:

t1 = (∅ ` (α → β) → (γ → α) → γ → β)

Another:

t2 = (∅ ` ((α1∩α2)→(δ×δ))→((γ1→α1)∩(γ2→α2))→(γ1∩γ2)→(δ×δ))

There is an expansion E and a substitution S such that
t2 = S(E(t1)) (see van Bakel [1995] for references).

Other operations used in obtaining other typings from the
principal typing in systems with intersection types include
coverings and liftings.
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PT Example with Intersection Types (2)

(Memory from previous overheads)

M = λxyz.x(yz)

t1 = (∅ ` (α → β) → (γ → α) → γ → β)

t2 = (∅ ` ((α1 ∩ α2) → (δ × δ))

→ ((γ1 → α1) ∩ (γ2 → α2))

→ (γ1 ∩ γ2) → (δ × δ))

The example may be clearer in a system with expansion
variables [Kfoury and Wells, 1999]:

M ′ = λxyz.x(G(y(Fz)))

t′1 = (∅ ` ((Gα) → β) → (G((Fγ) → α)) → (G(Fγ)) → β)

S′ = {F1 7→ �, F2 7→ �, G 7→ � ∩ �, β 7→ δ × δ}

Then t2 = S′(t′1). Expansion and substitution are integrated.
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Confusion in the Community

There is enormous confusion in the research community about
principality.

Examples include:

Claims that the Hindley/Milner (HM) system
[Damas and Milner, 1982] does not have principal typings
using the syntactic notion of instance via substitution. These
are erroneous because the various systems of intersection
types have principal typings, but not via just substitution.

A recent workshop paper titled “ML has Principal Typings”.
This talk will later prove the opposite.

A paper with “principal” in the title currently submitted by a
good researcher to a major conference with false claims:

Claim: All typings for a term M in STLC are obtained from
its principal typing using only substitution.

Claim: In HM when M : (Γ ` τ), the type τ is principal for
M iff τ is a subtype of any type τ ′ such that M : (Γ ` τ ′).
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Technical Definitions
Let the metavariable S range over type systems.

Let S B M : t mean M : t is derivable by the rules of S, in which
case the system S assigns the typing t to the term M .

TermsS(t) = {M S B M : t }.

Typings
S
(M) = { t S B M : t }.

Now a new ordering on typings is defined. Let t1 ≤S t2 mean
TermsS(t1) ⊆ TermsS(t2), in which case the typing t1 is at least as
strong as t2.
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Observations on Systems with PTs

The following holds for each system S with principal typings that I
know.

In S, each typable term M can be assigned a typing t which is
principal for M in the sense that for every other typing t′

assignable to M , there exist operations O1, . . ., On such that
t′ = On(· · · (O1(t)) · · · ), and
for any term N , if S B N : t, then S B N : ti where
ti = Oi(· · · (O1(t)) · · · ) for 1 ≤ i ≤ n.

For some (but not all) systems a stronger and simpler statement
about the operations holds.

Observation: If t is principal for M , then t ≤S t′ for every
t′ ∈ Typings

S
(M).

Principal Typings Demystified – p.14/23



Observations on Systems with PTs

The following holds for each system S with principal typings that I
know.

In S, each typable term M can be assigned a typing t which is
principal for M in the sense that for every other typing t′

assignable to M , there exist operations O1, . . ., On such that
t′ = On(· · · (O1(t)) · · · ), and
for any term N , if S B N : t, then S B N : ti where
ti = Oi(· · · (O1(t)) · · · ) for 1 ≤ i ≤ n.

For some (but not all) systems a stronger and simpler statement
about the operations holds.

Observation: If t is principal for M , then t ≤S t′ for every
t′ ∈ Typings

S
(M).

Principal Typings Demystified – p.14/23



Observations on Systems with PTs

The following holds for each system S with principal typings that I
know.

In S, each typable term M can be assigned a typing t which is
principal for M in the sense that for every other typing t′

assignable to M , there exist operations O1, . . ., On such that
t′ = On(· · · (O1(t)) · · · ), and
for any term N , if S B N : t, then S B N : ti where
ti = Oi(· · · (O1(t)) · · · ) for 1 ≤ i ≤ n.

For some (but not all) systems a stronger and simpler statement
about the operations holds.

Observation: If t is principal for M , then t ≤S t′ for every
t′ ∈ Typings

S
(M).

Principal Typings Demystified – p.14/23



A New System-Independent Definition

A typing t is principal for M in system S iff
S B M : t and
S B M : t′ implies t ≤S t′.

Is this the right definition?

All typings called principal by earlier definitions are principal
by this definition.

t ≤S t′ exactly when an analysis algorithm can correctly
replace a typing t inferred for a term M by t′ without
inspecting M again.

If t is principal for M , then t is minimal in Typings
S
(M), so an

analysis algorithm possessing t has the mathematical
potential to infer any typing for M in a larger context.
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Remarks on Principal Typings for Analysis
If a type analysis algorithm possesses a principal typing in
system S for a term M , then it can never gain any more
information by reanalyzing M in system S.

Principal typings allow compositional type analysis, where
analyzing a fragment uses only the results for its
subfragments, which can be analyzed independently in any
order.

Compositional analysis helps with separate compilation and
modularity and with making a complete/terminating analysis
algorithm.
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Principality in the Hindley/Milner System?

There is much confusion about principality in HM. Here is the
property that HM actually has.

A typing t is a Γ-typing iff
t = (Γ′ ∪ S(Γ) ` τ), and
Γ′, S, and τ do not mention “∀”.

A term M is Γ-typable iff HM B M : t for some Γ-typing t.
A typing t is Γ-principal for M iff

HM B M : t,
t is a Γ-typing, and
if t′ is a Γ-typing for M , then t′ = W (S(t)) for some
weakening W and substitution S (W and S can not mention
“∀” by the condition above).

Principality for HM: If M is Γ-typable, there is a Γ-principal t for M .
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HM Does Not Have Principal Typings (1)

A counterexample is the term (xx).

Suppose HM B (xx) : t where t = (Γ ` τ). It will be proven that t is
not principal for (xx). The strategy is to find t′ and M such that:

HM B (xx) : t′

HM B M : t

HM 7 M : t′

First the typing t′ of the counterexample is defined. Let
(∀~α.σ) = Γ(x) where σ does not mention “∀”. Let σ′ = ∀.(σ → β)
for fresh β. Let Γ′ = {x:σ′}. Choose τ ′ arbitrarily. Let
t′ = (Γ′ ` τ ′).

Easy: HM B (xx) : t′.

So t′ is another typing for (xx), but it will be seen that t �HM t′.
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HM Does Not Have Principal Typings (2)

Some useful auxiliary machinery:

Let K = (λxy.x).

To force identical derived result types for two subterms:
Let Unify(N,N ′) = (λxy.y(xN)(xN ′)) for fresh x, y.

To measure the length of the leftmost path in a type viewed
as a tree: Let LLen(α) = 0, LLen(ρ → ρ′) = 1 + LLen(ρ), and
LLen(∀α.ρ) = LLen(ρ).

To have a term whose derived result type must have a fixed
LLen value: Let y1, y2, . . . be fresh. Let FixLLen(0) = c for
base type constant c. Let
FixLLen(i + 1) = (λx.K yi+1 Unify(x, FixLLen(i))) for fresh x.

Easy: If HM B FixLLen(i) : (Γ̂ ` τ̂ ), then LLen(τ̂ ) = i.
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HM Does Not Have Principal Typings (3)

(Memory from previous overheads)

HM B (xx) : t t = (Γ ` τ) Γ(x) = ∀~α.σ

HM B (xx) : t′ t′ = (Γ′ ` τ ′) Γ′ = {x:σ′}

σ′ = ∀.(σ → β)

Now the term M of the counterexample is defined. Let
k = LLen(Γ(x)). Let M = K(xx)(λy1 . . . yk.x FixLLen(k − 1)).

Not hard: HM B M : t.

The finale: HM 7 M : t′, because LLen(Γ′(x)) = k + 1 and can not
shrink by instantiation to the needed k to allow typing the
subterm (x FixLLen(k − 1)).

Therefore, t �HM t′ and t is not a principal typing in HM for (xx).
Because t is arbitrary, (xx) has no HM-principal typing.
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Implications of HM’s Lack of PTs

It is not wrong that HM does not have principal typings. It just
means an HM analysis algorithm must do one of these:

Be incomplete (not finding typings for some typable terms).

Be noncompositional (not strictly bottom-up). For example,
the W algorithm for HM [Damas and Milner, 1982] is
noncompositional because for (let x = M in N) it first
analyzes M and then uses the result in analyzing N .

Not use HM typings for intermediate results. E.g., the principal
typing of (xx) in the Chap. 1 system of Damas [1985]:

({x:α, x:α → β} ` β)

This is essentially intersection types, i.e.:

({x:α ∩ (α → β)} ` β)

Essentially the same was done by Shao and Appel [1993]
and Bernstein and Stark [1995].
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System F Does Not Have Principal Typings
System F [Girard, 1972; Reynolds, 1974] can be presented
as a Curry-style system which assigns typings to pure
λ-terms [Leivant, 1983].

As for HM, I have proven that (xx) has no principal typing.

As for HM, the proof works by showing for each
t ∈ Typings

F
(xx) there is another t′ ∈ Typings

F
(xx) and a

term M ∈ TermsF(t) \ TermsF(t
′), thus proving t is not

principal.

Unlike for HM, the term M makes one dimension of a type too
small for use with t′ without relying on a ground-type
constant but instead uses methods of Wells [1999].
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Conclusions
A principal typing for M in S is a typing t which represents all
other typings for M in S.
This is now characterized precisely by requiring that t ≤S t′

for every other typing t′ assignable to M .

The existence of principal typings for a system S allows the
possibility of an analysis algorithm which is complete, is
compositional, and uses S-typings for intermediate results.

Unfortunately, neither HM nor F have principal typings.
Because these systems are commonly used as the basis of
other type systems, this has wide implications.

If principal typings are needed, one can often obtain them by
adding intersection types.
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d’Etat, Université de Paris VII, 1972.

J. Roger Hindley. Basic Simple Type Theory, volume 42 of

Cambridge Tracts in Theoretical Computer Science. Cam-

bridge University Press, 1997.

Assaf J. Kfoury and J. B. Wells. Principality and decidable type

inference for finite-rank intersection types. In Conf. Rec.

POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., pages

161–174, 1999. ISBN 1-58113-095-3.

Daniel Leivant. Polymorphic type inference. In Conf. Rec. 10th

23-1

http://iml.univ-mrs.fr/~girard/
http://www-maths.swan.ac.uk/staff/jrh/
http://www.cs.bu.edu/~kfoury/
http://www.cee.hw.ac.uk/~jbw/
http://www.cs.indiana.edu/~leivant


Ann. ACM Symp. Princ. of Prog. Langs., pages 88–98, 1983.

ISBN 0-89791-090-7.

J. C. Reynolds. Towards a theory of type structure. In Colloque

sur la Programmation, volume 19 of LNCS, pages 408–425,

Paris, France, 1974. Springer-Verlag.

Zhong Shao and Andrew Appel. Smartest recompilation. In

Conf. Rec. 20th Ann. ACM Symp. Princ. of Prog. Langs.,

1993.

Steffen J. van Bakel. Intersection type assignment systems.

Theoret. Comp. Sci., 151(2):385–435, 27 November 1995.

J. B. Wells. Typability and type checking in the second-order

λ-calculus are equivalent and undecidable. In Proc. 9th Ann.

IEEE Symp. Logic in Comp. Sci., pages 176–185, 1994.

ISBN 0-8186-6310-3. Superseded by Wells [1999].

J. B. Wells. Typability and type checking in System F are equiv-

alent and undecidable. Ann. Pure Appl. Logic, 98(1–3):111–

156, 1999. Supersedes Wells [1994].

23-1

http://www.cs.cmu.edu/~jcr/
http://theory.doc.ic.ac.uk/~svb/
http://www.cee.hw.ac.uk/~jbw/
http://www.cee.hw.ac.uk/~jbw/

	A Perspective Change via New Notation
	More Typings for the Example (1)
	More Typings for the Example (2)
	Introducing Principal Typings
	An Example Problem of Finding Types (1)
	An Example Problem of Finding Types (2)
	An Example Problem of Finding Types (3)
	Principal Typings Solve the Example Problem
	PT Example with Intersection Types (1)
	PT Example with Intersection Types (2)
	Confusion in the Community
	Technical Definitions
	Observations on Systems with PTs
	A New System-Independent Definition
	Remarks on Principal Typings for Analysis
	Principality in the Hindley/Milner System?
	HM Does Not Have Principal Typings (1)
	HM Does Not Have Principal Typings (2)
	HM Does Not Have Principal Typings (3)
	Implications of HM's Lack of PTs
	System F Does Not Have Principal Typings
	Conclusions

