Shape Typesfor Ambientswith
Communication Dependencies

Torben Amtoft and Joe Wells

Heriot-Watt University

Shape Types for Ambients with Communication Dependencies — p.1/17

Ambient Calculi

The Ambient Calculus is a process calculus designed by Cardelli
& Gordon, and later extended and modified by many others, to
model these notions:

® Location: All processes are located in ambients which can
be nested, forming a tree.

® Moblility: Ambients can move, making the tree dynamic.

® Communication: Processes that are “close” to each other
can exchange values.

Useful
|_osgics,
Types,
Rewriting, and their

A utomation)) _
Shape Types for Ambients with Communication Dependencies — p.2/17

Example Rewr it

e Sequence
q

P1
AN [(2)*.z[out p;.0] | (p1,7)".0

in ¢1.0| (p,v)1.in p.(v)!.0

a1 [p1[(2)* aout p1-0] | (p1,7)*.0] | g[in 1.0] (p,v)".in p.(v)".0]

P1

q

h | (2)*.x[out p;.0] | (p1,7)".0 [

(p,v)1.in p.(v)'.0]

P1 q
D [(=) z[out p1.0] | [in pr.(r) 1.0 |
q1
[P1 ™) r D1 ~
q1 N q T F
(z)*.z|out p1.0] | (1.0 I [out 1.0) D
Useful

|_osgics,
T)&)Z;’/riting, and their q:l pl[q | IE—] T D

A utomation

Shape Types for Ambients with Communication Dependencies — p.3/17

The Language Formalism

We use the extension of Boxed Ambients with open.

A€locs == x| T|]a
MeExp == a | c|ina | outa | opena | € | My.Ms
PQ,ReProc == 0| P, I P ‘ |P ‘ (VCL).P

| M.P | a[P] | (@*.P | (M) .P
The semantics are defined by rewrite rules such as:
bl(a@)!.P| R | (M)*.Q — b[P[d:= M]|R]|Q
Substitution may not always be well-defined:
(ina)la :=out b] (bla.0])|a :=outc] (alinb])|a:= €

Usefu A type system should ensure at least well-definedness.

|_osgics,
Types,
Rewriting, and their

A utomation)) o)
Shape Types for Ambients with Communication Dependencies — p.4/17

Previous Type Systems

Remember our example:

q1[{p1,7)".0| p1[(z)".z[out p1.0]]]
| qlin @1.0] (p,v)".in p.{v)".0]

This can be typed by the system for Boxed Ambients (in the spirit
of Cardelli & Gordon’s original) because in each ambient the
“topic of conversation” is well-defined (for each arity and
direction):

type of v,z : Ty = Amb]shh,shh]
type of p,pl : To, = Amb|T7,shh]
typeof q: T = Amb[shh, T} U (To x T1)]

Note: It is unclear what such type assumptions really mean.
Useful

|_osgics,
Types,
Rewriting, and their

A utomation)) o)
Shape Types for Ambients with Communication Dependencies — p.5/17

Example Needing Poly-mor phism/variance

We extend the previous example process to have two possible
execution paths:

q1[{p1,7)".0| p1[(z)*.z[out p;.0]]] (2 must be a name)
| q2[{p2,0ut p2)*.0| p2[(z)*.7r[z.0]]] (x must be a capability)

| qlin 1.0 [in g2.0| (p,v)".in p.(v)".0]

So the type of v has to be both an ambient name and a
capability. None of the existing type systems allow this.

Key observation: the topic of conversation within ¢ depends on
whether ¢ Is inside ¢; or inside ¢s.

To overcome some of the weaknesses of previous type systems
for ambient calculi, we will now present a new type system.

Useful
|_osgics,
T ypes,
ewriting, and their
R g

A utomation)) o)
Shape Types for Ambients with Communication Dependencies — p.6/17

The New Type System (1)

® The types represent upper bounds on the possible ambient
nesting tree into which a process can evolve, e.g.:

(a[in b.0] |b[0]) : (a[in b] | blalin b]])

#® Types indicate the possible positions of capabilities, inputs,
and outputs.

® The types say nothing about the number of copies of a
feature at a location.

Useful
|_osgics,
T ypes,
ewriting, and their
R g

A utomation)) o)
Shape Types for Ambients with Communication Dependencies — p.7/17

The New Type System (2)

® There are singleton types of ambient names and explicit
dependencies on communication, e.g.:

((2)"2[0] 1 {a)*.0) : (((=)" = 2[0]) | (a)* | a0])

® Sequential composition is replaced by parallel composition,
except for inputs, e.g.:

(p[in g.in .0 |r[0]) : (p[in g|in 7] | #[plin q|in 7«]])

® The types merge distinct ambients at a location with the
same name:

a[T1] | a[T2] = a[T | T3]

Useful
|_osgics,
Types,
Rewriting, and their

A utomation)) o)
Shape Types for Ambients with Communication Dependencies — p.8/17

The New Type System (3)

® Types can be infinitely deep trees, e.g.:
(!a[!in a.O]) : (Ietrec X =alina| X] in X)

® We only consider types that can be given a finite term
representation.

Due to binders, their precise characterization is non-trivial
(Glew, ESOP '02).

#® For our convenience, there is only one sort of types which is
used for both messages (a.k.a. expressions) and processes.

Useful
|_osgics,
Types,
Rewriting, and their

A utomation))
Shape Types for Ambients with Communication Dependencies — p.9/17

Typing for Example Program

q1[{p1,7)".0 | p1[(z)*.z[out p;.0]]] (2 must be a name)
| q2[(p2,0ut p2)™.0 | p2[(x)*.r[x.0]]] (2 must be a capability)
| qlin 1.0]in 2.0 (p,v)".in p.(v)'.0]

|
// \

q q2[{p2,out pa)”]

% [\\> [T

rlout p1] () | ("] | gin p2| out po)'] (z)* r[out po]
zlout p1] ingi]in g r(x]
\
) (p,v)!
ULc_)Ig_ics, V T
Revin, o inp|(v)

Shape Types for Ambients with Communication Dependencies — p.10/17

Subtyping and Closedness

There is an ordering < on types, with 7y < 75 meaning that 77 is
a more precise shape than T5.

Parallel composition (“|") is least upper bound w.r.t. that ordering.

We demand that types are closed under certain rules that
simulate rewriting, such as:

a[T1] |b[Te] < Tand (inb) < Ty = bla[Ty]|To] < T

@ —>T <Tand (IV*'<T = T[a:=T]<T
(implying LHS well-defined)

To compute the closure, approximations are needed.

Useful
|_osgics,
Types,
Rewriting, and their

A utomation _ _ o)
Shape Types for Ambients with Communication Dependencies — p.11/17

Type System

P1 . T1 P2 . T2 . .

very intuitive, as most rules
P1 I P2 . T1 |T2 (y)
uakl (as no multiplicities)
P T P

My 17 My :T5
Mq. My : T3 |T2|action
M:1Ty P:T
M.P:Ty|T

(need to record it's not a name)

® Subject reduction: If P — @ and P : T (thus T closed),
then Q : T.

& Safety: If P: T, then execution of P will never give rise to an

lll-defined substitution.
Useful

|_osgics,
Types,
Rewriting, and their

A utomation _ _ o)
Shape Types for Ambients with Communication Dependencies — p.12/17

Anomaly with open

Consider this term:
alin b.0] | blopen a.0]
Ignoring the closedness requirement, we could give it this type:
alin b] | blopen a]
To close this type, observe that ¢ can go into b:
alin b] | blalin b] | open a]

Then a can be opened:

alin b] | blalin b] | open a | in D]
Now, one copy of b can go into another:

ol |inb]bl...|in]
This repeats forever. To close the type requires a recursive type:
Foss alin b] | letrec X = blalin b] Jopena|inb| X]in X

Types,

Rewriting, and their

A utomation _ _ o)
Shape Types for Ambients with Communication Dependencies — p.13/17

What to do about the anomaly?

® |[gnore it. This is probably okay, but the types would look ugly.

® Avoid using open. As is the recent trend, for instance in
Boxed Ambients.

Note: the ability to dissolve an ambient will be crucial for new
applications in modeling intracellular biological processes.

® Multiplicities. Counting is not enough because the types
“confuse the past with the future”, e.g., the count z must be w
to make this type closed:

(open)" | a[(in 0)']" | (in b)”

#® Union types. Together with multiplicities, union types could
work theoretically, but they are not feasible because each
point in the possible future state space would likely become

Useful a separate type.

|_osgics,
Types,
Rewriting, and their

A utomation _ _ o)
Shape Types for Ambients with Communication Dependencies — p.14/17

Embedding Cardelli & Gordon (POPL '99)

At least for v-free programs, we can translate a typing.
alopen b.(y)™.in .0 | b[{c)*.0]] | c[O]

They assign 771 = Amb|shh] to ¢ and y
They assign 75 = Amb|[T}] to a and b.

A mechanical translation converts the above into this type:

letrec X¢o = in{a,b,c,y}|out{a,b,c,y}|action
Xa = alX1]|b[X1]]e[Xo)
Xo = Xa|Xc|open{cy}
X1 = Xal|Xclopen{a,b}| ()" | {(y)" | (y)* — X1
in XO
Useh! This can probably be extended to Mobility Types

|_osgics,

M eiing mewer(Cardelli & Ghelli & Gordon).

A utomation _ _ o)
Shape Types for Ambients with Communication Dependencies — p.15/17

Other Kinds of Poly-morphic/variant Analysis

#® Shape grammars (Nielson & Nielson, POPL '00)
Returns a set of grammars such that at any step, the current
process can be described by one of these grammars.
Very precise, but potentially also very expensive.

® Kleene Analysis (Nielson & Nielson & Sagiv, ESOP '00)
Using 3-valued logic, estimates the possible shapes.
Trade-offs w.r.t. precision vs. costs.

® Abstract Interpretation (Levi & Maffeis, SAS '01)
Keeps track of the context “one level up”.
Quite precise, and yet “only” polynomial (n").

None of the above-listed work handles communication, so none
can show our example Is safe.

Useful
|_osgics,
Types,
Rewriting, and their

A utomation _ _ o)
Shape Types for Ambients with Communication Dependencies — p.16/17

Conclusion

We presented a type system for a variant ambient calculus that:

® |[s poly-morphic/variant in that an ambient is analyzed
differently for different interactions it enters into.

® Has dependent typing where the analysis tracks which
values are communicated and reacts accordingly.

Future work includes:
#® Writing a terminating algorithm for computing closure.

#® [nvestigating the relationship to other systems. For instance,
It seems possible to embed the types into the logic of
Cardelli & Ghelli (ESOP '01).

#® Evaluating practical usefulness and feasibility.

Useful
|_osgics,
Types,
Rewriting, and their

A utomation _ _ o)
Shape Types for Ambients with Communication Dependencies — p.17/17

