
Useful

Logics,

Types,

Rewriting, and their

Automation

Shape Types for Ambients with
Communication Dependencies

Torben Amtoft and Joe Wells

Heriot-Watt University

Shape Types for Ambients with Communication Dependencies – p.1/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Ambient Calculi
The Ambient Calculus is a process calculus designed by Cardelli
& Gordon, and later extended and modified by many others, to
model these notions:

Location: All processes are located in ambients which can
be nested, forming a tree.

Mobility: Ambients can move, making the tree dynamic.

Communication: Processes that are “close” to each other
can exchange values.

Shape Types for Ambients with Communication Dependencies – p.2/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Ambient Calculi
The Ambient Calculus is a process calculus designed by Cardelli
& Gordon, and later extended and modified by many others, to
model these notions:

Location: All processes are located in ambients which can
be nested, forming a tree.

Mobility: Ambients can move, making the tree dynamic.

Communication: Processes that are “close” to each other
can exchange values.

Shape Types for Ambients with Communication Dependencies – p.2/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Ambient Calculi
The Ambient Calculus is a process calculus designed by Cardelli
& Gordon, and later extended and modified by many others, to
model these notions:

Location: All processes are located in ambients which can
be nested, forming a tree.

Mobility: Ambients can move, making the tree dynamic.

Communication: Processes that are “close” to each other
can exchange values.

Shape Types for Ambients with Communication Dependencies – p.2/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Rewrite Sequence

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

in q1.0 || (p, v)↑.in p.〈v〉↑.0

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

(p, v)↑.in p.〈v〉↑.0

q1

p1

(x)?.x[out p1.0]

q

in p1.〈r〉
↑
.0

q1

p1

(x)?.x[out p1.0]
q

〈r〉↑.0

q1

p1

r

out p1.0

q

q1 p1 rq

q1[p1[(x)?.x[out p1.0]] || 〈p1, r〉
?
.0] || q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

Shape Types for Ambients with Communication Dependencies – p.3/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Rewrite Sequence

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

in q1.0 || (p, v)↑.in p.〈v〉↑.0

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

(p, v)↑.in p.〈v〉↑.0

q1

p1

(x)?.x[out p1.0]

q

in p1.〈r〉
↑
.0

q1

p1

(x)?.x[out p1.0]
q

〈r〉↑.0

q1

p1

r

out p1.0

q

q1 p1 rq

q1[p1[(x)?.x[out p1.0]] || 〈p1, r〉
?
.0] || q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

Shape Types for Ambients with Communication Dependencies – p.3/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Rewrite Sequence

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

in q1.0 || (p, v)↑.in p.〈v〉↑.0

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

(p, v)↑.in p.〈v〉↑.0

q1

p1

(x)?.x[out p1.0]

q

in p1.〈r〉
↑
.0

q1

p1

(x)?.x[out p1.0]
q

〈r〉↑.0

q1

p1

r

out p1.0

q

q1 p1 rq

q1[p1[(x)?.x[out p1.0]] || 〈p1, r〉
?
.0] || q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

Shape Types for Ambients with Communication Dependencies – p.3/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Rewrite Sequence

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

in q1.0 || (p, v)↑.in p.〈v〉↑.0

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

(p, v)↑.in p.〈v〉↑.0

q1

p1

(x)?.x[out p1.0]

q

in p1.〈r〉
↑
.0

q1

p1

(x)?.x[out p1.0]
q

〈r〉↑.0

q1

p1

r

out p1.0

q

q1 p1 rq

q1[p1[(x)?.x[out p1.0]] || 〈p1, r〉
?
.0] || q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

Shape Types for Ambients with Communication Dependencies – p.3/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Rewrite Sequence

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

in q1.0 || (p, v)↑.in p.〈v〉↑.0

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

(p, v)↑.in p.〈v〉↑.0

q1

p1

(x)?.x[out p1.0]

q

in p1.〈r〉
↑
.0

q1

p1

(x)?.x[out p1.0]
q

〈r〉↑.0

q1

p1

r

out p1.0

q

q1 p1 rq

q1[p1[(x)?.x[out p1.0]] || 〈p1, r〉
?
.0] || q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

Shape Types for Ambients with Communication Dependencies – p.3/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Rewrite Sequence

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

in q1.0 || (p, v)↑.in p.〈v〉↑.0

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

(p, v)↑.in p.〈v〉↑.0

q1

p1

(x)?.x[out p1.0]

q

in p1.〈r〉
↑
.0

q1

p1

(x)?.x[out p1.0]
q

〈r〉↑.0

q1

p1

r

out p1.0

q

q1 p1 rq

q1[p1[(x)?.x[out p1.0]] || 〈p1, r〉
?
.0] || q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

Shape Types for Ambients with Communication Dependencies – p.3/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Rewrite Sequence

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

in q1.0 || (p, v)↑.in p.〈v〉↑.0

q1 〈p1, r〉
?
.0

p1

(x)?.x[out p1.0]

q

(p, v)↑.in p.〈v〉↑.0

q1

p1

(x)?.x[out p1.0]

q

in p1.〈r〉
↑
.0

q1

p1

(x)?.x[out p1.0]
q

〈r〉↑.0

q1

p1

r

out p1.0

q

q1 p1 rq

q1[p1[(x)?.x[out p1.0]] || 〈p1, r〉
?
.0] || q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

Shape Types for Ambients with Communication Dependencies – p.3/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The Language Formalism

We use the extension of Boxed Ambients with open.

λ ∈ Locs ::= ? | ↑ | ↓ a

M ∈ Exp ::= a | c | in a | out a | open a | ε | M1.M2

P,Q,R ∈ Proc ::= 0 | P1 || P2 | !P | (νa).P

| M.P | a[P] | (~a)λ.P | 〈 ~M〉λ.P

The semantics are defined by rewrite rules such as:

b[(~a)↑.P || R] || 〈 ~M〉?
.Q −→ b[P [~a := ~M] || R] || Q

Substitution may not always be well-defined:

(in a)[a := out b] (b[a.0])[a := out c] (a[in b])[a := ε]

A type system should ensure at least well-definedness.

Shape Types for Ambients with Communication Dependencies – p.4/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The Language Formalism

We use the extension of Boxed Ambients with open.

λ ∈ Locs ::= ? | ↑ | ↓ a

M ∈ Exp ::= a | c | in a | out a | open a | ε | M1.M2

P,Q,R ∈ Proc ::= 0 | P1 || P2 | !P | (νa).P

| M.P | a[P] | (~a)λ.P | 〈 ~M〉λ.P

The semantics are defined by rewrite rules such as:

b[(~a)↑.P || R] || 〈 ~M〉?
.Q −→ b[P [~a := ~M] || R] || Q

Substitution may not always be well-defined:

(in a)[a := out b] (b[a.0])[a := out c] (a[in b])[a := ε]

A type system should ensure at least well-definedness.

Shape Types for Ambients with Communication Dependencies – p.4/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The Language Formalism

We use the extension of Boxed Ambients with open.

λ ∈ Locs ::= ? | ↑ | ↓ a

M ∈ Exp ::= a | c | in a | out a | open a | ε | M1.M2

P,Q,R ∈ Proc ::= 0 | P1 || P2 | !P | (νa).P

| M.P | a[P] | (~a)λ.P | 〈 ~M〉λ.P

The semantics are defined by rewrite rules such as:

b[(~a)↑.P || R] || 〈 ~M〉?
.Q −→ b[P [~a := ~M] || R] || Q

Substitution may not always be well-defined:

(in a)[a := out b] (b[a.0])[a := out c] (a[in b])[a := ε]

A type system should ensure at least well-definedness.

Shape Types for Ambients with Communication Dependencies – p.4/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The Language Formalism

We use the extension of Boxed Ambients with open.

λ ∈ Locs ::= ? | ↑ | ↓ a

M ∈ Exp ::= a | c | in a | out a | open a | ε | M1.M2

P,Q,R ∈ Proc ::= 0 | P1 || P2 | !P | (νa).P

| M.P | a[P] | (~a)λ.P | 〈 ~M〉λ.P

The semantics are defined by rewrite rules such as:

b[(~a)↑.P || R] || 〈 ~M〉?
.Q −→ b[P [~a := ~M] || R] || Q

Substitution may not always be well-defined:

(in a)[a := out b] (b[a.0])[a := out c] (a[in b])[a := ε]

A type system should ensure at least well-definedness.

Shape Types for Ambients with Communication Dependencies – p.4/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Previous Type Systems

Remember our example:

q1[〈p1, r〉
?
.0 || p1[(x)?.x[out p1.0]]]

|| q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

This can be typed by the system for Boxed Ambients (in the spirit
of Cardelli & Gordon’s original) because in each ambient the
“topic of conversation” is well-defined (for each arity and
direction):

type of v, x : T1 = Amb[shh, shh]

type of p, p1 : T2 = Amb[T1, shh]

type of q : T = Amb[shh, T1 ∪ (T2 × T1)]

Note: It is unclear what such type assumptions really mean.

Shape Types for Ambients with Communication Dependencies – p.5/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Previous Type Systems

Remember our example:

q1[〈p1, r〉
?
.0 || p1[(x)?.x[out p1.0]]]

|| q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

This can be typed by the system for Boxed Ambients (in the spirit
of Cardelli & Gordon’s original) because in each ambient the
“topic of conversation” is well-defined (for each arity and
direction):

type of v, x : T1 = Amb[shh, shh]

type of p, p1 : T2 = Amb[T1, shh]

type of q : T = Amb[shh, T1 ∪ (T2 × T1)]

Note: It is unclear what such type assumptions really mean.

Shape Types for Ambients with Communication Dependencies – p.5/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Previous Type Systems

Remember our example:

q1[〈p1, r〉
?
.0 || p1[(x)?.x[out p1.0]]]

|| q[in q1.0 || (p, v)↑.in p.〈v〉↑.0]

This can be typed by the system for Boxed Ambients (in the spirit
of Cardelli & Gordon’s original) because in each ambient the
“topic of conversation” is well-defined (for each arity and
direction):

type of v, x : T1 = Amb[shh, shh]

type of p, p1 : T2 = Amb[T1, shh]

type of q : T = Amb[shh, T1 ∪ (T2 × T1)]

Note: It is unclear what such type assumptions really mean.

Shape Types for Ambients with Communication Dependencies – p.5/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Needing Poly-morphism/variance

We extend the previous example process to have two possible
execution paths:

q1[〈p1, r〉
?.0 || p1[(x)?.x[out p1.0]]] (x must be a name)

|| q2[〈p2, out p2〉
?
.0 || p2[(x)?.r[x.0]]] (x must be a capability)

|| q[in q1.0 || in q2.0 || (p, v)↑.in p.〈v〉↑.0]

So the type of v has to be both an ambient name and a
capability. None of the existing type systems allow this.

Key observation: the topic of conversation within q depends on
whether q is inside q1 or inside q2.

To overcome some of the weaknesses of previous type systems
for ambient calculi, we will now present a new type system.

Shape Types for Ambients with Communication Dependencies – p.6/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Needing Poly-morphism/variance

We extend the previous example process to have two possible
execution paths:

q1[〈p1, r〉
?.0 || p1[(x)?.x[out p1.0]]] (x must be a name)

|| q2[〈p2, out p2〉
?
.0 || p2[(x)?.r[x.0]]] (x must be a capability)

|| q[in q1.0 || in q2.0 || (p, v)↑.in p.〈v〉↑.0]

So the type of v has to be both an ambient name and a
capability. None of the existing type systems allow this.

Key observation: the topic of conversation within q depends on
whether q is inside q1 or inside q2.

To overcome some of the weaknesses of previous type systems
for ambient calculi, we will now present a new type system.

Shape Types for Ambients with Communication Dependencies – p.6/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Needing Poly-morphism/variance

We extend the previous example process to have two possible
execution paths:

q1[〈p1, r〉
?.0 || p1[(x)?.x[out p1.0]]] (x must be a name)

|| q2[〈p2, out p2〉
?
.0 || p2[(x)?.r[x.0]]] (x must be a capability)

|| q[in q1.0 || in q2.0 || (p, v)↑.in p.〈v〉↑.0]

So the type of v has to be both an ambient name and a
capability. None of the existing type systems allow this.

Key observation: the topic of conversation within q depends on
whether q is inside q1 or inside q2.

To overcome some of the weaknesses of previous type systems
for ambient calculi, we will now present a new type system.

Shape Types for Ambients with Communication Dependencies – p.6/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Example Needing Poly-morphism/variance

We extend the previous example process to have two possible
execution paths:

q1[〈p1, r〉
?.0 || p1[(x)?.x[out p1.0]]] (x must be a name)

|| q2[〈p2, out p2〉
?
.0 || p2[(x)?.r[x.0]]] (x must be a capability)

|| q[in q1.0 || in q2.0 || (p, v)↑.in p.〈v〉↑.0]

So the type of v has to be both an ambient name and a
capability. None of the existing type systems allow this.

Key observation: the topic of conversation within q depends on
whether q is inside q1 or inside q2.

To overcome some of the weaknesses of previous type systems
for ambient calculi, we will now present a new type system.

Shape Types for Ambients with Communication Dependencies – p.6/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (1)
The types represent upper bounds on the possible ambient
nesting tree into which a process can evolve, e.g.:

(

a[in b.0] || b[0]
)

:
(

a[in b] || b[a[in b]]
)

Types indicate the possible positions of capabilities, inputs,
and outputs.

The types say nothing about the number of copies of a
feature at a location.

Shape Types for Ambients with Communication Dependencies – p.7/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (1)
The types represent upper bounds on the possible ambient
nesting tree into which a process can evolve, e.g.:

(

a[in b.0] || b[0]
)

:
(

a[in b] || b[a[in b]]
)

Types indicate the possible positions of capabilities, inputs,
and outputs.

The types say nothing about the number of copies of a
feature at a location.

Shape Types for Ambients with Communication Dependencies – p.7/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (1)
The types represent upper bounds on the possible ambient
nesting tree into which a process can evolve, e.g.:

(

a[in b.0] || b[0]
)

:
(

a[in b] || b[a[in b]]
)

Types indicate the possible positions of capabilities, inputs,
and outputs.

The types say nothing about the number of copies of a
feature at a location.

Shape Types for Ambients with Communication Dependencies – p.7/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (2)
There are singleton types of ambient names and explicit
dependencies on communication, e.g.:

(

(x)?.x[0] || 〈a〉?
.0

)

:
(

((x)? → x[0]) || 〈a〉? || a[0]
)

Sequential composition is replaced by parallel composition,
except for inputs, e.g.:

(

p[in q.in r.0] || r[0]
)

:
(

p[in q || in r] || r[p[in q || in r]]
)

The types merge distinct ambients at a location with the
same name:

a[T1] || a[T2]
.
= a[T1 || T2]

Shape Types for Ambients with Communication Dependencies – p.8/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (2)
There are singleton types of ambient names and explicit
dependencies on communication, e.g.:

(

(x)?.x[0] || 〈a〉?
.0

)

:
(

((x)? → x[0]) || 〈a〉? || a[0]
)

Sequential composition is replaced by parallel composition,
except for inputs, e.g.:

(

p[in q.in r.0] || r[0]
)

:
(

p[in q || in r] || r[p[in q || in r]]
)

The types merge distinct ambients at a location with the
same name:

a[T1] || a[T2]
.
= a[T1 || T2]

Shape Types for Ambients with Communication Dependencies – p.8/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (2)
There are singleton types of ambient names and explicit
dependencies on communication, e.g.:

(

(x)?.x[0] || 〈a〉?
.0

)

:
(

((x)? → x[0]) || 〈a〉? || a[0]
)

Sequential composition is replaced by parallel composition,
except for inputs, e.g.:

(

p[in q.in r.0] || r[0]
)

:
(

p[in q || in r] || r[p[in q || in r]]
)

The types merge distinct ambients at a location with the
same name:

a[T1] || a[T2]
.
= a[T1 || T2]

Shape Types for Ambients with Communication Dependencies – p.8/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (3)
Types can be infinitely deep trees, e.g.:

(

!a[!in a.0]
)

:
(

letrec X = a[in a || X] in X
)

We only consider types that can be given a finite term
representation.
Due to binders, their precise characterization is non-trivial
(Glew, ESOP ’02).

For our convenience, there is only one sort of types which is
used for both messages (a.k.a. expressions) and processes.

Shape Types for Ambients with Communication Dependencies – p.9/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (3)
Types can be infinitely deep trees, e.g.:

(

!a[!in a.0]
)

:
(

letrec X = a[in a || X] in X
)

We only consider types that can be given a finite term
representation.
Due to binders, their precise characterization is non-trivial
(Glew, ESOP ’02).

For our convenience, there is only one sort of types which is
used for both messages (a.k.a. expressions) and processes.

Shape Types for Ambients with Communication Dependencies – p.9/17

Useful

Logics,

Types,

Rewriting, and their

Automation

The New Type System (3)
Types can be infinitely deep trees, e.g.:

(

!a[!in a.0]
)

:
(

letrec X = a[in a || X] in X
)

We only consider types that can be given a finite term
representation.
Due to binders, their precise characterization is non-trivial
(Glew, ESOP ’02).

For our convenience, there is only one sort of types which is
used for both messages (a.k.a. expressions) and processes.

Shape Types for Ambients with Communication Dependencies – p.9/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Typing for Example Program

q1[〈p1, r〉
?
.0 || p1[(x)?.x[out p1.0]]] (x must be a name)

|| q2[〈p2, out p2〉
?
.0 || p2[(x)?.r[x.0]]] (x must be a capability)

|| q[in q1.0 || in q2.0 || (p, v)↑.in p.〈v〉↑.0]

||

q1[〈p1, r〉?] q q2[〈p2, out p2〉
?]

p1[] p2[]

r[out p1] (x)?
q[in p1 || 〈r〉↑] q[in p2 || 〈out p2〉

↑] (x)? r[out p2]

x[out p1] in q1 || in q2 r[x]

(p, v)↑

in p || 〈v〉↑

Shape Types for Ambients with Communication Dependencies – p.10/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Subtyping and Closedness

There is an ordering ≤ on types, with T1 ≤ T2 meaning that T1 is
a more precise shape than T2.

Parallel composition (“||”) is least upper bound w.r.t. that ordering.

We demand that types are closed under certain rules that
simulate rewriting, such as:

a[T1] || b[T2] ≤ T and (in b) ≤ T1 ⇒ b[a[T1] || T2] ≤ T

(~a)? → T ′ ≤ T and 〈~T 〉? ≤ T ⇒ T ′[~a := ~T] ≤ T

(implying LHS well-defined)

To compute the closure, approximations are needed.

Shape Types for Ambients with Communication Dependencies – p.11/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Subtyping and Closedness

There is an ordering ≤ on types, with T1 ≤ T2 meaning that T1 is
a more precise shape than T2.

Parallel composition (“||”) is least upper bound w.r.t. that ordering.

We demand that types are closed under certain rules that
simulate rewriting, such as:

a[T1] || b[T2] ≤ T and (in b) ≤ T1 ⇒ b[a[T1] || T2] ≤ T

(~a)? → T ′ ≤ T and 〈~T 〉? ≤ T ⇒ T ′[~a := ~T] ≤ T

(implying LHS well-defined)

To compute the closure, approximations are needed.

Shape Types for Ambients with Communication Dependencies – p.11/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Subtyping and Closedness

There is an ordering ≤ on types, with T1 ≤ T2 meaning that T1 is
a more precise shape than T2.

Parallel composition (“||”) is least upper bound w.r.t. that ordering.

We demand that types are closed under certain rules that
simulate rewriting, such as:

a[T1] || b[T2] ≤ T and (in b) ≤ T1 ⇒ b[a[T1] || T2] ≤ T

(~a)? → T ′ ≤ T and 〈~T 〉? ≤ T ⇒ T ′[~a := ~T] ≤ T

(implying LHS well-defined)

To compute the closure, approximations are needed.

Shape Types for Ambients with Communication Dependencies – p.11/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Type System

P1 : T1 P2 : T2

P1 || P2 : T1 || T2

(very intuitive, as most rules)

P : T

!P : T
(as no multiplicities)

M1 : T1 M2 : T2

M1.M2 : T1 || T2 || action
(need to record it’s not a name)

M : T0 P : T

M.P : T0 || T

Subject reduction: If P −→ Q and P : T (thus T closed),
then Q : T .

Safety: If P : T , then execution of P will never give rise to an
ill-defined substitution.

Shape Types for Ambients with Communication Dependencies – p.12/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Type System

P1 : T1 P2 : T2

P1 || P2 : T1 || T2

(very intuitive, as most rules)

P : T

!P : T
(as no multiplicities)

M1 : T1 M2 : T2

M1.M2 : T1 || T2 || action
(need to record it’s not a name)

M : T0 P : T

M.P : T0 || T

Subject reduction: If P −→ Q and P : T (thus T closed),
then Q : T .

Safety: If P : T , then execution of P will never give rise to an
ill-defined substitution.

Shape Types for Ambients with Communication Dependencies – p.12/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Type System

P1 : T1 P2 : T2

P1 || P2 : T1 || T2

(very intuitive, as most rules)

P : T

!P : T
(as no multiplicities)

M1 : T1 M2 : T2

M1.M2 : T1 || T2 || action
(need to record it’s not a name)

M : T0 P : T

M.P : T0 || T

Subject reduction: If P −→ Q and P : T (thus T closed),
then Q : T .

Safety: If P : T , then execution of P will never give rise to an
ill-defined substitution.

Shape Types for Ambients with Communication Dependencies – p.12/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Type System

P1 : T1 P2 : T2

P1 || P2 : T1 || T2

(very intuitive, as most rules)

P : T

!P : T
(as no multiplicities)

M1 : T1 M2 : T2

M1.M2 : T1 || T2 || action
(need to record it’s not a name)

M : T0 P : T

M.P : T0 || T

Subject reduction: If P −→ Q and P : T (thus T closed),
then Q : T .

Safety: If P : T , then execution of P will never give rise to an
ill-defined substitution.

Shape Types for Ambients with Communication Dependencies – p.12/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Type System

P1 : T1 P2 : T2

P1 || P2 : T1 || T2

(very intuitive, as most rules)

P : T

!P : T
(as no multiplicities)

M1 : T1 M2 : T2

M1.M2 : T1 || T2 || action
(need to record it’s not a name)

M : T0 P : T

M.P : T0 || T

Subject reduction: If P −→ Q and P : T (thus T closed),
then Q : T .

Safety: If P : T , then execution of P will never give rise to an
ill-defined substitution.

Shape Types for Ambients with Communication Dependencies – p.12/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Type System

P1 : T1 P2 : T2

P1 || P2 : T1 || T2

(very intuitive, as most rules)

P : T

!P : T
(as no multiplicities)

M1 : T1 M2 : T2

M1.M2 : T1 || T2 || action
(need to record it’s not a name)

M : T0 P : T

M.P : T0 || T

Subject reduction: If P −→ Q and P : T (thus T closed),
then Q : T .

Safety: If P : T , then execution of P will never give rise to an
ill-defined substitution.

Shape Types for Ambients with Communication Dependencies – p.12/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Anomaly with open

Consider this term:

a[in b.0] || b[open a.0]

Ignoring the closedness requirement, we could give it this type:

a[in b] || b[open a]

To close this type, observe that a can go into b:

a[in b] || b[a[in b] || open a]

Then a can be opened:

a[in b] || b[a[in b] || open a || in b]

Now, one copy of b can go into another:

. . . || b[. . . || in b || b[. . . || in b]]

This repeats forever. To close the type requires a recursive type:

a[in b] || letrec X = b[a[in b] || open a || in b || X] in X

Shape Types for Ambients with Communication Dependencies – p.13/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Anomaly with open

Consider this term:

a[in b.0] || b[open a.0]

Ignoring the closedness requirement, we could give it this type:

a[in b] || b[open a]

To close this type, observe that a can go into b:

a[in b] || b[a[in b] || open a]

Then a can be opened:

a[in b] || b[a[in b] || open a || in b]

Now, one copy of b can go into another:

. . . || b[. . . || in b || b[. . . || in b]]

This repeats forever. To close the type requires a recursive type:

a[in b] || letrec X = b[a[in b] || open a || in b || X] in X

Shape Types for Ambients with Communication Dependencies – p.13/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Anomaly with open

Consider this term:

a[in b.0] || b[open a.0]

Ignoring the closedness requirement, we could give it this type:

a[in b] || b[open a]

To close this type, observe that a can go into b:

a[in b] || b[a[in b] || open a]

Then a can be opened:

a[in b] || b[a[in b] || open a || in b]

Now, one copy of b can go into another:

. . . || b[. . . || in b || b[. . . || in b]]

This repeats forever. To close the type requires a recursive type:

a[in b] || letrec X = b[a[in b] || open a || in b || X] in X

Shape Types for Ambients with Communication Dependencies – p.13/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Anomaly with open

Consider this term:

a[in b.0] || b[open a.0]

Ignoring the closedness requirement, we could give it this type:

a[in b] || b[open a]

To close this type, observe that a can go into b:

a[in b] || b[a[in b] || open a]

Then a can be opened:

a[in b] || b[a[in b] || open a || in b]

Now, one copy of b can go into another:

. . . || b[. . . || in b || b[. . . || in b]]

This repeats forever. To close the type requires a recursive type:

a[in b] || letrec X = b[a[in b] || open a || in b || X] in X

Shape Types for Ambients with Communication Dependencies – p.13/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Anomaly with open

Consider this term:

a[in b.0] || b[open a.0]

Ignoring the closedness requirement, we could give it this type:

a[in b] || b[open a]

To close this type, observe that a can go into b:

a[in b] || b[a[in b] || open a]

Then a can be opened:

a[in b] || b[a[in b] || open a || in b]

Now, one copy of b can go into another:

. . . || b[. . . || in b || b[. . . || in b]]

This repeats forever. To close the type requires a recursive type:

a[in b] || letrec X = b[a[in b] || open a || in b || X] in X

Shape Types for Ambients with Communication Dependencies – p.13/17

Useful

Logics,

Types,

Rewriting, and their

Automation

What to do about the anomaly?
Ignore it. This is probably okay, but the types would look ugly.

Avoid using open. As is the recent trend, for instance in
Boxed Ambients.
Note: the ability to dissolve an ambient will be crucial for new
applications in modeling intracellular biological processes.

Multiplicities. Counting is not enough because the types
“confuse the past with the future”, e.g., the count z must be ω

to make this type closed:

(open a)1 || a[(in b)1]1 || (in b)z

Union types. Together with multiplicities, union types could
work theoretically, but they are not feasible because each
point in the possible future state space would likely become
a separate type.

Shape Types for Ambients with Communication Dependencies – p.14/17

Useful

Logics,

Types,

Rewriting, and their

Automation

What to do about the anomaly?
Ignore it. This is probably okay, but the types would look ugly.

Avoid using open. As is the recent trend, for instance in
Boxed Ambients.
Note: the ability to dissolve an ambient will be crucial for new
applications in modeling intracellular biological processes.

Multiplicities. Counting is not enough because the types
“confuse the past with the future”, e.g., the count z must be ω

to make this type closed:

(open a)1 || a[(in b)1]1 || (in b)z

Union types. Together with multiplicities, union types could
work theoretically, but they are not feasible because each
point in the possible future state space would likely become
a separate type.

Shape Types for Ambients with Communication Dependencies – p.14/17

Useful

Logics,

Types,

Rewriting, and their

Automation

What to do about the anomaly?
Ignore it. This is probably okay, but the types would look ugly.

Avoid using open. As is the recent trend, for instance in
Boxed Ambients.
Note: the ability to dissolve an ambient will be crucial for new
applications in modeling intracellular biological processes.

Multiplicities. Counting is not enough because the types
“confuse the past with the future”, e.g., the count z must be ω

to make this type closed:

(open a)1 || a[(in b)1]1 || (in b)z

Union types. Together with multiplicities, union types could
work theoretically, but they are not feasible because each
point in the possible future state space would likely become
a separate type.

Shape Types for Ambients with Communication Dependencies – p.14/17

Useful

Logics,

Types,

Rewriting, and their

Automation

What to do about the anomaly?
Ignore it. This is probably okay, but the types would look ugly.

Avoid using open. As is the recent trend, for instance in
Boxed Ambients.
Note: the ability to dissolve an ambient will be crucial for new
applications in modeling intracellular biological processes.

Multiplicities. Counting is not enough because the types
“confuse the past with the future”, e.g., the count z must be ω

to make this type closed:

(open a)1 || a[(in b)1]1 || (in b)z

Union types. Together with multiplicities, union types could
work theoretically, but they are not feasible because each
point in the possible future state space would likely become
a separate type.

Shape Types for Ambients with Communication Dependencies – p.14/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Embedding Cardelli & Gordon (POPL ’99)

At least for ν-free programs, we can translate a typing.

a[open b.(y)?.in y.0 || b[〈c〉?
.0]] || c[0]

They assign T1 = Amb[shh] to c and y

They assign T2 = Amb[T1] to a and b.

A mechanical translation converts the above into this type:

letrec XC = in {a, b, c, y} || out {a, b, c, y} || action

XA = a[X1] || b[X1] || c[X0]

X0 = XA || XC || open {c, y}

X1 = XA || XC || open {a, b} || 〈c〉? || 〈y〉? || (y)? → X1

in X0

This can probably be extended to Mobility Types
(Cardelli & Ghelli & Gordon).

Shape Types for Ambients with Communication Dependencies – p.15/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Embedding Cardelli & Gordon (POPL ’99)

At least for ν-free programs, we can translate a typing.

a[open b.(y)?.in y.0 || b[〈c〉?
.0]] || c[0]

They assign T1 = Amb[shh] to c and y

They assign T2 = Amb[T1] to a and b.

A mechanical translation converts the above into this type:

letrec XC = in {a, b, c, y} || out {a, b, c, y} || action

XA = a[X1] || b[X1] || c[X0]

X0 = XA || XC || open {c, y}

X1 = XA || XC || open {a, b} || 〈c〉? || 〈y〉? || (y)? → X1

in X0

This can probably be extended to Mobility Types
(Cardelli & Ghelli & Gordon).

Shape Types for Ambients with Communication Dependencies – p.15/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Embedding Cardelli & Gordon (POPL ’99)

At least for ν-free programs, we can translate a typing.

a[open b.(y)?.in y.0 || b[〈c〉?
.0]] || c[0]

They assign T1 = Amb[shh] to c and y

They assign T2 = Amb[T1] to a and b.

A mechanical translation converts the above into this type:

letrec XC = in {a, b, c, y} || out {a, b, c, y} || action

XA = a[X1] || b[X1] || c[X0]

X0 = XA || XC || open {c, y}

X1 = XA || XC || open {a, b} || 〈c〉? || 〈y〉? || (y)? → X1

in X0

This can probably be extended to Mobility Types
(Cardelli & Ghelli & Gordon).

Shape Types for Ambients with Communication Dependencies – p.15/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Embedding Cardelli & Gordon (POPL ’99)

At least for ν-free programs, we can translate a typing.

a[open b.(y)?.in y.0 || b[〈c〉?
.0]] || c[0]

They assign T1 = Amb[shh] to c and y

They assign T2 = Amb[T1] to a and b.

A mechanical translation converts the above into this type:

letrec XC = in {a, b, c, y} || out {a, b, c, y} || action

XA = a[X1] || b[X1] || c[X0]

X0 = XA || XC || open {c, y}

X1 = XA || XC || open {a, b} || 〈c〉? || 〈y〉? || (y)? → X1

in X0

This can probably be extended to Mobility Types
(Cardelli & Ghelli & Gordon).

Shape Types for Ambients with Communication Dependencies – p.15/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Other Kinds of Poly-morphic/variant Analysis
Shape grammars (Nielson & Nielson, POPL ’00)
Returns a set of grammars such that at any step, the current
process can be described by one of these grammars.
Very precise, but potentially also very expensive.

Kleene Analysis (Nielson & Nielson & Sagiv, ESOP ’00)
Using 3-valued logic, estimates the possible shapes.
Trade-offs w.r.t. precision vs. costs.

Abstract Interpretation (Levi & Maffeis, SAS ’01)
Keeps track of the context “one level up”.
Quite precise, and yet “only” polynomial (n7).

None of the above-listed work handles communication, so none
can show our example is safe.

Shape Types for Ambients with Communication Dependencies – p.16/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Other Kinds of Poly-morphic/variant Analysis
Shape grammars (Nielson & Nielson, POPL ’00)
Returns a set of grammars such that at any step, the current
process can be described by one of these grammars.
Very precise, but potentially also very expensive.

Kleene Analysis (Nielson & Nielson & Sagiv, ESOP ’00)
Using 3-valued logic, estimates the possible shapes.
Trade-offs w.r.t. precision vs. costs.

Abstract Interpretation (Levi & Maffeis, SAS ’01)
Keeps track of the context “one level up”.
Quite precise, and yet “only” polynomial (n7).

None of the above-listed work handles communication, so none
can show our example is safe.

Shape Types for Ambients with Communication Dependencies – p.16/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Other Kinds of Poly-morphic/variant Analysis
Shape grammars (Nielson & Nielson, POPL ’00)
Returns a set of grammars such that at any step, the current
process can be described by one of these grammars.
Very precise, but potentially also very expensive.

Kleene Analysis (Nielson & Nielson & Sagiv, ESOP ’00)
Using 3-valued logic, estimates the possible shapes.
Trade-offs w.r.t. precision vs. costs.

Abstract Interpretation (Levi & Maffeis, SAS ’01)
Keeps track of the context “one level up”.
Quite precise, and yet “only” polynomial (n7).

None of the above-listed work handles communication, so none
can show our example is safe.

Shape Types for Ambients with Communication Dependencies – p.16/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Other Kinds of Poly-morphic/variant Analysis
Shape grammars (Nielson & Nielson, POPL ’00)
Returns a set of grammars such that at any step, the current
process can be described by one of these grammars.
Very precise, but potentially also very expensive.

Kleene Analysis (Nielson & Nielson & Sagiv, ESOP ’00)
Using 3-valued logic, estimates the possible shapes.
Trade-offs w.r.t. precision vs. costs.

Abstract Interpretation (Levi & Maffeis, SAS ’01)
Keeps track of the context “one level up”.
Quite precise, and yet “only” polynomial (n7).

None of the above-listed work handles communication, so none
can show our example is safe.

Shape Types for Ambients with Communication Dependencies – p.16/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Conclusion
We presented a type system for a variant ambient calculus that:

Is poly-morphic/variant in that an ambient is analyzed
differently for different interactions it enters into.

Has dependent typing where the analysis tracks which
values are communicated and reacts accordingly.

Future work includes:

Writing a terminating algorithm for computing closure.

Investigating the relationship to other systems. For instance,
it seems possible to embed the types into the logic of
Cardelli & Ghelli (ESOP ’01).

Evaluating practical usefulness and feasibility.

Shape Types for Ambients with Communication Dependencies – p.17/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Conclusion
We presented a type system for a variant ambient calculus that:

Is poly-morphic/variant in that an ambient is analyzed
differently for different interactions it enters into.

Has dependent typing where the analysis tracks which
values are communicated and reacts accordingly.

Future work includes:

Writing a terminating algorithm for computing closure.

Investigating the relationship to other systems. For instance,
it seems possible to embed the types into the logic of
Cardelli & Ghelli (ESOP ’01).

Evaluating practical usefulness and feasibility.

Shape Types for Ambients with Communication Dependencies – p.17/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Conclusion
We presented a type system for a variant ambient calculus that:

Is poly-morphic/variant in that an ambient is analyzed
differently for different interactions it enters into.

Has dependent typing where the analysis tracks which
values are communicated and reacts accordingly.

Future work includes:

Writing a terminating algorithm for computing closure.

Investigating the relationship to other systems. For instance,
it seems possible to embed the types into the logic of
Cardelli & Ghelli (ESOP ’01).

Evaluating practical usefulness and feasibility.

Shape Types for Ambients with Communication Dependencies – p.17/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Conclusion
We presented a type system for a variant ambient calculus that:

Is poly-morphic/variant in that an ambient is analyzed
differently for different interactions it enters into.

Has dependent typing where the analysis tracks which
values are communicated and reacts accordingly.

Future work includes:

Writing a terminating algorithm for computing closure.

Investigating the relationship to other systems. For instance,
it seems possible to embed the types into the logic of
Cardelli & Ghelli (ESOP ’01).

Evaluating practical usefulness and feasibility.

Shape Types for Ambients with Communication Dependencies – p.17/17

Useful

Logics,

Types,

Rewriting, and their

Automation

Conclusion
We presented a type system for a variant ambient calculus that:

Is poly-morphic/variant in that an ambient is analyzed
differently for different interactions it enters into.

Has dependent typing where the analysis tracks which
values are communicated and reacts accordingly.

Future work includes:

Writing a terminating algorithm for computing closure.

Investigating the relationship to other systems. For instance,
it seems possible to embed the types into the logic of
Cardelli & Ghelli (ESOP ’01).

Evaluating practical usefulness and feasibility.

Shape Types for Ambients with Communication Dependencies – p.17/17

	Ambient Calculi
	Example Rewrite Sequence
	The Language Formalism
	Previous Type Systems
	Example Needing Poly-morphism/variance
	The New Type System (1)
	The New Type System (2)
	The New Type System (3)
	Typing for Example Program
	Subtyping and Closedness
	Type System
	Anomaly with $mathsf {open}$
	What to do about the anomaly?
	Embedding Cardelli & Gordon (POPL '99)
	Other Kinds of Poly-morphic/variant Analysis
	Conclusion

