
F21MA – 3d Modelling and Animation Flex Project

1

Flex Project – Report

Valerie Gibson

James Wallace

Contents
Executive Summary ... 2

Game Objectives ... 3

Game Play ... 3

Game Development .. 5

Overall Design ... 8

Joint Conclusions ... 11

Individual Report - Valerie Gibson .. 13

Summary of Role ... 13

Module Descriptions ... 13

What I Have Gained .. 16

Individual Report – James Wallace ... 18

Summary of Role ... 18

Module Descriptions ... 18

What I Have Gained .. 21

F21MA – 3d Modelling and Animation Flex Project

2

Part 1

Executive Summary

“Help our hero Thrustbot to make his escape from the land of the Wobblecats, who have all eaten

too many curries and gone insane. Thrustbot must jump, fight and thrust his way out of danger to

make his escape from the crazy Wobblecats. Curses!

As part of their maniacal plan, the Wobblecats have caused the sea levels to rise. Thrustbot must

make his escape without being bounced into oblivion by a Wobblecat or drowned in the sea.”

Thrustbot vs Wobblecat is a 2D platformer game written using Adobe Flex and ActionScript,

executed on the Flash Player. It was a pair project between the two student developers, Valerie

Gibson and James Wallace, for the 3d Modelling and Animation module coursework.

Designed in the old style of everyone’s favourite platform games like Mario and Sonic, you will soon

recapture the magic of those nostalgic moments spent playing on the MegaDrive and SNES in the

early 90s.

Back in those days consoles were bulky and cumbersome, with games that had high price tags and

long development times. Now the games available are only limited by your imagination and taste,

not by the size of your bedroom or wallet.

Enjoy Thrustbot and his adventures anywhere you have access to the web! Throw away vector

graphics and complicated physics engines: reignite your love for the old style platformer game and

help Thrustbot escape!

F21MA – 3d Modelling and Animation Flex Project

3

Game Objectives

The objective of the game is to help Thrustbot make it to the exit at the top of the map. Thrustbot

must not run into enemies, or fall in the water.

Game Play

Controls

The player controls Thrustbot using the arrow keys.

Thrustbot does have an element of speed and friction, so the player must be careful when

controlling him! Tapping the keys makes it easier to handle than holding them down. Controls have

been made deliberately trick to increase the difficulty of the game.

Thrustbot may only jump if he is on the ground; he may change direction mid air but he cannot

jump.

Player

Exit

Enemy

Water

F21MA – 3d Modelling and Animation Flex Project

4

Scoring Points

The player scores points by making it to the exit of the level. Each level has a timer which counts

down to zero; the time it takes to make it to the end is deducted from the time remaining for the

map to give the score.

Bonus points will be awarded for completing the game on more difficult settings, as well as disabling

Wobblecats and keeping lives intact. When wobblecats die, they turn into a big head – bonus points

are awarded for clicking it with the mouse before it disappears.

Game Over

The game will be over when the player has no lives left, falls in the water or the timer for the map

runs out.

Thrustbot carries around a limited number of spare parts which he can use if he encounters a

Wobblecat and fails to defeat it. This gives the player 3 lives. Lives are deducted every time

Thrustbot runs into an enemy. Lives will not be deducted if Thrustbot hits them on the top of the

head from above.

Time
remaining Lives

Water

F21MA – 3d Modelling and Animation Flex Project

5

Game Development

The game was developed using 3 main iterations of prototype, with user feedback at each stage. 2

testers were involved from the first iteration who were selected due to their widely varying

programming and computer knowledge. Tester 1 is a full time SQL developer who is very computer

literate. Tester 2 is an accountant with very little knowledge of computers. This allowed us to

compare the feedback of these 2 differening types of users.

We had an initial brainstorming session where we drew some sketches and came up with ideas for

the game. There were a few possible approaches we considered – ranging from a small game where

the user throws balls at running enemies to a small platformer on one static screen.

Iteration 1

In iteration 1, we made a very simple one-screen game with a few platforms and no animation on

the player or enemies. There were only tiles and a ball which acted as the player and enemy for

demonstration purposes. We did not implement any collision detection or player controls such as

jumping or running.

We came to some design decisions from our own opinions and the views of the testers. The level

would too easy to complete, so we had to find ways to make it more interesting.

Main requirements for the next iteration were:

Task Main Area Priority

Key controls Player High
Friction Player Medium
Add Momentum Player Medium
Collision detection
top/side hit

World/Enemy Medium

Add water hazard World /Enemy High
Add scroll World High

F21MA – 3d Modelling and Animation Flex Project

6

Iteration 2

In this iteration, we implemented a scroll mechanic with a way to create maps very easily. This

allowed us to change the level easily. We decided to use Wobblecat as the enemy, since his bounce

animation fitted it well. We made two versions of enemy – a patrolling one that walks from side to

side and one which jumps up and down.

To make the game more interesting and challenging we added the water effect that chases the

player up the screen. We added friction and movement to the player.

We did not implement any animations on the enemies or players. We used very basic pictures of

the letters “L”, “R” and “U” to determine whether the object was facing left, right or jumping

upwards respectively. This allowed us to implement the mechanics for the jumps, patrols and

movements without actually animating them.

The testers were pleased with these changes, but asked if we could make the controls easier to use

which we did – still leaving them tricky enough to make it interesting.

Requirements for last iteration were:

Task Main Area Priority

Refine jump
mechanic

Player High

Add animations Player High
Add Win Game World Medium
Make collision
detection more
efficient.

World Low

Add player lives World/Player Medium
Add difficulty setting World/All High
Add animations Enemy High
Add scoring Application/World High
Add save score Application Medium
Add Game Over World High
Smoother scrolling World Medium
Add Start screen World High
Help function World High
Add player death Player Medium

Iteration 3

The last iteration was used to polish the game mechanics and fix any bugs.

We added collision detection using a point-based system. We used 4 points – one on the left, right

top and bottom to detect a hit from that direction. All animations were added to the player and

enemies, including one for when the player dies.

F21MA – 3d Modelling and Animation Flex Project

7

All remaining requirements from the coursework project specification were added as well as those

identified in the last iteration. This included the database access; high score display and recording;

help screen and difficulty levels.

To add another dimension to the game, we added a floating head which appears when an enemy is

killed. Players can gain bonus points by clicking it in time before it disappears. The testers thought

this was a very novel idea and good fun.

F21MA – 3d Modelling and Animation Flex Project

8

Main

World

Water

0%

PatrolEnemy

Char

JumpEnemy

Tile

Help

Head

Overall Design

There are 8 main modules in the application:

1. Main

This module is used as an initial splash screen which is shown to the user. It handles:

 Displaying the high scores

 The option to view the help screen

 Starting the game

 Setting the difficulty level

This module communicates with the Help module to display the help screen. It also communicates

with World to send it the difficulty setting chosen by the user.

2. World

This module is used as a central point of communication for all the other modules. It is responsible

for a lot of the game functionality at the top level. It handles:

 The drawing and updating of the map

 Scrolling

 Collision detection between player and objects

 Player life count

 Game Over and winning the game

 Player movement

This module communicates with all the other modules, except Help.

 Instantiating a MapBuilder class which then returns a matrix map used to generate the level

in the game.

 Telling Water to initialise when the game is started.

 Altering Char’s friction and Water’s advancement speed depending on the difficulty level

 Makes a call to the Char module to move the player when a key press is detected

F21MA – 3d Modelling and Animation Flex Project

9

 Monitoring the state of collisions between enemies, the player and the environment every

frame. This involves calls to the player and enemy x and y coordinates.

 Notifying the Char module when the player has died

 Initialising the initial x and y positions of Tile, JumpEnemy and PatrolEnemy when they are

added to the map

 Setting the velocity of the JumpEnemy

 Accessing the image source of tiles when they need to change when a scroll happens

 Setting the walkable property of tiles when the map scrolls

 Telling the Char whether it can jump or not

 Sending the final score of the player back to the Main module to be stored in the database

 Notifying the Main module when a restart is required or the game is over / has been won

3. Char

This module is responsible for the characters motion, animation and properties. It handles:

 Character speed

 Character friction

 Animation of the characters behaviour (walk, jump or die)

It does not communicate with any other module, except calls from World to itself.

4. Water

This module is responsible for the water effect. It handles the speed the water advances and the

advancement of the water up the screen every frame. It does not communicate with any other

module, but receives calls from World which it responds to.

5. Tile

This module represents one tile on the map i.e. one 50*50 square on the screen. It handles the scroll

function when all the tiles must be altered when the player moves up the screen. It does not

communicate with any other module, only responding to the World when called on to do so.

6. PatrolEnemy

This module represents a patrolling enemy, which walks from side to side. It handles:

 Enemy movement speed

 Maximum steps taken by the enemy

 The animation of the patrol

It does not communicate with any other module, except with responses to World.

7. JumpEnemy

This module represents a jumping enemy, which jumps up and down. It handles:

 Enemy jump animation

F21MA – 3d Modelling and Animation Flex Project

10

 Maximum height of the jump

 The speed at which the enemy jumps

 The animation of the jump

It does not communicate with any other module, but receives calls from World.

8. MapBuilder

This is a small helper class that returns the relevant map for a particular difficulty level to World.

9. Help

Displays a splash screen which shows helpful information like how to play the game and score

points. It does not communicate with any other class, and may only be instantiated by Main.

10. Head

The Head module is used to create a floating head that bounces around the screen when an enemy

is killed. The player will receive bonus points if they click with the mouse in time before it

disappears. The module is responsible for:

 Setting the velocity and direction of the head

 Setting the duration the head appears for

 Determining when the head has been clicked

F21MA – 3d Modelling and Animation Flex Project

11

Joint Conclusions

Best Parts of the Game

The best parts of the game are:

 Platformer-based design

 The water effect

 The scrolling mechanism

 The player and enemy animations

Implementing the map-based platformer idea was difficult since it involved many mechanisms to

make it work. This included the scroll mechanism and a lot of collision detection. We had to be

really careful when we were designing the code architecture around this, since too many detections

going on would eat memory and cause all sorts of problems.

The scrolling mechanism helped us to expand the size and complexity of the game, and took a while

to figure out. Many tutorials are writing based on the Flash IDE and it was impossible to use the

material directly. Once we had the general idea, it was up to us to actually implement a solution in

Flex.

Playability

Overall we are very happy with the game. It meets the purpose we set out to achieve – a fun little
platformer in the style of Mario.

The water effect is a really nice way off adding an extra level of complexity to the game. Our testers

really liked it and agreed it was a nice way of making the game more interesting.

The player and enemy animations are taken from 3ds max and add a really nice touch to the game.

It is great to see our models represented in this way and being manipulated in the game. The enemy

death animation was added in at the end and we are really happy with it.

The controls could be handled better and this was touched on by our testers. We could not find a

way to get smooth motion, since the key events seemed to block each other – thus making it

impossible to get a smooth motion. In the end however it was felt the controls were suitable for the

purpose and made the game tricky, which was good.

At the last iteration our testers seemed very pleased with what we had done. Tester 1 said they

found it quite challenging, and Tester 2 said it was not overly complex but difficult enough to be

interesting “in that frustrating way like Mario”.

Project Organisation

While developing the game, we worked on a task list with designated to-do items for each

developer. These were broken down into high, medium and low priorities. We sorted these into a

per-module basis and this allowed us to work individually but keep track of overall progress.

Snapshots of these were shown in the Game Development section.

F21MA – 3d Modelling and Animation Flex Project

12

We used SVN to coordinate our source code. This allowed us to keep track of each other’s progress
and fit modules together easily. We had weekly meetings about the project, and discussed the
current progress and next steps. These meetings were also used to help each other solve any
particularly complex problems we were stuck on.

Possible Improvements

The game could be expanded to use different images for different maps. More objects could be

added to the environment for the player to interact with – like in Mario where there are power ups

and extra lives. Music could be added to the game to add atmosphere, as well as some sound

effects for when the player dies etc.

Evaluation of Software

Flash Player

The flash player offers great applications and rapid development, but lacks access to specific

functions and control of the system that can be found in traditional JavaScript or web applications.

The security sandbox is perhaps too tight.

Flex Builder IDE

As Flex Builder is based on Eclipse, it is really easy for an Eclipse user to pick up and start developing

applications quickly. It is good to have a familiar environment to develop in. However, the drag and

drop components are a wonderful addition which is not standard in eclipse and makes developing

78GUI applications much easier. Auto-completion of mxml is helpful as well as having access to the

mxml and ActionScript apis and intellisense.

However, the apis and compiler still need work – often there may be errors which are not detected

until runtime, or are not detected at all One can spend a long time looking for an error, only to find

it is something as simple as a missing colon.

It was great working with Flex and ActionScript, though it would have been great to see its full

potential in the development of RIA applications rather than animation. It was enjoyable

nonetheless.

3ds Max

This is an excellent piece of software with lots of tools and functionality - far too many to learn in a

short time. It is daunting when approaching it at first, since it is a vast and complex tool. It is very

much focused on artistic modelling unlike the CAD tools which are very much orientated to

representing the real objects rather than making them look pretty.

This was a real joy to learn, after getting over the first stages of understanding the basics and what it

is actually capable of. It is the perfect embodiment of the “a fool with a tool is still a fool” situation –

it is such a highly complex and professional tool and we could only produce very fundamental

objects like cubes etc.

F21MA – 3d Modelling and Animation Flex Project

13

Part 2 – Individual Report

Valerie Gibson – 4th year MEng Computer Science

Summary of Role

I was primarily responsible for implementing the Main, Help, Char and PatrolEnemy and JumpEnemy

modules. This involved many aspects of programming – from animating the still images into the

behaviours of the characters to implementing the initial splash screen and GUI components. I was

also responsible for generating the still images from 3ds max.

I feel I added value to the team by performing well in all of these diverse programming tasks

assigned to me as well as writing my share of the report. I spent many late nights working on the

project and dedicated a lot of time to it. I feel I have really put a lot of effort into the project, both

for this part and the modelling side of things.

Module Descriptions

I tried as far as possible to modify or improve the code to make it my own, helping to further my

own understanding of the content. Since the game is quite different from the course examples

there was a lot of scope for novel or innovative use of the course content.

1. Main

This module is the first screen that is shown to the user. It gives the option to view the help section,

start a new game or look at the high scores. It retrieves all of the scores from the database using a

modification of the PHP script we were provided with – removing the need to use two scripts.

Main
100% VG

World

Water

0%

PatrolEnemy
95%VG
5% MJC

Char
95% VG
5% MJC

JumpEnemy
95% VG
5% MJC

Tile

Help
100% VG Head

F21MA – 3d Modelling and Animation Flex Project

14

Important Functions:

startGame(): starts the game, passing the difficulty chosen by the user to the World module which is

instantiated. The World is added to the display and the focus is set to it.

restart() and restartGameOver() are called by World when the player chooses to reset the game

upon death or winning the game. This is sent back to Main where the game is then restarted. This

then retrieves the newly inserted score along with the other results from the database and displays

it on the screen.

Evolution

This module was not implemented until the final iteration of the application. It was a little tricky to

convert the World module into its own class, separate from the application since it changed many of

the local calls to that of the parent. However, this reduced the complexity and time spent on it in

the early days which was spent doing more important tasks at the time. This module started off as a

simple “Start” button which began the game. The difficulty levels were then added followed by the

high score board and link to the help section.

2. Help

This module shows some helpful information to the user such as the game controls and objectives.

It is invoked by World.

This module was implemented last of all since it was relatively easy to make and simple to connect

to the rest of the application.

3. Char

This module represents the character played by the user. It handles character movement speed,

friction and the animation of the characters behaviour. The character can walk left and right, jump

and also die.

I would like to highlight that although this is my own module, I worked with James when doing the

character motion.

Important Properties

Public variables vy, ay, vx and ax control the velocity and acceleration of the player. These were

taken from the course content. These are accessed by World at various times including during

collision detections and difficulty level setup. Public variable friction is also accessed in a similar

way.

Private variable imgArray contains the images for player walk animation, with the player facing right;

private variable imgArrayLeft are the same images as array above, but flipped horizontally and

private variable imgArrayDeath holds the images for the death animation.

F21MA – 3d Modelling and Animation Flex Project

15

Important Functions

movePlayer() is responsible for the movement of the player across the map. This is called by World

on detecting a left or right arrow key press.

jump() is simply that – it allows the player to jump. This is invoked by a call from World upon

detecting an up arrow key press. If the player is on the ground they may jump, or walk right and left.

However, if the player is in the air they may not then jump again – they may only change direction.

die() performs a death animation when the player is runs out of lives, falls in the water or the timer

runs out.

advance() handles the enter frame function and the animation of the Char. This is invoked by World.

The animation loops over all the frames of the relevant animation. If the player is walking, then the

animation will loop through the imgArray until it reaches then end, then play the animation frames

in reverse.

This function also handles the player motion. It stops the player going above the maximum velocity

specified and progresses their movement to where they should be for the next frame to be shown.

This involves some of the code from the course content.

Evolution

The Char was originally represented by the infamous Blue Ball from the lecture examples. Directions

were shown by adding an “L” or “R” to indicate if the player was facing right or left. This meant that

the programming of motion could be done without worrying about the actual animations.

The proper animations were added in the second iteration, using stills from the 3ds max model files.

The friction and jump mechanics were also added at this time. In the third iteration the hit tests

were made more efficient by using the four-point system mentioned previously.

4. PatrolEnemy

Patrolling enemies walk from side to side on the screen. This module dictates their movement

speed, number of steps taken from side to side and the animation of the patrol.

Important Properties

Public variable bottom is used to detect when the enemy has fallen off the bottom of the screen and

needs to be removed. This is accessed by World when advancing the map when the player scrolls,

and updating the screen.

Private variable imgArray and private variable imgArrayLeft again hold the images for the patrol

animation, facing right and facing left respectively.

Important Functions

init() sets up the arrays with all the images used in the animation. It also adds the on enter frame

event.

F21MA – 3d Modelling and Animation Flex Project

16

doPatrol() is the call-back for the on enter frame event. This cycles through the still frame images

until the last one is reached, then plays it back in reverse. It also determines the position of the

enemy on the screen.

scroll() stops the enemy moving up with the screen when the player invokes a scrolling of the screen.

This is called by World.

Evolution

The enemy started life as a stationary Blue Ball then in the second iteration the animations were

added from 3ds max. The jump motion was also added in this iteration.

5. JumpEnemy

Jumping enemies jump up and down between the ground and a certain height. This module is

responsible for the enemy jump animation, the speed the enemy jump, the animation of the jump

and the maximum height the enemy can jump to.

Important Properties

Public variable bottom is used to detect when the enemy has fallen off the bottom of the screen and

needs to be removed.

Private variable jumpArray holds the images used in the animation of the jump. There is no need to

reverse them, since the animation is played in reverse at the height of the jump.

Important Functions

init() adds all the images to the array and sets event listener for the on enter frame function.

setInitVy() is used to set the initial velocity of the enemy. This is called by World at initialisation.

doJump() cycles through the jump animation for the enemy. Once the maximum frames have been

reached, the animation is played in reverse. This also handles the movement of the enemy, up and

down and where it will be placed on the screen. This is based on some of the code from the course.

scroll() stops the enemy from moving up with the screen as the player advances.

Evolution

First the motions for the enemy were programmed using a basic image which did not change. Then

in the last iteration of the program the actual animations were added from the 3ds Max stills.

What I Have Gained

I have learned a lot about 2D animation and how ActionScript and Flex can be used to make Flash

style games. I gained a great insight into how Flex works and how ActionScript can be used either

from Flex or Flash to make similar kinds of games. Although Flex may not be directly aimed at this

purpose, I feel I learned a lot from the project about the capabilities of the language and about 2D

animation as a whole.

F21MA – 3d Modelling and Animation Flex Project

17

The project pushed my time management and mental stamina to the limit at times, since this terms

workload has been one of the hardest challenges I have faced during university. In this respect, I

feel I grew a little stronger than I was before at pushing myself to work hard and motivate myself.

The project also helped me to gain confidence in my programming skills. I have a very delicate

confidence regarding my own capabilities and I often feel I am not as gifted as many of my peers.

However, though working hard on this project I proved to myself that maybe I am not so hopeless

and I often feel!

The course could be improved by making the coursework requirements clearer – especially for the

report. The marking scheme and project specification did not seem to match up. To get into the

highest bracket one has to do a lot of work for a relatively small application. This is fine, as long as

what is expected is made clear at the beginning. The requirements for the game could also have

been a bit clearer, since many people seemed to believe many different things.

Another improvement would be if the coursework for each section of the course were better

coordinated. They are both extremely large pieces of work and it was unclear that we were

supposed to have finished this part before the second half was given. This lead to a lot of stress!

F21MA – 3d Modelling and Animation Flex Project

18

Part 3 – Individual Report

James Wallace – 4th Year MEng Computer Science

Summary of Role

I programmed the World, Head, Tile, Water and MapBuilder modules. This involved many

programming challenges I had to overcome. This included finding a way to add the water effect

without using a lot of memory; implementing the scrolling function and many hit test detections

which were central to the game play.

I contributed to the project by investigating the way the main game concept would actually work –

how to make it scroll, how to layout the maps and I undertook a lot of research into tile based

games. These were mainly Flash based tutorials. I also did a lot of research into how games like

Mario actually work.

Module Descriptions

1. World

The World is the top level controller for all the other modules. It controls many of the individual

interactions of the other modules. This includes updating the positions of enemies and the player,

detecting collisions, keeping count of the player’s lives, detecting the game end and handling the

scrolling function.

I would like to highlight that although this class is attributed to me, I did cooperate extensively with

Valerie when bringing all the modules together and doing the top level interactions.

Important Properties

Public variable difficulty is written to by Main and sets the difficulty level of the game. This can be

either “easy”, “medium” or “hard” as offered to the user in the ComboBox on the Main screen.

Main

World
100% JW

Water
100% JW

0%

PatrolEnemy

Char

JumpEnemy Tile
100% JW

Help

Head
65% JW
35% MJC

MapBuilder
100% JW

F21MA – 3d Modelling and Animation Flex Project

19

Private variable currentLives determines how many lives the user has. Private variable time stores

the time it takes the user to complete the game. Private variable score holds the players current

score.

Important Functions

startApp() initialises the games and sets up the parameters for the chosen difficulty level. It

instantiates the module MapBuilder which then returns a matrix map used to generate the level in

the game.

keyHandler() is an event handler which detects keyboard inputs from the user. This can either be

the up, left or right arrows. These key inputs are sent to the Char module which then moves the

player on the screen accordingly.

nextFrame() is the event callback that is used to handle each enter frame event. It communicates

with the Char module to tell the player to move to the relevant position that it will be displayed in

the next frame. This method detects if the game is over and if so tells the Char module that the

player has to do the die animation.

buildMap() uses the matrix returned by MapBuilder and constructs the items which are displayed on

the screen initially – this is the first 12 rows high and 16 columns wide. These are all Tile types, from

the Tile module.

addMapRow() handles updating the contents of the screen after a scroll; when the screen scrolls

down more than 50px a new row of tiles must be added to the top of the screen. It interfaces with

JumpEnemy, PatrolEnemy and Char to set their initial conditions.

scroll() allows the player to progress upwards through the game while occupying the same screen

area. This is achieved by moving the map down whenever the player gets above a certain height on

the screen. The module must communicate with the Water, Char, JumpEnemy and PatrolEnemy.

checkCollisionAndRefresh() is the environment watcher function, which checks for collisions

between the children of the canvas. This includes the player, enemies and the environment such as

the tiles and the exit door and requires communication with them accordingly to move them into

the relative positions.

A four-point collision test was implemented on top of the default Flex collision hit test. This allowed

for the detection of the direction that the object got hit, which was important for deducting lives or

adding bonus points.

Evolution

This module grew in size and complexity and new modules were added to connect to it and more

functionality was added. The first iteration allowed a static map to be drawn on the screen and a

basic player to be added. The second iteration had basic hit tests and collisions, as well as scrolling

and a map matrix. The final iteration had more robust hit tests and access to the MapBuilder for

different maps for different difficulty levels as well as player lives and all the other extra functionality

we added to meet requirements from testers and the project specification.

F21MA – 3d Modelling and Animation Flex Project

20

2. Head

This module allows a head to appear when an enemy is successfully killed by a player. The head

spawns at the location of the dead enemy and takes on a random velocity in both x and y. Every 10

frames the velocity is modified via a random number creating a random effect making it hard to

click.

The code for the bounce mechanic is from the course content. The Head module sends an event

back to the World which tells it to increase the players score on mouse click. There is a second event

which is sent to tell the World to delete it when it has reached the maximum number of bounces

before it should be removed.

Important Variables

Private variable bounceCount keeps track of how many bounces the head has already done.

Important Functions

doBounce() is the call-back for the on enter frame function. It handles movement of the head and

boundary conditions like hitting walls. It is also in charge of randomly changing velocity.

mouseHandler() is the call-back for the mouse click event. It lets the World know that the player has

successfully clicked it.

3. Tile

This module represents one tile on the map. Each tile is one 50*50 square which can either be a

platform that the player can run on, but not through, sky, an enemy or the exit.

Important Variables

Public variable walkable is a Boolean value which determines whether the player can walk through

the tile or not. This is very important for the collision detections in the World module, as well as

setting up the map and updating the screen.

Important Functions

scroll() adjusts the position of the tile when the player moves upwards. Tiles must not move up with

the player, they must stay fixed or fall off the screen and be replaced with new ones from the map

matrix dictates.

Evolution

The Tile module appeared in the second iteration for the implementation of the scroll function and

did not really change much from then.

4. Water

This module is responsible for generating the effect of the water advancing up the screen.

F21MA – 3d Modelling and Animation Flex Project

21

Important Functions

init() is called by World when the game is being initialised. It adds the on enter frame event to the

module.

scroll() adjusts the position of the water when the player move sup the screen. It is called by World.

Evolution

At first a plain blue image was overlaid on the screen, in the second iteration of the application. In

the final version I added the wave effect and made it look better.

5. MapBuilder

This ActionScript class is used to return the appropriate map to the World module. This stops the

maps cluttering the screen in the main file. A corresponding map will be returned depending on

whether the user has chosen Easy, Medium or Hard from the Main splash screen ComboBox

dropdown.

This module did not exist until the last iteration, where it was felt that the 3 different difficulty maps

were cluttering up the screen too much.

What I Have Gained

I learned a lot about Flex and ActionScript and how it can be used in animation. I improved my

programming skills and general animation knowledge. I worked very hard on the game and my

personal management skills were improved. I also learned about what Flex is actually capable of,

and the directions that this kind of RIA framework is taking.

The course could be improved by splitting the course into two distinct modules, since the two parts
are very different. The Flex coursework would be better as an individual project – separating the
code percentages and one author per module was extremely difficult.

