

F21 MA1 - 3D Modelling and Animation

Flex Assignment

Joint Report

Scott Straughan & Thomas Clulow

Executive Summary

You may be surprised to hear that 'Dog Jumping Over Obstacles Game!' is not actually as
terrible as it sounds.

Challenge your reactions, timing and wits in this fast-paced side-scrolling jump action
game. You take control of a robot riding on top of a dog and your goal is to stay seated for
as long as possible by jumping clear of any obstacles that may be in your path.

Game Objectives and Play

The object of the game is to stay seated on top of your dog for as long as possible.

Press any key to make the dog and rider jump over oncoming obstacles.

Selecting different difficulty levels will change the frequency of the obstacles.

The score increases as long as you remain seated on your dog.

Colliding with an obstacle ends your current run and your high score is recorded.

Game Development

Requirement was to make a simple flash game which utilises second order motion. The
game also had to include two animated characters each with two different animated
actions. The game also had to include a scoring mechanism which allows the player's high
score to by recorded in a database.

Our initial game idea was to make a 2D side scrolling game in which the player must jump
over obstacles located in the level's background. The user would have been able to
choose between one of two characters to use in the level and selecting a different difficulty
would change the speed at which the background scrolls behind the player.

During the early stages of development, we realised that scrolling the entire game's
background required us to make a large amount of artwork. As a result, we decided to use
a repeating background for the sky to give the impression of forward movement. For
obstacles, we made the game generate a new 'bush' using the same image every time an
obstacle was required.

To provide the different difficulty levels we decided to control the frequency of the random
generation of obstacles rather than the speed of the entire game. This provided more
flexibility for tweaking the difficulty levels based on user testing.

In the final stages of development, it became apparent that the ability to choose which
character to play as was a very under used feature. As a result, we decided it would be
more interesting and creative to make one of the characters ride on the back of the other
character. The animations were tweaked and extra 'bounce' was added to the rider to
make it visually obvious that the characters were not physically attached to each other.

Overall Design

main.mxml
This is main layout file for the game. It contains all the components, images and layouts for
every interface screen in the game. All interface screens are constructed inside a 'canvas'
tag and then stored in a 'ViewStack' element. Switching between interface screens is
accomplished by switching the active canvas in the ViewStack using the provided
ViewStack function.

characterDog.mxml
This is the mxml file for the Dog character. It contains the animation frames for its running
and jumping actions as well its own logic for second order motion. It also contains a 'jump'
function to handle the necessary user interaction.

characterRider.mxml
This is the mxml file for the Rider character. Most of the code is the same as the Dog
character but the logic for second order motion has been tweaked to make it visually
obvious that the two characters are not physically connected. The bounce factor for the
Rider is slightly greater than the Dog and this allows the Rider to 'bounce' on the Dog's
back after every jump.

functions.as
This is the main functions file for the game. It contains various event handlers and also
contains code necessary for the game to function. This code could be contained inside the
main.mxml file but was put into a separate file to maintain readability.

collisions.as
Contains functions used to detect when collisions between objects. Also contains functions
that execute when a collision is detected.

scoring.as
Contains functions used to check the player’s score as well as functions used to store the
high score in a database.

styles.css
Contains style information for the game’s background.

scores.php, CMySQL.php
Contains php functions to post scores to a MySQL database.

main.mxml

characterDog.mxml

characterRider.mxml

styles.css

functions.as

collisions.as

scoring.as

scores.php

CMySQL.php

Joint Conclusions

Overall, the game satisfies all of the requirements set out in the project specification and
the finished game is very similar to the original design concept. Very few compromises
were made.

One of the better aspects of the game is the artwork and the look and feel of the menu
screens. Together these give the game a very polished feel.

One of the aspects of the game that could have been improved upon is the jumping
mechanic. Currently, pressing the jump key simply causes your character to jump a set
distance into the air. Ideally, the height of the jump would be directly proportional to the
amount of time the jump key is held down. This would allow for small ‘hops’ to be made
over single obstacles and longer ‘leaps’ to be made over multiple obstacles.

One final improvement to the game that could be made would be the inclusion of
animations that execute when a collision is detected. Currently, when a collision is
detected, the game immediately ends and the high score screen is displayed. Ideally, the
characters would tumble around the screen for a short period before the game ends.

Individual Report

Scott Straughan

Summary of Role

In general, my role was to create the “background” code that handles the interactions
between the player and the 2D world. The following sub roles were assumed:

• Event Handling

In order for our game to work, we needed a way of checking when specific events occurred in the

game. These events included when a player collided with an obstacle or such things as simple

redrawing the frames to the screens.

• Graphics

Another role was to create the graphics for the game.

• 2D World Dynamics

Our game featured a scrolling background and also the generation of obstacles. I coded this into

the game using previously acquired knowledge of background tiling and timers.

• Scoring System

Also, I integrated the scoring system to allow a player to post as well as review previously created

scores.

• My Character

I also created my character including the frames used to animate it and the functions used to

handle it.

Modules

• collisons.as

this file contained the functionality to check if collisions occurred as well as to take action when a

collision did occur.

• scoring.as

this file contained the functionality to handle the updating of scores to the internet as well as

requesting them.

• functions.as

this file contained some functions written by me, mainly for animating the background and the

generation of obstacles.

• scores.php, CMySQL.php

this contained functions which allowed the score to be stored in a MySQL database.

• characterRider.mxml

the function of this module was to represent my character in the game. The characters main roles

included jumping and riding.

What I Gained from this Module

I gained a lot of experience in how to layout a game allowing two developers to work in
tandem. Originally, I decided a basic layout for the game but it was later change by my
team member after discovering fatal flaws in its structure.

I have also developed an understanding of how difficult it is to perform collision detection.
Our game features a very simple “box” collision detection system but I could see it being
incredibly difficult to detect collisions on objects that are of different shapes accurately.

Individual Report

Thomas Clulow

Summary of Role

In general, my role was to create the “front end” code, the overall structure of the program
and the scoring system. The following sub roles were assumed:

• Interface Layout

Create different screens for tasks such as selecting a difficulty level and recording a high score. All

interface elements were laid out in a single mxml file.

• Scoring System

Also, I integrated the scoring system to allow a player to post as well as review previously created

scores.

• My Character

I also created a 3D model of my character, animated two different actions for it and included all

necessary code for second order motion in the character’s mxml component.

Modules

• main.mxml

this file contains all the interface layout code for every screen in the game’s interface. All screens

are contained in a ViewStack element.

• functions.as

I wrote some basic button press functions in here to allow navigation around the game’s user

interface.

• scoring.as

This file contains functions to record a player’s score, upload it to the database as well as read

existing scores from the database.

• characterDog.mxml

This mxml component contains all code relating to the control and display of my character in the

game.

What I Gained from this Module

This module provided useful experience on what it is like to program as a team. It taught
several useful skills relating to time and resource management as well as numerous
technical skills relating to version control.

Mainly, this coursework task has shown me how difficult it can be to manage one
codebase when it is constantly being updated by multiple programmers, sometimes
simultaneously.

It has also taught me a lot about the mxml format and how user interfaces are put together
using Flex.

