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Abstract

In this paper, we discuss computational architectures that are motivated by connectionist patterns that occur

in biochemical networks, and speculate about how this biochemical approach to connectionism might complement

conventional neural approaches. In particular, we focus on three features of biochemical networks that make

them distinct from neural networks: their diverse, complex nodal processes, their emergent organisation, and the

dynamical behaviours that result from higher-order, self-modifying processes. We also consider the growing use

of evolutionary algorithms in the design of connectionist systems, noting how this enables us to explore a wider

range of connectionist architectures, and how the close relationship between biochemical networks and biological

evolution can guide us in this endeavour.

1 Introduction

A connectionist model is one in which computation, information processing, or intelligence emerges from the activity

of a network of simple, non-linear elements [95, 78, 100]. The study of connectionist models came about through

understanding of how the brain functions at the physical level, and is closely associated with the development of

the field of neural networks. Because of this, in modern computer science the terms are often used synonymously.

However, the brain is not the only naturally-occurring network that carries out functions analogous to computation.

Less well known, but arguably more ubiquitous, are the biochemical networks that underlie the behaviour of biological

cells.

In this paper, we argue that biochemical networks have the potential to add to connectionist knowledge. We do

not argue that biochemical networks and their computational models are somehow better than neural networks, or

vice versa. In biological organisms, neural networks and biochemical networks are different things, and are used for

different purposes. Instead, we note that brains and biochemical networks display different patterns of organisation,
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and these may inform our understanding of connectionism in different ways. Up to now, models of connectionism

have favoured those patterns of organisation that are highly evident in the brain; in this paper, we investigate the

benefits of introducing patterns of organisation that are highly evident in biochemical networks.

In fitting with this special issue on the Frontiers of Natural Computing, this paper is partly a review of recent

results, partly speculation about future avenues of research, and partly a position paper, outlining where we think

the field should move in the future. We begin, in Section 2, with an introduction to connectionism, followed by

a review of neural connectionist architectures in Section 3. This is followed, in Section 4, by an introduction to

biochemical networks and a general discussion of the concept of biochemical connectionism in Section 5. We then

focus on three general features of biochemical networks that distinguish them from neural networks, and discuss how

these features might inform connectionism: the complexity and diversity of their nodal processes (Section 6), their

emergent organisation (Section 7) and the existence of higher-order and self-modifying processes (Section 8). Section

9 concludes.

2 Connectionism

From a computational perspective, connectionism can be understood as the emergence of complex behaviour from

networks of behaviourally simple components. The field developed from cognitive theories about how the brain

computes, particularly the idea that cognition comes about through parallel distributed processing, rather than

traditional sequential models of computation [78]. The early development of connectionism is closely associated

with the work of McCulloch and Pitts, particularly their seminal paper from 1943 [77], where they developed the

idea of an artificial neurone, describing how these could be connected together in both feedforward and recurrent

networks in order to carry out computation, i.e. neural networks. However, as discussed in Teuscher’s [100] detailed

historical account, early ideas of computational connectionism can also be traced back to Turing’s 1948 [103] report

on unorganized networks, in which he outlined the potential for a randomly-connected group of logic gates to carry

out computation. Remarkably, he also suggested the use of an evolutionary algorithm to find networks with specific

computational properties, considerably pre-empting the current wave of activity in this area.

Most existing ideas, discussion and literature on connectionism follow on from the neural models of computation

and cognition developed by McCulloch and Pitts [77], Rosenblatt [93] and others. Despite this, there is plenty

of scope for a wider view of connectionism based around generic networks of computational components. Farmer

[27], for instance, provides a revealing case study of four network-based computational systems—neural networks,

classifier systems, immune networks, and autocatalytic networks—describing how these can be viewed within a generic

mathematical framework, and thereby exposing some of the fundamental connections between these seemingly diverse

computational architectures. A generic connectionist framework is an admirable goal; however, in this article, we

restrict our attention to connectionist architectures motivated by the organisation of biochemical networks. This is
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not merely for reasons of space. Rather, elucidating the function and structure of biochemical networks has been an

important part of modern biological enquiry, giving us a timely opportunity to use detailed knowledge of a naturally

occurring connectionist system to inform computational connectionism.

Biochemical connectionism may be a new term, but the idea of modelling biochemical networks for computational

purposes can trace its roots to diverse early work. Perhaps best known is Kauffman’s [47] use of random Boolean

networks to model genetic networks, although the idea of randomly interconnecting logic elements to achieve complex

behaviour was also explored in earlier work by Walker and Ashby [110] and, as already mentioned, by Turing [103].

Also of relevance to the idea of biochemical connectionism is the computational modelling of metabolic networks,

whether or not this involves an explicit network model. This is most evident in the field of membrane computing

[86], particularly the use of P Systems for computation [117], but also relates to other work in modelling chemical

processes, such as Turing’s models of morphogenesis [104], Ulam and von Neumann’s work on cellular automata [107]

and artificial chemistries [21].

The majority of connectionist models date from a time when understanding of biochemical networks was still

in its infancy. In recent years, there has been considerable progress in mapping the structure of actual biochemical

networks, driven by data produced by various genomics, proteomics, metabolomics, and other -omics projects [46].

There has also been an increasing appreciation of the complexity and diversity of mechanisms used by biochemical

networks, many of which have only been elaborated in recent years, such as RNA interference [79], the central role

of the cytoskeleton [51], and epigenetic processes such as chromatin remodelling [16]. Hence, it seems like a good

time to revisit the field of biochemical connectionism, and consider how contemporary biological understanding may

guide the field, and the wider field of connectionism, in the future.

3 Neural Connectionism

Before we discuss biochemical networks and their potential contribution to connectionist models, it is first insightful

to consider how existing connectionist architectures have been influenced by understanding of the brain.

In general, neural networks model three components of the brain: neurones, neural pathways, and synaptic

plasticity. Neurones are modelled as an activation function that sums or integrates signals received from other

neurones. In earlier neural networks, the activation function was approximated as a step-function, but nowadays

it is most often implemented as a sigmoid, capturing the soft switching behaviour seen in biological neurones. A

prominent exception is spiking neural networks [70], which more accurately model inter-neurone communication as a

spike train rather than a series of fixed activation levels. In this case, activation functions are derived from biological

neurone models, such as the Hodgkin-Huxley model [36].

Neural pathways are the patterns of connectivity that determine signal flow through a neural network. Commonly

used neural network architectures such as the multilayer perceptron (MLP) [80] model neural pathways as a feed-
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forward structure. Whilst feed-forward neural pathways do occur in the brain (notably in the cerebellum [25]), the

use of feed-forward patterns of connectivity in neural networks arguably has more to do with ease of training, rather

than biologically-motivated modelling. More realistic, from a biological perspective, are recurrent neural networks

(RNNs), e.g. the Jordan network [45], which model the presence of feedback within neural pathways. Some neural

network architectures go further than this, modelling actual neural pathways within the human brain, such as the

thalamocortical system [49] and patterns of connectivity within the hippocampus [81]. There are also neural networks

which model non-synaptic communication within the brain: examples include GasNets [43], which capture the action

of diffusive neurotransmitters; and artificial neurone-glia networks [88], which capture the role of glial cells.

Synaptic plasticity is the capacity for synapses to modulate the strength of signals being passed between neurones,

and is considered the primary mechanism for learning within the brain. Within a neural network, synaptic plasticity

is modelled using variable weights on the connections between neurones. These are then progressively updated using

a learning algorithm, until the neural network performs its desired function. Commonly used learning algorithms

include gradient methods such as backpropagation [94], metaheuristics such as evolutionary algorithms [116], and

also mechanisms motivated by learning in the brain, such as Hebbian learning [30]. There are also a number of

neural network architectures that dispense with this conventional view of neural plasticity. Continuous-time RNNs

(CTRNNs) [35], for instance, model the brain as a dynamical system, capturing the idea that learning can occur

through transitions between attractor states. This does not require synaptic plasticity, and a number of authors

have demonstrated how CTRNNs can learn through dynamical transitions alone [115, 102]. Reservoir computers

(e.g. echo state networks [44], liquid state machines [71]) also reflect this dynamical view of neural activity, and only

require training of their linear read-out nodes.

In addition to these low-level models of brain function, there exist a number of neural network architectures that

are based on higher level models of how the brain works. Prominent amongst these are various kinds of associative

memories (e.g. Hopfield networks [41]), and self-organising maps (e.g. Kohonen networks [54]), with the latter

modelling the unsupervised nature of adaptation in the brain.

4 Biochemical Networks

Biochemical networks differ from neural networks in a number of prominent ways. Before we go on to discuss these

differences in detail, we begin with a brief overview of biochemical networks, whose structure and function come

about through interactions between the tens of thousands of different biochemical species present within a biological

cell [52]. These interactions are highly organised both spatially and temporally, and are orchestrated by proteins,

the cell’s active molecular machines, of which there are thousands of different kinds in a human cell [18]. The cell’s

biochemical network, in essence, is the pattern of interactions between these protein-mediated reactions. This, in

turn, can be divided into three interacting components, each with distinct structures, temporal scales, and dynamical
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properties: a genetic network, a metabolic network, and a signalling network.

A genetic network describes the regulatory interactions between genes [10]. A gene is a contiguous region of

DNA which (with some exceptions) encodes the amino acid sequence of a protein. A protein is constructed from

this genetic description through a regulated process of gene expression [55]; in effect, gene regulation is the function

carried out within the nodes of a genetic network. The initial, and most highly regulated, step of this process is the

assembling of a transcription complex at the gene’s transcription start site. This involves the coordinated binding

of a number of different proteins, most importantly RNA polymerase, which actually carries out the transcription.

Since RNA polymerase rarely binds to DNA by itself, it must be assisted by a range of general transcription factors,

resulting in a baseline level of transcription. To further increase the number of protein products (a process called

up-regulation) it must be stabilised by a range of special-purpose transcription factors (activators) which bind to

particular sequences (promoters and enhancers) in the surrounding regions of DNA. It is also possible for special-

purpose transcription factors (repressors) to disrupt the transcription complex, leading to down-regulation of the

gene. Since they are proteins, both activators and repressors must themselves be the products of gene expression.

Consequently, a particular gene will only be expressed in significant quantities if the genes describing its activators

are also expressed, and the genes describing its repressors are not expressed. This pattern of regulatory interactions,

when extended to all genes, forms the cell’s genetic network.

A metabolic network describes the interactions between metabolites, the small biochemicals that are involved

in diverse cellular processes, including energy supply, internal structuring, growth, development and reproduction

[59]. In the relatively low temperature environment of the cell, reactions between metabolites are unlikely to occur.

Instead, a reaction must be catalysed by an enzyme, a type of protein which binds together other chemical species

and guides them through the intermediate stages of their reaction; in effect, these enzyme-mediated reactions are

the functions carried out within the nodes of a metabolic network. When the product of one enzyme-mediated

reaction becomes the substrate of another, a metabolic pathway is formed. This pathway then becomes elongated as

its products or substrates become involved in other enzyme-mediated reactions. Finally, product-substrate sharing

between pathways results in the formation of the cell’s metabolic network. Since enzymes are proteins, their expression

level within a particular cell is determined by the state of that cell’s genetic network. Hence, different cells in the

same organism can contain different metabolic networks, which in turn is the basis of cell specialisation.

A signalling network describes the protein-mediated molecular interaction pathways through which external

signals are delivered to the cell’s internal environment [39]. For the most part, a signal is received by a cell when a

chemical messenger binds to a protein complex present on the cell’s surface. The extracellular receptor propagates

the signal through the cell wall and stimulates the release of small molecules called secondary messengers. These

secondary messengers then diffuse within the cell, where they are bound by spatially-localised effector proteins. Two

common types of effector protein are protein kinases and protein phosphatases, both of which modify other proteins,

typically leading to their activation or deactivation. When the modified protein is an enzyme, this may result in
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Figure 1: The main pathways of interaction between biochemical networks.

the production of new secondary messengers: amplifying the original response, causing a signalling cascade, and

elongating the signalling pathway. Alternatively, it may cause a change to the cell’s metabolic network; or, when the

modified protein is a transcription factor, a change in the cell’s genetic network. Signalling pathways also interact

with each other, either through shared proteins or—when pathways share secondary messengers—through crosstalk,

resulting in cooperative responses with complex spatial and temporal dynamics [50, 61].

The metabolic, genetic and signalling networks have been described, respectively, as the self-organising, self-

reshaping, and self-modifying components of a cell’s biochemical network [74]. It is important to realise that they do

not work in isolation, but are coupled (see Fig. 1). By regulating protein production, the genetic network modifies

the behaviour of both the metabolic and signalling networks. By delivering chemical signals to different subcellular

locations, the signalling network modulates the behaviour of both genetic and metabolic networks. In single-celled

organisms, these interactions allow the cell’s metabolism to be reconfigured for different nutrient environments; in

multicellular organisms, they are the basis of cellular differentiation and morphogenesis.

5 Biochemical Connectionism

There has been a fruitful relationship between the development of connectionist computational architectures and

developments in the understanding of brain structure and function. Certainly there is no reason to believe that this

relationship will not continue to be fruitful as further knowledge about the brain becomes available. What, then, is

the value of exploring the relationship between biochemical networks and connectionism? There are several answers

to this question. First, there is a benefit to having more information about the organisation of complex networks,

and the various -omics projects have led to detailed information about the structure and function of biochemical

networks. Second, we might argue that much of the low-lying fruit in neural understanding has already been picked,

and there is more immediate benefit to exploiting the relatively unexplored synergisms between connectionism and

biochemical networks. Third, and following on from this, we do not have to look far to see patterns of organisation

that occur widely in biochemical networks yet not in the brain, and which appear to underlie a number of important

cellular activities. Fourth, we could argue that, from the perspective of biochemical networks at least, the brain
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Table 1: Characteristics of neural and biochemical networks

Level Characteristic Neural networks Biochemical networks

Node Function types (§6) Mostly homogenous Heterogenous
Interactions (§6.1) Additive Combinatorial
Function complexity (§6.2) Simple Complex

Network Connections (§7) Explicit Implicit
Spatiality (§7.2) Minor role Major role
Coupling (§8.2) First order First and higher order

Structure Evolution (§7.3) Indirect Direct
Self-modification (§8.3) Only through growth Various mechanisms

appears to be a relatively conservative connectionist architecture; biochemical networks arguably provide a wider

pool of inspiration for exploring connectionist architectures.

The idea of deriving computational systems from models of biochemical processes is certainly not new. The

resulting computational systems include in silico models, such as cellular automata [107], membrane systems [86],

Boolean networks [47] and artificial chemistries [6], in vitro processes such as chemical [1] and DNA [2] computers,

and even in vivo approaches, such as the use of a slime mould to control a robot [101]. The application of concepts

from biochemical networks to connectionist architectures is also not new [27, 73], and many of the approaches listed

above can be readily mapped to a connectionist perspective. However, the aim of this paper is not to show how this

can be done, or even to describe these different approaches in detail. Rather, our focus is on general principles of

biochemical networks and how they might contribute to connectionist models as a whole.

Table 1 summarises some of the most evident differences between biochemical networks and neural networks. At

the nodal level, the neurones in the brain are relatively homogenous, interact additively and are individually quite

simple. Biochemical networks, on the other hand, comprise thousands of diverse biochemicals, which interact in a

generally combinatorial fashion, and the resulting nodal processes can be very complex; in Section 6, we explore

how understanding of these kind of nodal processes might inform connectionism. At the network level, the most

prominent difference is the lack of explicit physical interconnections between nodes in a biochemical network, i.e.

there is no analogue of neural axons and synapses. Instead, connectivity emerges from the interactions of individual

biochemicals, each of which is subject to different spatial constraints on its movement. The patterns that result from

this emergent organisation, and the benefits they might have for connectionist architectures, are discussed in Section

7. A further consequence of the relatively unconstrained interactions within biochemical networks is the capacity

for higher-order interactions to occur between both nodes and networks. From a connectionist perspective, these

represent a distinct source of novelty. Section 8 addresses the potential benefits of using higher-order interactions,

and self-modifying processes in general, within connectionist architectures.
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6 Functional Components

In comparison to neural networks, the nodes of biochemical networks are very diverse in terms of their operation,

structure and biological role. From a connectionist perspective, this raises the question of whether there is a benefit

to having heterogeneous processes occurring at the network’s nodes, or from using nodal processes of greater com-

plexity than those seen in neural networks. Whilst this question has not been a focus of research in neural networks,

a number of non-sigmoidal activation functions have been used, and have shown some benefits in terms of learning

speed and generality [24]. Another potential benefit, discussed in [23], is that heterogeneous neural networks would

allow certain computational behaviours to be expressed using relatively small networks. However, a significant barrier

to using heterogeneous or alternative functions in neural computing is the widespread use of gradient-based learning

methods, where there is a dependency between the training algorithm and the network’s transfer functions. In this

respect, the growing use of evolutionary algorithms for training is opening up new avenues in the space of connec-

tionist architectures. Examples include functionally-heterogeneous generalisations of the MLP, such as compositional

pattern-producing networks [97], and process-oriented architectures such as genetic network programming [72].

6.1 Biochemical interactions

The functional activities occurring at a biochemical network’s nodes are a consequence of physical interactions

between biochemicals. These interactions can be modelled in a number of different ways, and in general these models

are different to those used for neural networks (although exceptions include the use of sigmoid kinetics to model

cooperative binding in enzyme-mediated reactions [92]). It is therefore interesting to consider whether models of

biochemical interactions can be usefully applied to connectionist architectures, and what these models might look

like.

There already exists a relatively well-known example of a connectionist architecture modelled upon a biochemical

network: the Boolean network (or Random Boolean Network, RBN) [47]. A Boolean network models a genetic

network as a directed graph, with the vertices representing genes and the edges representing regulatory interactions.

Notably, it models the process of gene regulation using a Boolean function. Given the complexity of the process of

gene expression, this may seem rather simplistic. However, Boolean networks have been shown capable of modelling

the dynamics of biological gene regulatory circuits [3], so clearly Boolean models are sufficient—in some cases, at

least. From a computational perspective, Boolean functions are quite different to the threshold functions commonly

used in neural networks, since they are based on combinatorial rather than merely additive relationships between

variables [118]. In this sense, Boolean functions are individually more expressive than weighted sigmoids. This

suggests that Boolean networks might have advantages for certain computational tasks; the few examples where they

have been applied to computational tasks tend to support this notion [56, 22, 14].

However, as a general-purpose connectionist architecture, Boolean networks do have limitations. For example,
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inputs and outputs must be binary encoded. Assuming these are transferred to/from the system via the expression

states of individual genes, this entails that the network must be at least as large as the bit length of the largest binary-

encoded input or output. Large networks, in turn, are more difficult to induce than small networks. Conversely,

small Boolean networks are limited in their ability to express complex dynamics, since they can only exist in 2N

states, where N is the size of the network. A potential solution to both of these problems is to use continuous-

valued generalisations of Boolean functions. Such models have the added advantage that they can be used to model

quantitative (in addition to qualitative) aspects of real biochemical circuits, an idea that has been explored in a

number of recent papers [113, 32]. In [113], for example, the authors describe a method of transforming Boolean

functions into equivalent ODEs, such that their behaviour is equivalent for concentrations of 0 and 1, but differ for

intermediate values. This approach would, of course, have an impact on the efficiency of a connectionist architecture,

since it would be necessary to simulate ODEs. A more efficient alternative could be to use multi-valued logics rather

than fully-continuous models. In [32], for example, the authors present a method of constructing equivalent multi-

valued logics from Boolean functions, and observe that a 3-valued logic offers important benefits over a Boolean

model in terms of correctly capturing the dynamics of a biological regulatory circuit.

6.2 Dynamical processes

In Section 4, we discussed the formation of a gene transcription complex, noting how its correct placement and

stabilisation depends upon the activities of many different transcription factors. In a complex multicellular organism,

such as a human, a transcription complex can comprise tens of different transcription factors, each an intricate

molecular machine assembled from hundreds or thousands of interacting amino acids [57]. Moreover, the formation

of the transcription complex is just the first stage of the gene expression process. Following this, the gene is copied

into an RNA transcript, edited to remove introns, translated into an amino acid chain, and then folded into a

protein; whilst being subject to further regulation at (and between) all these stages [55]. When considering this

level of complexity, and the ongoing interactions between its component parts, it makes more sense to think of

transcription not as a functional mapping, but as a dynamical process. The same is true of other ‘nodal processes’

within biochemical networks, such as the enzyme-guided transformation of biochemicals, or the assembling of a

signalling module around the tail of a cell surface receptor.

Given the complexity (and, in some cases, our limited understanding) of these processes, it would be challenging

(and perhaps not very useful) to model them accurately. An alternative and more abstract approach, which we

have considered in our work [68, 63], is to place general models of complex, dynamical processes within the nodes

of a connectionist architecture. In particular, we have investigated the utility of non-linear discrete maps for this

purpose. For the most part, these are numerical models of diverse dynamical processes that occur in biological and

other naturally-occurring complex systems; the archetypal example being the logistic map [75], which models ordered

and chaotic regimes that occur in certain models of population growth. A desirable property of discrete maps is
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(a) Control task (b) Sigmoidal network
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(c) Discrete map network
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(d) Discrete map network

Figure 2: Controlling trajectories in the Lorenz system using evolved recurrent networks. (a) The objective is to
control a trajectory so that it moves as fast as possible from the unstable point in the leftmost lobe to the unstable
point in the rightmost lobe (unbroken lines in b-d), where it must then stabilise the trajectory, and then repeat the
task in reverse (broken lines). (b) The best control strategy found using a sigmoidal network. (c) A near-optimal
control strategy used by an evolved discrete map network (d) An example of a more exotic control strategy used by
a discrete map network. Adapted from [63].
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computational efficiency; although capable of expressing complex dynamical behaviours, they are implemented using

simple iterative equations. In our work, we have found that, on average, networks containing discrete maps either

perform better or learn more quickly than the same network architectures containing conventional sigmoidal functions

when applied to a range of computational tasks [65, 63]. Figure 2 shows an example of this, comparing the ability

of sigmoidal and discrete map recurrent networks to solve a complex control task in the Lorenz system. Notably, we

were able to evolve discrete map networks that could solve this task better, and more consistently, than sigmoidal

networks. In particular, we observed that discrete map networks generate much more diverse behaviours, particularly

in the early stages of learning when diversity is most important. In the context of the Lorenz system, this meant

that they were able to generate relatively unusual, but near-optimal, trajectories such as the one shown in Figure 2c,

rather than the more common, slower, trajectories generated by evolved sigmoidal networks (Figure 2b). In effect,

discrete maps appear to provide a ready means of expressing complex dynamics, without requiring the evolution of

a dedicated sub-network of sigmoidal nodes.

6.3 Constructive functions

In general, it is difficult—and perhaps even impossible—to say how a particular nodal model affects the overall

dynamics of a connectionist system. In networks of discrete maps, for example, it has been observed that there is

no obvious relationship between the overall dynamics of the network and the dynamical behaviour of the individual

maps [15]. Furthermore, even if this relationship could be predicted, it is difficult to know what kinds of network

dynamics are appropriate for different computational tasks, and therefore which nodal models would be useful. A

potential solution to this dilemma can be seen throughout biochemical networks: the use of constructive functions.

By constructive, we mean the construction of a functional behaviour through the mutual assembly of complementary-

shaped biomolecules. Examples include the construction of a regulatory function through the mutual assembly of

transcription factors, and the construction of new biochemical species as a product of enzyme-mediated reactions. A

significant consequence of this is that the function of the whole is not determined by the functions of the individual

parts, but rather through their interactions. This, in turn, has the appealing property that novel functions can be

created by the recruitment of new biomolecules to the complex. In computational terms, functions can be induced

by the system as appropriate, rather than having to be predefined.

The idea of using constructive functions in computational systems has been explored by a number of authors

[6, 26, 28]. The key to this approach is to use primitive elements that are sufficiently expressive when assembled into

different composite forms. One source of such primitives is mathematics. In [6], for example, the authors developed

a constructive system based upon interactions between numerical strings and matrices. Algebra, in particular, seems

like a promising source of ideas for constructive functions [26]; group theory, for example, describes many interesting

mathematical spaces, including those, such as Lie groups, which model fundamental aspects of the physical world.

Ideas can also be taken from existing biochemical connectionist models: in our own work [28], for example, we have
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looked at a constructive system based upon interactions between Boolean network fragments.

However, most of this work has been done in the context of well-stirred artificial chemistries, systems in which the

components interact more-or-less freely with one another. As such, this still leaves the question of how to integrate

constructive functions into a more conventional connectionist architecture. One possibility would be to associate a

primitive function with each edge of the network. Each node would then assemble the functions of its incoming edges

in order to construct the node’s function. If the resulting function is conventional, in the connectionist sense, then

it can be applied to a vector or scalar sum of its inputs, generating a new scalar quantity to deliver to downstream

nodes. However, for many of the existing constructive functions, there is no distinction made between function and

data—in effect, functional structures are applied to other functional structures in order to generate new functional

structures. Hence, we might imagine these functional structures being the elements that flow around the network,

rather than scalar quantities. This does present the issue of how to encode external inputs and outputs within

functional structures, although we can envision that in certain circumstances (e.g. matrices) this might be more

natural than splitting them into their individual numeric components.

7 Emergent Organisation

In the previous section, we discussed how biochemical and neural networks differ in terms of the functional operations

carried out at the nodes of the network. In this section, we move up a level, and consider the overall structure of

biochemical networks. From this perspective, one of the most evident differences in biochemical networks is the lack

of a physical network structure, i.e. there is no analogue of neural axons and synapses. Rather, connections between

the network’s nodes emerge as a consequence of implicit properties encoded in each biochemical’s shape and chemical

make-up. In this sense, the structure of a biochemical network is emergent from the properties of its component

parts, as we saw with constructive functions in the previous section.

7.1 Decoupled state

One consequence of this emergent organisation is that function and state need not be tightly coupled, as they are in a

neural network where each neurone is associated with a single activation level. For example, in a metabolic network,

multiple enzymes (‘functions’) may competitively modulate the concentration of a single biochemical species (‘state’).

Likewise, in a genetic network, multiple genes (the ‘functions’ in this sense) can express the same transcription factor,

whose overall concentration level (‘state’) then affects the expression of other genes.

However, these decoupled ‘state’ components are not only under the influence of directly competing protein-

mediated reactions; they are also under the indirect influence of mass conservation. Unlike in the brain, where state

is encoded in relatively abundant electrical signals, biochemical state requires chemical mass. The supply of this is

strictly limited, and must be divided amongst the different processes occurring within the cell. The consequence of
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(a) (b)

Figure 3: (a) A conserved decoupled connectionist architecture evolved to diagnose Parkinson’s disease. The sum of
the state components, C = {c0, ..., c9}, is conserved, according to the equation shown, via a linear scaling process.
Time series data is input a value at a time by setting c0, synchronously updating the network after each input.
The classification is read from the final value of c9. The network uses four function nodes, each a discrete map:
STD=standard map, BAM=baker’s map, LM=logistic map. (b) An example of the network responding [middle] to
a decay in amplitude of the movements of a Parkinson’s patient [top], and [bottom] the network’s response when the
input is removed and the network is later perturbed with an impulse to c0. See [66] for more details.

this is that mass balance leads to coupling between the state components of different biochemical networks, since an

increased concentration of a chemical in one part of the cell must be counterbalanced by a decreased concentration

in another part, or in another chemical with overlapping constituents.

In our work, we have looked at how a conservation law influences the dynamics of a decoupled connectionist

architecture [68, 63]. Figure 3 illustrates this architecture: showing how state and function are represented by

separate nodes, and how the sum of the concentrations of the state components is conserved after each iteration of

the network. In general, we have found that mass conservation makes it easier to induce networks with a desired

input-output mapping, making the inductive process less sensitive to design factors such as choice of nodal processes

and the mechanism used to introduce external inputs to the network. We have speculated that, at least in part,

this is because it is easier to recruit signals originating from an external source or from other parts of the network,

since these are propagated through the network by the conservation process. Interestingly, we found these conserved

decoupled networks to be particularly effective at a signal processing task: diagnosing Parkinson’s disease from

movement time series data. In general, they achieved higher accuracies and higher success rates at this task than

both genetic programming [64] and a range of other connectionist architectures, including recurrent neural networks

[65, 66]. Analysis of evolved classifiers suggested that the conservation process was acting as a dampening mechanism,

preventing long-lived chaotic signals from dominating the dynamics of the network. This can be seen in the lower

plot in Figure 3b, which shows that the network’s dynamics soon become dampened after input is removed and after

the network is hit with an impulse. In this respect, it resembles the dampening constraints used in the construction

of reservoir computers (e.g. the echo state property [44]).
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7.2 Spatiality

A cell is a physical space. Each biochemical occurs at a particular location within this space, and it may only interact

with other biochemicals that occur in its immediate neighbourhood. Because of this, spatiality is a fundamental

concept for biochemical networks. As biological knowledge has grown, it has become increasingly evident that cells

are highly organised at the spatial level [51, 112]. They are not the spatially unstructured ‘bag of chemicals’ they

were once viewed to be; most biochemicals are localised within a particular part of the cell, and in many cases are

physically tied to the cell’s membranes or cytoskeleton. This physical localisation even extends to certain biochemical

pathways, such as signalling complexes, in which the components of a signalling pathway are physically assembled

and held together by scaffold proteins [8].

Nevertheless, biochemical pathways do contain motile components, entailing both that a component may be

missing from a particular pathway at a particular time, or that an extra component may join a particular pathway

at a particular time. These kind of processes are particularly significant in biochemical pathways that function at

low concentrations of their constituent elements, where it has been suggested that this ‘noisiness’ may be beneficial

[76]. From a connectionist perspective, this behaviour implies that the network structure has a degree of dynamism,

with edges appearing and disappearing over the course of time. One way of modelling this within a connectionist

architecture is to have some kind of dynamical process that adds and removes edges to the network (an idea which

is explored further in Section 8). Another approach is to switch between different nodal functions. This idea has

been explored in [96], where the authors describe a Boolean network whose nodes switch between different Boolean

functions according to a probability distribution. The nodes of a GasNet [43] (see Section 3) also switch their

behaviour over time, though in this case based on the value of a time-varying state component. Notably, they use

a spatial coordinate system, in which individual neurones are embedded, and across which neurotransmitters can

diffuse, causing neurones to switch between different sigmoidal activation functions.

The use of explicit notions of space in neural networks has also been explored in [29] and [108], where the authors

note that whilst this approach can promote useful behaviours such as modularity, excessive spatial constraints

can limit a learning algorithm’s ability to explore behavioural space more generally. Explicit notions of space are

also found in various other computational models of biochemical processes. Perhaps the best known of these are

cellular automata (CA) [107] which, in their elementary form, can be considered a kind of Boolean network in

which interconnections only occur between nodes that are immediate spatial neighbours (and all nodes use the same

Boolean function). At the other end of the spatial spectrum are artificial chemistries [21], most of which model

biochemical systems as ‘well-stirred’ reactors in which all function and state elements are able to interact over the

course of time. Between these two extremes are models such as P Systems [86] in which components are organised

into compartments, within which they are free to interact, but between which interactions can not directly occur.

This models the manner in which cells are organised into membrane-bound compartments. However, none of these is

arguably a good model of real biological systems, in which different components have different degrees of containment
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and motility in order to facilitate the requirements of different biological processes. For example, those that require

isolation from other processes tend to be physically co-located and protected from interference by scaffolding [37] or

cellular membranes. By comparison, those that integrate diverse signals tend to be spatially distributed and contain

motile components.

Signalling networks provide a good example of these two extremes. As we mentioned above, integrated components

of signalling pathways are often physically co-located in signalling complexes in order to provide cohesion and prevent

interference. However, at the other extreme is the widespread incidence of crosstalk, which occurs when a particular

biochemical is involved in more than one unrelated biochemical pathway whose spatial or temporal domains overlap.

This can result in a signal generated internally by one pathway being delivered to another pathway. Crosstalk is

particularly commonplace in signalling networks, where a relatively small number of secondary messenger molecules

are used to propagate a broad spectrum of extra-cellular signals to locations within a cell. In human-engineered

systems, crosstalk is generally seen as a form of interference that is disruptive to correct functioning. However, its

prevalence in signalling networks has led to an understanding that crosstalk can also have beneficial roles, particularly

as a mechanism for providing complex non-linear responses to combinations of stimuli [82] [61].

In our own work, we have looked at the benefits of using a simple model of crosstalk within a connectionist

architecture. Mimicking the structure of a signalling network, different types of external input are initially delivered

to different sub-networks. These sub-networks (which are comparable to pathways) have no explicit interconnections.

However, they do have crosstalk nodes, in which signals from one sub-network are allowed to leak into another using

a simple mixing function. This allows external inputs to be treated in a semi-independent manner, providing a

mechanism to introduce new inputs with minimal effect upon existing sub-networks. As a demonstration of this

approach, we have shown that a control problem with strong dependence between its inputs can be solved using a

connectionist architecture comprising separate networks for each input linked by crosstalk [34]. However, we would

expect this kind of architecture to be particularly useful for problem domains in which a connectionist system has to

react to many potential inputs: for example, in a robotic system, where inputs concerning both the environment and

the robot’s internal conformation are received from various sensors. In [33], we considered this approach as part of

a layered architecture for controlling a hexapedal robot on rough terrain (see Figure 4). In particular, we evolved a

coupled artificial signalling network, in which each of the component networks uses local sensory inputs to control the

movement of a single leg. The behaviour of the whole robot then emerges as a result of evolved crosstalk pathways

between the networks, providing a conduit for global exchange of information between the component networks.

This is in contrast to the normally predetermined architectures associated with neural network-based approaches to

legged robot control, and proved a successful method for generating adaptive gaits in a challenging environment.

The utility of crosstalk has also been investigated in [20], where the authors developed a learning classifier system in

which crosstalk is used to transfer information within the system.
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Fig. 6: Illustration of the 4-DOF leg used in our research,
showing the arrangement of coordinates frames. Its four rota-
tional joints are distributed as follows: a perpendicular joint
followed by three parallel joints. In an attempt to simplify the
inverse kinematic problem, we supply the robot with a constant
WARTG angle (Wrist Angle Relative to Ground) of 175o. The
angles in the figure represent the initial configuration of every
joint.

Fig. 7: Modulated ẋ and ż solution of the L1, L3 and R2
nonlinear oscillators. Trajectories obtained for aleatory kij and
constant ωst = 2rad · s−1, ωsw = 2rad · s−1, µ = 1, α = 5 and
β = 50. The green and yellow coloured areas are the swing
and stance phases respectively. During the swing phase the
robotic limbs move forward (upper graph) while describing
an elliptical arc (bottom graph), which starts at ẋ = −1 and
reaches its peak at ẋ = 0. Likewise, the limb returns to the
stance phase when ẋ = 1. On the contrary, the robotic limbs
collide with the ground (ż = 0) while moving backwards along
the stance phase.

III. EVOLVING COUPLED ARTIFICIAL SIGNALLING
NETWORKS

CASNs are evolved using a standard generational evolution-
ary algorithm with tournament selection (size = 4), uniform
crossover (rate = 0.3), and point mutation (rate = 0.05). A
multi-chromosomal encoding is used to evolve CASNs. This
representation counteracts problems with growing complexity
and increases modularity. In particular, this enables complex
problems to be divided into smaller tasks, which improves the
evolution of complex structures [29] and permits the inclusion

of independent and different computational representations
[30].

A CASN is encoded as an indexed sequence of chromo-
somes, each of which defines an ASN. We used an standard-
ised genetic encoding for all ASNs (see Fig. 8). This represents
the ASN as an indexed sequence of enzymes followed by
timing information. Crossover points lie between enzyme
boundaries and chromosome shuffling is not permitted. In a
attempt to reduce the complexity of the networks the number
of enzymes of each ASN was fixed at 10. Inputs and outputs
(Si and Pi) are represented by their absolute indices. Chemical
concentrations and mapping parameters are described using
floating-point numbers and mutated using a Gaussian func-
tion with its centre at the current value. Continuous values
introduce two main advantages. First, they ease the coupling
with the external environment, thus inputs and outputs do
not require an alternative encoding. Second, they discourage
fast convergence to static orbits by permitting an infinite state
space (within the limits of representation). This underpins the
emergence of more complex network dynamics and increases
expressiveness. Finally, mutation is restricted to the operations
described in [31], to embrace biochemical plausibility in the
evolution of interaction graphs.

!"#$ !"#%
&&&

Fig. 8: Genetic Encoding of a coupled artificial signalling
network.

IV. CONTROLLING LEGGED ROBOT LOCOMOTION

A simulated model (see Fig. 9) of the real robot T-Hex
is used to evaluate our architecture [32]. The T-Hex is a 24
DOF hexapod robot developed by Lynxmotion. This robot
has four joints per leg connected by actuators at the corner.
In this work we follow the limb conventions introduced in
[33]. Limbs on the left (L) and right (R) sides of the hexapod
are numbered from front to rear starting at 1. The robot is
initially configured using the tripod gait, which has a duty
factor of 0.5. On each segment, contralateral limbs are 180o

out of phase. Adjacent limbs on each side are also 180o out of
phase. Hence, three legs moves simultaneously in each step.
The limited adaptability of the tripod gait is used to assess
the capacity of our system to adaptively modulate locomotion
patterns using environmental feedback.

(b)

(c) (d)

Figure 4: Using a connectionist architecture motivated by crosstalk-coupled signalling networks to control a legged
robot. (a) A simulation of the hexapedal robot used in this study navigating a rugged terrain. (b) Each leg has 4
degrees of freedom. (c) The layered controller architecture, in which a coupled artificial signalling network controls
the parameters of a central pattern generator (CPG), whose output drives the inverse kinematics that control the
movements of individual joints. (d) A coupled artificial signalling network evolved to provide an adaptive gait within
rugged environments. The inputs, for each component network, are from the contact sensor on the corresponding
leg, and the three infrared sensors on the corresponding side of the robot. The outputs are CPG control parameters.
Crosstalk edges are shown in yellow (light grey). For more details, see [33].
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7.3 Evolvability

Evolutionary algorithms are a useful means of learning connectionist architectures. Unlike gradient-based methods,

such as back-propagation, they are not limited to optimising weights; they can also be used to design a network’s

topology, and they can handle heterogeneous architectures. In principle they can be used with any representation,

so long as appropriate variation operators (i.e. mutation, recombination) are available. However, in practice it is

beneficial to use a representation that is evolvable, so that when it is mutated or recombined there is a tendency for

the evolutionary algorithm to explore fitter variants—or, at least, variants that are not significantly worse on average

[62, 42]. In computer science in general, there are many examples of representations that are not evolvable, i.e. that

when randomly mutated, lead to dysfunctional variants. By comparison, evolvability is commonplace in biological

systems [17, 53, 87]. This is particularly so for biochemical networks: since proteins are encoded in DNA, they are

directly exposed to the machinery of natural evolution, and must be able to react in an appropriate manner. Hence,

we might expect biochemical networks to be a particularly useful source of information regarding evolvable ways of

representing connectionist structures.

One prominent pattern of organisation known to promote evolvability is the use of multiple weak interactions

[17, 109]. We have already discussed a major example of this in biochemical networks: the interactions between the

initiation site, transcription factors, enhancers, and other control signals that lead to the formation of a transcription

complex in higher organisms. It is the cumulative effect of all of these interactions that controls the activation level,

meaning that the strength of activation can be varied gradually through the addition and removal of components

and interactions, and can respond flexibly to new sources of regulation [53]. These new sources of regulation can, in

turn, be any biochemical whose shape is complementary to an existing part of the transcription complex, and can

potentially come about from a huge variety of source processes—including crosstalk, which is another notable source

of weak linkage in biochemical systems. An important source of transcriptional regulation, and one that has been

hypothesised to account for much of the complexity seen in higher organisms, is gene duplication [84]. This is an

example of another prominent pattern of organisation known to promote evolvability, redundancy [17]. Redundancy

allows a system to maintain its function whilst exploring novel behaviour through a process of duplication and

divergence of the system’s existing components. In genetic networks, this process occurs at multiple levels: the level

of whole genes, at the level of transcription factor binding sites, and even at the level of chromosomes and whole

networks. Given its hypothesised importance within biological evolution, a number of authors have looked at the

roles that duplication can play within the evolution of artificial genetic network models [4, 60, 11].

Underlying the effectiveness of duplication events in biological systems is a fundamental, yet often overlooked,

property of biochemical systems: function-structure duality. In essence, the physical structure of a biochemical

determines how it interacts with other biochemicals, and therefore determines its function within the system. This

in turn leads to the emergence of higher level biological processes such as the binding of antigens by the immune

system, the binding of substrates to enzymes, and the assembly of transcription factor complexes. Moreover, from
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an evolutionary perspective, it means that previously unseen biochemicals can be introduced to the system yet still

have a defined role within the system; when new biochemicals are introduced via duplication events, the duplicates

are able to compete against the original to fulfil the same functional role, or potentially to fulfil new roles. In either

case, there is a tendency to preserve the existing behaviour whilst providing scope to explore new adaptations and

functions.

In part, the notion of function-structure duality is a more fundamental perspective on the constructive functions

we talked about in Section 6.3. Indeed, constructive functions are one way in which we could implement this notion

within a connectionist architecture. However, this approach is dependent upon the expressiveness of the underlying

primitive elements, since a function can only be expressed through composition of these elements. Another approach,

often used in connectionist models of genetic networks that are used for computation [7], is to introduce an indirect

reference space in which functional components can identify one another. An example of this is the template-

matching scheme described in [91]. Motivated by the organisation of genetic regions in biological chromosomes, this

approach [91] uses evolved patterns to identify the nodes of the network. Over the course of evolution, there is an

expectation that a relationship will emerge between these patterns and the function of the nodes they reference;

in effect, this amounts to a loose form of function-structure duality in which the evolved patterns play the role

of structural recognition. However, there is no guarantee that such a relationship will emerge, especially over the

relatively short periods of evolution found in evolutionary algorithms. A potential solution to this is to encode details

of the node’s functional behaviour within its pattern, a method we have previously looked in our work on implicit

context representation [67]. Another issue with indirect reference spaces is the need to carry out pattern matching in

order to identify the edges of the network. In a spatially unstructured connectionist architecture, this could involve

comparing every pair of nodes in order to identify the strongest matches, which may be prohibitive for large networks.

Hence, there may be some benefit to combining an indirect reference space with a spatially-structured architecture

(see Section 7.2) so that pattern matching only needs to be done in the local neighbourhood of each node.

8 Higher-Order Processes

As well as its contribution to evolvability, function-structure duality has a number of other implications for the

organisation of biochemical networks. One of these is the widespread occurrence of higher-order, self-modifying,

processes. These include proteins that modify the activity of other proteins, networks that modify the structure

of other networks, and various processes that occur at the chromosomal level, such as retro-transposition [90] and

chromatin restructuring [114]. These are possible because biochemicals interact through recognition of structure, and

this structural reference space includes all biochemicals: not just those with informational roles (e.g. metabolites),

but also those with functional roles (i.e. proteins) or information storage roles (e.g. chromosomes) [40]. In general,

there is no analogue of these kind of higher-order processes in the brain, where neurones can not physically alter
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each other’s activity, and where physical alterations at the network level only occur over long time-scales as a

result of growth. Consequently, they are of particular interest as a potential source of novelty within connectionist

architectures.

8.1 Higher-order functions

Perhaps the most fundamental higher-order process in biochemical systems is the modification of a protein by another

protein. We have already mentioned the most common example of this kind of protein-protein interaction: protein

kinases in signalling pathways. These change the function of other proteins by phosphorylating their binding sites,

causing changes in their structural or chemical interactivity. A single protein kinase can modify the activity of many

target proteins, leading to significant downstream changes in a cell’s biochemical network. For this reason, their

activity is tightly regulated in biological systems, often via phosphorylation, and hence through the activity of other

protein kinases [83].

From a computational perspective, the modification of a protein by another protein is analogous to the kind of

higher-order function application seen in the λ-calculus and functional programming languages. Indeed, in one of the

earliest artificial chemistry models, Fontana [31] used λ-expressions as the basic elements of the system, arguing that

higher-order interactions such as these are good candidates for producing complex, adaptive behaviour. In effect, the

λ-expressions are used as another kind of constructive function. From a more conventional connectionist perspective,

protein modification can also be seen as a network rewriting operation, causing one or more interactions to be added

or removed from the network. This idea could be introduced to existing architectures by adding new edges, which

act as switches within their target nodes, up or down-regulating a node’s overall activity according to the activation

level of a source node. In a multi-layer perceptron, for example, this might be done by scaling the output of a

node’s activation function. In a Boolean network, it would be similar to the use of canalising functions (such as

AND) in which one or more inputs strongly determine a node’s output [48], and which have been hypothesised to

improve robustness by stabilising a network’s attractors [99]. It also resembles multiplicative coupling in autocatalytic

networks, a mechanism that allows nodes to exercise control over other nodes, and which is discussed in [27] in the

context of connectionist architectures.

8.2 Higher-order networks

Protein modification often leads to changes at the network level. For instance, a protein kinase in a signalling pathway

may activate a dormant enzyme, leading to the production of new metabolites: in effect, the signalling network has

modified the metabolic network. Likewise, when a protein kinase activates a transcription factor, the signalling

network modifies the genetic network. These network level interactions are not only due to protein interactions: by

modulating the production of signalling and transcription components and the availability of energy, the metabolic

network can modify both the signalling and genetic networks, a mechanism which plays a significant role in a wide
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range of cellular processes [111]. However, arguably the most important network-level interaction is the modification

of the metabolic and signalling networks by the genetic network. This is possible because genes encode the proteins

that form the functional elements of the metabolic and signalling networks, and the regulatory interactions between

genes can modulate the levels at which these proteins are expressed. Given that almost all the proteins present in

the cell are a product of gene expression, this means that the genetic network can make very large scale changes

to biochemical networks. Since each protein is individually regulated, modulation of gene expression can also result

in very specific patterns of change. A prominent example of this large scale, yet specific, modification of a cell’s

biochemical networks is cellular differentiation, whereby a cell’s internal processes become increasingly specialised in

order to carry out a particular biological function.

This relationship between the genetic network and the cell’s other biochemical networks is interesting from a

connectionist perspective, since it amounts to a higher-order relationship in which one network controls the structure

of another network. In effect, one network is responsible for selecting a behaviour, and the other network is responsible

for implementing it. In particular, this seems like a potentially useful pattern of organisation for systems that need to

switch between different behaviours over the course of time. To investigate this idea, we implemented a connectionist

architecture in which one network controls the expression of functional components in another network [69, 63]. In

mimicry of a biological cell, the controlling network is modelled upon a genetic network (although it also closely

resembles a recurrent neural network) and the controlled network is modelled upon a metabolic network (similar to

the one shown in Fig. 3). As in a biological cell, the two networks are coupled together through gene expression, such

that the expression level of a ‘gene’ in the controlling network determines the activation level of the corresponding

‘enzyme’ in the controlled network. The enzyme’s activation level, in turn, determines its relative influence upon the

concentrations of a set of metabolites, which are also used to encode external inputs and outputs.

In general, we have found this architecture to be beneficial in situations where there is a need to move quickly

between different kinds of behaviour [63]. An example of this is the Lorenz control task, described in Section 6.2,

where there is a need to move between different behaviours depending upon whether the controller is transitioning

between the two unstable points of the system, stabilising at these points, or moving backwards or forwards between

the points. We found higher-order networks to be particularly good at solving this task [63], outperforming standalone

genetic and metabolic networks in terms of both optimality and consistency of solutions. In particular, we found

that in evolved networks, the genetic network reconfigures the metabolic network at points where the behaviour of

the controller is required to change quickly. A more tangible illustration of this behaviour is shown in Fig. 5, which

shows a higher-order network controlling the locomotion of an unstable two-legged robot. The objective was to move

the robot in a way that maximises the distance covered during the evaluation period: which, in this case, is achieved

using an intricate backwards somersaulting manoeuvre, showing how the extra degrees of freedom present in the

higher-order network can promote solutions with surprisingly complex dynamics. This example shows a phenomenon

we often see in evolved controllers: a separation of time-scales, in which the genetic network responds to relatively
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(a) t = 0 (b) t = 10 (c) t = 15 (d) t = 30 (e) t = 35 (f) t = 45

(g)

Figure 5: (a–f) Higher-order network controlling a two-legged robot in order to carry out a backwards somersault,
showing timestamped snapshots from a single cycle of movement. (g) Time series view showing how an artificial
metabolic network modulates the concentrations of metabolites (C0–C19) in order to map joint angles (I0–I5) into
actuator torques (C14–C19) during a series of somersaults. Expression of functional components in the metabolic
network is modulated by an artificial genetic network (G0–G10), which changes its expression state based on the
height of the robot’s torso (I6). Expression levels and metabolite concentrations can vary between 0 (white) and 1
(black). For more details, see [69].
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slow-changing dynamics (roughly the feet-down and feet-up phases of movement, as labelled, and visible as dark and

light vertical bands in gene expression) and the metabolic network responds to fast-changing dynamics (the actuator

kinematics). In effect, the genetic network reconfigures itself twice per rotation, causing the metabolic network to

switch between two different behaviours according to whether the robot is in a feet-down or feet-up phase. In most

problems we have looked at, we have also found that there is an advantage to choosing different function sets for the

genetic network and metabolic network. This functional heterogeneity reflects findings in another recent paper that

considered a model of interacting genetic and metabolic networks [12]. In that work, the author explored coupled

Boolean networks, and found that topological heterogeneity was advantageous. Hence, there seems to be an indication

that heterogeneity is a useful property in higher-order networks: perhaps reflecting the fact that many problems can

be broken down into sub-tasks with different dynamical characteristics that, in turn, benefit from different dynamical

solutions.

8.3 Genomic self-modification

When thinking about genomes and genetic networks, it is common to abstract away the role of DNA and chromo-

somes. However, it has become increasingly apparent that both DNA and chromosomes have significant roles in gene

expression beyond that of information storage. DNA is not a one-dimensional string—it has a three-dimensional

structure, and the local conformation at any point is influenced by both the pattern of base pairs and the action of

bound proteins [85]. This local structure, in turn, influences the binding of the transcription complex. On top of

this, in higher organisms DNA is packaged into chromosomes formed of chromatin, an amalgamation of spindle-like

scaffold proteins over which the DNA is first coiled, then supercoiled [114]. In order for a transcription complex

to bind to a region of DNA, the chromatin must first be locally unwound. This unwinding is done by proteins,

which are both the product of other genes and subject to regulation by other genes. Hence, the genetic network is

regulated at both the genetic and chromatin level. Since chromatin is usually wound or unwound over a length of

DNA corresponding to multiple genes, and since interacting proteins are often encoded proximally in the genome

(a phenomenon known as epistatic clustering), chromatin remodelling can result in whole pathways being turned on

and off. Because of this ability to make wide-scale changes, chromatin regulation plays an important role in cellular

differentiation, and is thought key to the complexity of higher organisms [89]. Furthermore, chromatin structure is

preserved when a cell divides: hence, any chromatin modifications that occur in germ cells will be inherited by the

organism’s offspring. This, in turn, underlies a number of epigenetic processes [58].

In [105] and [106], we considered the benefits of introducing an analogue of chromatin remodelling to a connection-

ist architecture. This works by introducing extra nodes into the network, each of which is used to regulate the activity

of a chromatin frame. Using an indirect reference space (see Section 7.3), a chromatin frame covers a defined region

of the network; when turned on, it prevents this part of the network from being ‘expressed’, setting the activation

levels of the covered nodes to zero. Hence, different parts of the network can be turned on and off during the course
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(a)

(b) (c)

(d) (e)

Figure 6: Example of an evolved recurrent network with an analogue of chromatin remodelling controlling the
sideways movements of five coupled carts, each mounted with a pendulum. (a) The evolved controller used by each
cart. C0 and C1 are chromatin analogues; when active, these deactivate the nodes within their bounds. V0 and V1
are angular velocities in the upper quadrants, and A0 is the pendulum angle. M0 and M1 are the differential motor
controls for the cart. M1 and C1 are notable for forming an oscillator circuit, a common motif in the circuits evolved
for this task. Starting with the pendulums hanging beneath the carts (b), the objective is to swing the pendulums
to an upright position (e) and then maintain them in this position for a defined period of time. Adapted from [105].
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of execution. As with the higher-order network described above, this results in the network changing structure over

time. However, by allowing small groups of nodes to be added and removed, it provides a more specific mechanism

for achieving this. Because of this, it is beneficial in situations when a controller must make small changes to its

behaviour in order to navigate different regions of state space, and in these situations outperforms networks in which

chromatin is not used. An example of this, illustrated in Figure 6, is the control of a system of coupled inverted

pendulums, where the objective is to manoeuvre the pendulums to an upright position and then maintain them

in this position via lateral movement of the carts to which they are mounted. Coupling between the carts makes

this problem challenging [38], since collisions can readily propagate and destabilise the system. However, using an

analogue of chromatin remodelling within a sigmoidal recurrent network, we were able to evolve controllers that could

control five inverted pendulums at once, a behaviour that could not be achieved readily with the non-reconfigurable

networks alone [105]. Analysis of the evolved networks suggests they achieve this by modulating a relatively small

number of nodes. A further advantage of this approach is that the chromatin frames tend to partition the behaviours

of the controller, such that manually switching a frame on or off causes transitions between the controller’s swinging

and stabilising phases.

Another self-modifying process that occurs at the genomic level is caused by mobile genetic elements, such as

retrotransposons and DNA transposons [90]. These are regions of DNA that are able to copy or move themselves

around the genome. Whilst they sometimes encode proteins that interact with other elements of the cell’s biochemical

networks, and have various evolutionary consequences, their main effect upon an organism during its lifetime is as a

dynamic mutation operator. They achieve this by inserting themselves into both the coding and regulatory regions

of genes, disrupting the behaviour or expression of the gene’s product within the cell. Hence, whilst both chromatin

remodelling and mobile genetic elements lead to a dynamic network structure, the former achieves this by turning

existing parts of the network on and off, whereas the latter achieves it by creating new nodes or by altering the

connections between nodes. Some of the consequences for connectionist architectures have been explored in [13],

where the author describes a simple analogue of mobile genetic elements within a random Boolean network. This

is implemented using a rewiring procedure that explores different connections during the course of execution. An

interesting observation made by the author is that this mechanism leads to the occurrence of more complex attractors.

9 Discussion and Conclusions

Previous research on connectionist architectures has been strongly motivated by understanding of neural function

in the mammalian brain. In this paper, we have revisited, in the light of contemporary biological understanding,

the idea that connectionist architectures might be similarly inspired by biochemical networks, the networks that

underlie many of the complex dynamical behaviours seen within biological organisms. In particular, we have noted

that these networks display a number of prominent patterns of organisation that are not seen in neural networks,
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suggesting that they can guide connectionism in a way that is complementary to work on neural networks. We

have structured our discussion around three ways in which biochemical networks differ from neural networks: the

complexity and diversity of processes occurring at their nodes, the lack of physical wiring between these nodes, and

(as a consequence of the latter) the existence of various higher-order and self-modifying processes. In each case, we

have reviewed a selection of connectionist approaches motivated by these differentiating features, and noted that in

general these lead to computational benefits. We have illustrated this narrative using a series of examples from our

own work, showing how biochemical connectionist architectures can be successfully applied to difficult control and

signal processing problems, reflecting two of the major functions of biochemical networks in cells.

Neural networks are closely associated with gradient-based learning algorithms such as back-propagation. How-

ever, in recent years, there has been a trend towards using evolutionary algorithms (e.g. NEAT [98]) to learn connec-

tionist models. Unlike gradient-based methods, these place relatively few constraints on the space of solutions that

can be explored, opening up the potential for new kinds of connectionist architectures. An underlying theme of this

paper is that these new architectures need not be based on neural systems. Indeed, the close relationship between

biochemical networks and biological evolution suggests that connectionist architectures motivated by biochemical

organisation may be particularly well suited for use with evolutionary algorithms. Even so, this does not mean that

it is necessary to follow a wholesale approach to biochemical connectionism in order to capture the evolvability of

biochemical systems, since techniques such as template matching (see Section 7.3) could be readily applied to existing

neural architectures.

This is also true more generally, since many of the methods we have discussed could in principle be applied to

existing neural network models. For example, discrete maps could be used as activation functions within neurones,

augmenting a sigmoidal neurone population—and our results suggest that this kind of heterogeneity is generally

beneficial [63]. Likewise, patterns of coupling seen between biochemical networks could be used to couple together

neural networks. Certainly, the coupling together of heterogeneous neural networks is a more accurate model of the

brain, and may provide a better way of realising heterogeneous processes occurring over different timescales. There is

also no reason why self-modifying processes could not be applied to neural networks. Self-modification appears to be

an important means through which biochemical systems achieve adaptive transitions in behaviour, and we envisage

that it could carry out similar roles in other connectionist systems.

Finally, it should be noted that we have only discussed a few of the most evident patterns of organisation seen

in biochemical networks, and even then we have only considered a few of the possible lessons for connectionist

architectures. Factors such as the spatial organisation of pathways, the role of conserved network motifs [5], and the

existence of various epigenetic processes [9], to name but a few, all seem important for the evolution and function

of biochemical networks, and may have similarly beneficial lessons for connectionist architectures. As with neural

networks, it seems likely that progress in biology will further refine out understanding of these systems, and will

bring new general insights in the future. Equally, analysis of specific biochemical pathways [18] will likely inform us
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about specific biological solutions to various problems [19], suggesting connectionist architectures suitable for solving

these kind of problems in engineered systems.
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[3] Réka Albert and Hans G. Othmer. The topology of the regulatory interactions predicts the expression pattern

of the segment polarity genes in drosophila melanogaster. Journal of Theoretical Biology, 223(1):1–18, 2003.

[4] M. Aldana, E. Balleza, S. Kauffman, O. Resendiz, et al. Robustness and evolvability in genetic regulatory

networks. Journal of theoretical biology, 245(3):433–448, 2007.

[5] Uri Alon. Network motifs: theory and experimental approaches. Nat Rev Genet, 8(6):450–461, Jun 2007.

[6] W. Banzhaf. Artificial chemistries—towards constructive dynamical systems. Solid State Phenomena, 97/98:43–

50, 2004.

[7] Wolfgang Banzhaf. Artificial regulatory networks and genetic programming. In Rick L. Riolo and Bill Worzel,

editors, Genetic Programming Theory and Practice, chapter 4, pages 43–62. Kluwer, 2003.

[8] M. J. Berridge. Cell Signalling Biology, chapter Spatial and Temporal Aspects of Signalling. Portland Press

Limited, 2012.

[9] A. Bird. Perceptions of epigenetics. Nature, 447(7143):396–398, 2007.

[10] H. Bolouri. Computational Modeling of Gene Regulatory Networks—A Primer. Imperial College Press, 2008.

[11] L. Bull. Evolving Boolean networks on tunable fitness landscapes. Evolutionary Computation, IEEE Transac-

tions on, 16(6):817–828, 2012.

[12] Larry Bull. A simple computational cell: coupling Boolean gene and protein networks. Artificial Life, 18(2):223

– 236, 2012.

26



[13] Larry Bull. Consideration of mobile DNA: new forms of artificial genetic regulatory networks. Natural Com-

puting, 2013.

[14] Larry Bull and Richard Preen. On dynamical genetic programming: Random Boolean networks in learning

classifier systems. In Leonardo Vanneschi et al., editors, Genetic Programming, volume 5481 of Lecture Notes

in Computer Science, pages 37–48. Springer Berlin / Heidelberg, 2009.
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