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Abstract. The manycore revolution is steadily increasing the perfor-
mance and size of massively parallel systems, to the point where sys-
tem reliability becomes a pressing concern. Therefore, massively parallel
compute jobs must be able to tolerate failures. For example, in the HPC-
GAP project we aim to coordinate symbolic computations in architec-
tures with 106 cores. At that scale, failures are a real issue. Functional
languages are well known for advantages both for parallelism and for
reliability, e.g. stateless computations can be scheduled and replicated
freely.
This paper presents a software level reliability mechanism, namely su-
pervised fault tolerant workpools implemented in a Haskell DSL for par-
allel programming on distributed memory architectures. The workpool
hides task scheduling, failure detection and task replication from the
programmer. To the best of our knowledge, this is a novel construct. We
demonstrate how to abstract over supervised workpools by providing
fault tolerant instances of existing algorithmic skeletons. We evaluate
the runtime performance of these skeletons both in the presence and
absence of faults, and report low supervision overheads.

1 Introduction

Changes in chip manufacturing technology is leading to architectures where the
number of cores grow exponentially, following Moore's law. Many predict the
proliferation of massively parallel systems currently exempli�ed by the large
commodity o�-the-shelf (COTS) clusters used in commercial data centres, or
the high performance computing (HPC) platforms used in scienti�c computing.
For example, over the last 4 years, the performance (measured in FLOPS) of the
world's fastest supercomputer has risen 16-fold, according to TOP5001. This
has been accompanied by a 13-fold increase in the total number of cores, and by
power consumption more than tripling (from 2.3 to 7.9 MW). The latter trend
in particular points to an ever increasing size of these systems, not only in terms
of total number of cores, but also in the number of networked components (i.e.
compute nodes and network switches).

1 http://www.top500.org

http://www.top500.org
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Even with failure rates of individual components appearing negligible, the
exponential growth in the number of components makes system reliability a
growing concern [21]. Thus, massively parallel compute jobs either must complete
quickly, or be able to tolerate component failures.

Depending on the problem domain, there may be several ways to react to
failures. For instance, stochastic simulations can trade precision for reliability by
simply discarding computations on failed nodes. Similarly, grid-based continuous
simulations can recover information lost due to a node failure by �smoothing�
information from its neighbours. However, there are problem domains, e.g. opti-
misation or symbolic computation, where trading precision is impossible because
solutions are necessarily exact. In these domains, fault tolerance is more costly,
as it can only be achieved by replicating the computations of failed nodes, which
incurs overheads and requires book keeping. Nonetheless, replication-based fault
tolerance is widely used, e.g. in MapReduce frameworks like Hadoop [2].

Functional languages have long been advocated as particularly suitable for
parallel programming because they encourage a stateless coding style which sim-
pli�es the scheduling of parallelism. Furthermore statelessness also simpli�es task
replication, making functional languages even more attractive for massively par-
allel programming, where replication-based fault tolerance is indispensable.

This paper presents the design and implementation of a fault tolerant work-
pool in a functional language. A workpool is a well-known parallel programming
construct that guarantees the parallel execution of independent tasks, relieving
the programmer of concerns about task scheduling (and sometimes load balanc-
ing). A fault tolerant workpool additionally guarantees completion of all tasks
(under some proviso), thus relieving the programmer of concerns about detect-
ing node failures, replicating tasks, and the associated book keeping. We note
that our workpool is able to recover from the failure of any number of nodes bar
a single distinguished one, the node hosting the supervised workpool. There-
fore, the workpool is not high-availability, setting it apart from high-availability
behaviours in Erlang. However, our workpool is able to guarantee that system
reliability matches the reliability of a single node, which is good enough for most
massively parallel applications.

The workpool is implemented on top of HdpH [17], a Haskell domain speci�c
language (DSL) for distributed-memory parallel programming. HdpH and the
workpool are being developed within the HPC-GAP project2. The project aims
to solve large computer algebra problems on massively parallel platforms like
HECToR, the UK national supercomputing service with currently 90,000 cores,
by coupling the GAP computer algebra system [11] with the SymGridParII

coordination middleware [16].

We start by surveying fault tolerant approaches, languages and frameworks
(Section 2), before making the following contributions:

1. We present the design and implementation of a novel fault-tolerant workpool
in Haskell (sections 3.1 and 3.3), hiding task scheduling, failure detection and

2 http://www-circa.mcs.st-andrews.ac.uk/hpcgap.php
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task replication from the programmer. Moreover, workpools can be nested to
form fault-tolerant hierarchies, which is essential for scaling up to massively
parallel platforms like HECToR.

2. The implementation of high-level fault tolerant abstractions on top of the
workpool: generic fault tolerant skeletons for task parallelism and nested
parallelism, respectively (section 4).

3. We evaluate the fault tolerant skeletons on two benchmarks. These bench-
marks demonstrate fault tolerance: computations do complete even in the
presence of node failures. We also measure the overheads of the fault tolerant
skeletons, both in terms of the cost of book keeping, and in terms of the time
to recover from failure (section 5).

2 Related Work

Most existing fault tolerant approaches in distributed architectures follow a
rollback-recovery approach, and new opportunities are being explored as alter-
native and more scalable possibilities. This section outlines non-language and
language based approaches to fault tolerance.

2.1 Non Language-Based Approaches to Fault Tolerance

At the highest level, algorithmic methods have been proposed, with the injection
of fault oblivious algorithms and self stabilising algorithms [5]. Various tech-
niques have been used at the application level, such as re�ective object-oriented
programming [9].

The Message Passing Interface [13] is a predominant and e�cient commu-
nication layer in HPC platforms. Thorough comparisons of fault tolerant MPI
approaches and implementations have been made [12]. These include checkpoint-
ing the state of computation [4], extending or modifying the semantics of the
MPI standard [10], and runtime resilience to overcome node failure [7], though
the onus is on the user to handle faults programmatically.

On COTS platforms, computational frameworks such as MapReduce realise
fault tolerance through replication, as implementations such as Hadoop [2] have
shown. They are optimised for high throughput, but limit the programmer to one
parallel pattern. In contrast, our supervised workpool is a fault tolerant construct
that can be used for multiple parallel patterns, as described in Section 4.

2.2 Fault Tolerance in Erlang

Erlang [1] is a dynamically typed functional language designed for program-
ming concurrent, real-time, distributed fault tolerant programs. Erlang provides
a process-based model of concurrency with asynchronous message passing. Er-
lang processes do not shared memory, and all interaction is done through message
passing.
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Erlang has three mechanisms that provide fault tolerance in the face of fail-
ures [14]: monitoring the evaluation of expressions; monitoring the behaviour
of other processes; and trapping evaluation errors of unde�ned functions. Ad-
ditionally, Erlang provides primitives for creating and deleting links between
processes. Process linking is symmetrical, and exit signals can be propagated up
hierarchical supervision trees.

On top of these primitives, Erlang provides the Open Telecom Platform
(OTP) which separates the Erlang framework from the application, and in-
cludes a set of fault tolerant behaviours. The Erlang/OTP generic supervisor

behaviour provides fault tolerance for Erlang programs executing on multiple
compute nodes. Processes residing in the Erlang VM inherit either the role of
supervisor, or alternatively, a child. Supervisors receive exit signals from chil-
dren, taking the appropriate action. They are responsible for starting, stopping,
and monitoring child processes, and keep child processes alive by restarting them
if necessary. Supervisors can be nested, creating hierarchical supervision trees.

In contrast to Erlang behaviours, which are designed for distributed com-
puting, our supervised workpool is designed for distributed-memory parallel

programming. Additionally, statically typed polymorphic skeletons can be con-
structed on top of the workpool.

2.3 Fault Tolerance in Distributed Haskell Extensions

Cloud Haskell. Cloud Haskell [8] is a domain speci�c language for distributed-
memory computing platforms. It is implemented as a shallow embedding in
Haskell, and provides a message communication model that is inspired by Erlang.
It emulates the Erlang approaches (Section 2.2) of isolated process memory and
explicit message passing, and provides process linking. Cloud Haskell inherits
the language features of Haskell, including purity, types, and monads, as well as
the multi-paradigm concurrency models in Haskell. A signi�cant contribution of
Cloud Haskell is a mechanism for serialising function closures, enabling higher
order functions to be used in distributed computing environments. As Cloud
Haskell tightly emulates Erlang, it is once again more designed for distributed
rather than parallel computing.

HdpH. Haskell distributed parallel Haskell (HdpH) [17] is a distributed-memory
parallel DSL for Haskell that supports high-level semi-explicit parallelism, and
is designed for fault tolerance. HdpH is an amalgamation of two recent contri-
butions to the Haskell community. Its closure serialisation and transmission over
networks is inspired by Cloud Haskell (Section 2.3), and it uses the Par Monad
[19], as a shallowly embedded DSL for parallelism. The write-once semantics of
the original Par Monad are relaxed in HdpH slightly to support fault tolerance:
we ignore successive writes rather than failing, which is described in Section 3.3.

HdpH extends the Par Monad for distributed-memory parallelism, rather
than distributed systems as in Erlang or Cloud Haskell. Parallelism in the Par
Monad is achieved with a fork primitive, and an IVar is a communication
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abstraction to communicate results of parallel tasks (referred to in other lan-
guages, as futures [20] or promises [15]). HdpH extends CloudHaskell's closure
representation, by supporting polymorphic closure transformations in order to
implement high-level coordination abstractions. This extension is crucial for the
implementation of generic fault tolerant skeletons as described in Section 4.

3 The Design & Implementation of a Supervised

Workpool

3.1 Design

A workpool is an abstract control structure that takes units of work as input,
returning values as output. The scheduling of the work units is coordinated by the
workpool implementation. Workpools are a very common pattern, and are often
used for performance, rather than fault tolerance. For example workpools can
be used for limiting concurrent connections to resources, to manage heavy load
on compute nodes, and to schedule critical application tasks in favour of non-
critical monitoring tasks [26]. The supervised workpool presented in this paper
extends the workpool pattern by adding fault tolerance to support the fault
tolerant execution of HdpH applications. The fault tolerant design is inspired by
the supervision behaviour and node monitoring aspects of Erlang (Section 2.2),
and combines this with Haskell's polymorphic, static typing.

Most workpools schedule work units dynamically, e.g. an idle worker selects
a task from the pool and executes it. For simplicity our current HdpH workpool
uses static scheduling: each worker is given a �xed set of work units. The su-
pervised workpool performs well for applications exhibiting regular parallelism,
and also for limited irregular parallel programs, as shown in Section 5. A fault
tolerant work stealing scheduler is left to future work (Section 6).

The Haskell implementation is made possible by the loosely coupled design
in HdpH. Before describing the workpool in detail, we introduce terminology for
HdpH and the workpool in Table 1.

IVar A write-once mutable mutable reference.

GIVar A global reference to an IVar, which is used to remotely write values to
the IVar.

Task Consists of an expression and a GIVar. The expression is evaluated, and
its value is written to the associated GIVar.

Completed task When the associated GIVar in a task contains the value of the task ex-
pression.

Closure A serializable expression or value. Tasks and values are serialized as clo-
sures, allow them to be shipped to other nodes.

Supervisor thread The Haskell thread that has initialized the workpool.

Process An OS process executing the GHC runtime system.

Supervising process The process hosting the supervisor thread.

Supervising node The node hosting the supervising process.

Worker node Every node that has been statically assigned a task from a given workpool.

Table 1: HdpH and workpool terminology
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A fundamental principle in the HdpH supervised workpool is that there is a
one-to-one correspondence between a task and an IVar� each task evaluates an
expression to return a result which is written to its associated IVar. The tasks
are distributed as closures to worker nodes. The supervisor thread is responsible
for creating and globalising IVars, in addition to creating the associated tasks
and distributing them as closures. Here are the workpool types and the function
for using it:

type SupervisedTasks a = [(Closure (IO ()), IVar a)]
supervisedWorkpoolEval :: SupervisedTasks a -> [NodeId] -> IO [a]

The supervisedWorkpoolEval function takes as input a list of tuples, pairing
tasks with their associated IVars, and a list of NodeIds. The closured tasks are
distributed to worker nodes in a round robin fashion to the speci�ed worker
NodeIds, and the workpool waits until all tasks are complete i.e. all IVars are
full. If a node failure is identi�ed before tasks complete, the unevaluated tasks
sent to the failed node are reallocated to the remaining available nodes. Detailed
descriptions of the scheduling, node failure detection, and failure recovery is in
Section 3.3.

The supervised workpool guarantees that given a list of tasks, it will fully
evaluate their result provided that:

1. The supervising node is alive throughout the evaluation of all tasks in the
workpool.

2. All expressions are computable. For example, evaluating an expression should
not throw uncaught exceptions, such as a division by 0; all programming ex-
ceptions such as non-exhaustive case statements must be handled within the
expression; and so on.

Our supervised workpool is non-deterministic, and hence is monadic. This is
useful in some cases such as racing the evaluation of the same task on separate
nodes, and also for fault tolerance � the write semantics of IVars are described
in Section 3.3. To recover determinism in the supervised workpool, expressions
must be idempotent. An idempotent expression may be executed more than
once which entails the same side e�ect as executing only once. E.g inserting a
given key/value pair to a mutable map - consecutive inserts have no e�ect. Pure
computations, because of their lack of side e�ects, are of course idempotent.

Workpools are functions and may be freely nested and composed. There is
no restriction to the number of workpools hosted on a node, and Section 5.2 will
present a divide-and-conquer abstraction that uses this �exibility.

3.2 Use Case Scenario

Figure 1 shows a workpool scenario where six closures are created, along with
six associated IVars. The closures are allocated to three worker nodes: Node2,
Node3 and Node4 from the supervising node, Node1. Whilst these closures are
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Fig. 1: Reallocating closures scenario

-- |HdpH primitives
type IVar a = TMVar a -- type synonym for IVar
data GIVar a -- global handles to IVars
data Closure a -- explicit, serialisable closures
pushTo :: Closure (IO ()) -> NodeId -> IO () -- explicit task placement
rput :: GIVar (Closure a) -> Closure a -> IO () -- write a value to a remote IVar
get :: IVar a -> IO a -- blocking get on an IVar
probe :: IVar a -> STM Bool -- check if IVar is full or empty

Fig. 2: Type signatures of HdpH primitives

being evaluated, Node3 fails, having completed only one of its two tasks. As IVar
i5 had not been �lled, closure c5 is reallocated to Node4. No further node failures
occur, and once all six IVars are full, the supervised workpool terminates. The
mechanisms for detecting node failure, for identifying completed tasks, and the
reallocation of closures are described in Section 3.3.

3.3 Implementation

The types of the relevant HdpH primitives are shown in Figure 2. The com-
plete fault tolerant workpool implementation is available [23], and the most
important functions are shown in Figure 3. All line numbers refer to this Figure.
Two independent phases take place in the workpool:

1. Line 5 shows the supervisedWorkpoolEval function which creates the workpool,
distributes tasks, and then uses the STM termination check described in
item 2. The distributeTasks function on line 9 uses pushTo (from Fig-
ure 2) to ship tasks to the worker nodes and creates taskLocations, an
instance of TaskLookup a (line 3). This is a mutable map from NodeIds to
SupervisedTasks a on line 2, which is used for the book keeping of task
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locations. The monitorNodes function on lines 22 - 30 then monitors worker
node availability. Should a worker node fail, blockWhileNodeHealthy (line
29) exits, and reallocateIncompleteTasks on line 30 is used to identify
incomplete tasks shipped to the failed node, using probe (from Figure 2).
These tasks are distributed to the remaining available nodes.

2. Haskell's STM [22] is used as a termination check. For every task, an IVar is
created. A TVar is created in the workpool to store a list of values returned
to these IVars from each task execution. The getResult function on line 34
runs a blocking get on each IVar, which then writes this value as an element
to the list in the TVar. The waitForResults function on line 42 is used to
keep phase 1 of the supervised workpool active until the length of the list in
the TVar equals the number of tasks added to the workpool.

1 -- |Workpool types
2 type SupervisedTasks a = [(Closure (IO ()), IVar a)]
3 type TaskLookup a = MVar (Map NodeId (SupervisedTasks a))
4

5 supervisedWorkpoolEval :: SupervisedTasks a -> [NodeId] -> IO [a]
6 supervisedWorkpoolEval tasks nodes = do
7 -- PHASE 1
8 -- Ship the work, and create an instance of ’TaskLookup a’.
9 taskLocations <- distributeTasks tasks nodes

10 -- Monitor utilized nodes; reallocate incomplete tasks when worker nodes fail
11 monitorNodes taskLocations
12

13 -- PHASE 2
14 -- Use STM as a termination check. Until all tasks are evaluated, phase 1 remains active.
15 fullIvars <- newTVarIO []
16 mapM_ (forkIO . atomically . getResult fullIvars . snd) tasks
17 results <- atomically $ waitForResults fullIvars (length tasks)
18

19 -- Finally, return the results of the tasks
20 return results
21

22 monitorNodes :: TaskLookup a -> IO ()
23 monitorNodes taskLookup = do
24 nodes <- fmap Map.keys $ readMVar taskLookup
25 mapM_ (forkIO . monitorNode) nodes
26 where
27 monitorNode :: NodeId -> IO ()
28 monitorNode node = do
29 blockWhileNodeHealthy node -- Blocks while node is healthy (Used in Figure 4)
30 reallocateIncompleteTasks node taskLookup -- reallocate incomplete tasks shipped to ’node’
31

32 -- |Takes an IVar, runs a blocking ’get’ call, and writes
33 -- the value to the list of values in a TVar
34 getResult :: TVar [a] -> IVar a -> STM ()
35 getResult values ivar = do
36 v <- get ivar
37 vs <- readTVar values
38 writeTVar results (vs ++ [v])
39

40 -- |After each write to the TVar in ’evalTask’, the length of the list
41 -- is checked. If it matches the number of tasks, STM releases the block.
42 waitForResults :: TVar [a] -> Int -> STM [a]
43 waitForResults values i = do
44 vs <- readTVar values
45 if length vs == i then return vs else retry

Fig. 3: Workpool implementation & Use of STM as a termination check
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The restriction to idempotent tasks in the workpool (Section 3.1) enables the
workpool to freely duplicate and re-distribute tasks. Idempotence is permitted by
the write semantics of IVars. The �rst write to an IVar succeeds, and subsequent
writes are ignored � successive rput attempts to the same IVar are non-fatal. To
support this, the write-once semantics of IVars in the ParMonad [19] are relaxed
slightly in HdpH, to support fault tolerance. This enables identical closures to
be raced on separate nodes. Should one of the nodes fail, the other evaluates
the closure and rputs the value to the associated IVar. Should the node failure
be intermittent, and a successive rput be attempted, it is silently ignored. It
also enables replication of closures residing on overloaded nodes to be raced on
healthy nodes.

It would be unnecessary and costly to reallocate tasks if they had been fully
evaluated prior to the failure of the worker node it was assigned to. For this
purpose, a probe primitive (Figure 2) is used to identify which IVars are full,
indicating the evaluation status of its associated task. As such, all IVars that
correspond to tasks allocated to the failed worker node are probed. Only tasks
associated with empty IVars are reallocated as closures.

Node Failure Detection A new transport layer for distributed Haskells [6] un-
derlies the fault tolerant workpool. The main advantage of adopting this library
is the typed error messages at the Haskell language level.

1 -- connection attempt
2 attempt <- connect myEndPoint remoteEndPointAddress <default args>
3 case attempt of
4 (Left (TransportError ConnectFailed)) -> -- unblocks ’blockWhileNodeHealthy’, Figure 3 line 29
5 (Right connection) -> -- carry on

Fig. 4: Detecting node failure in the blockWhileNodeHealthy function

The connect function from the transport layer is shown in Figure 4. It is
used by the workpool to detect node failure in the blockWhileNodeHealthy
function on line 29 of Figure 3. Each node creates an endpoint, and endpoints
are connected to send and receive messages between the nodes. Node availability
is determined by the outcome of connection attempts using connect between the
node hosting the supervised workpool, and each worker node utilized by that
workpool. The transport layer ensures lightweight communications by reusing
the underlying TCP connection. One logical connection attempt between the
supervising node and worker nodes is made each second. If Right Connection
is returned, then the worker node is healthy and no action is taken. However,
if Left (TransportError ConnectFailed) is returned then the worker node
is deemed to have failed, and reallocateIncompleteTasks (Figure 3, line 30)
re-distributes incomplete tasks originally shipped to this node. Concurrency for
monitoring node availability is achieved by Haskell IO threads on line 25 in
Figure 3.

An alternative to this design for node failure detection was considered - with
periodic heartbeat messages sent from the worker nodes to the process hosting
the supervised workpool. However the bottleneck of message delivery would be
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the same i.e. involving the endpoint of the process hosting the workpool. More-
over, there are dangers with timeout values for expecting heartbeat messages in
asynchronous messaging systems such as the one employed by HdpH. Remote
nodes may be wrongly judged to have failed e.g. when the message queue on
the workpool process is �ooded, and heartbeat messages are not popped from
the message queue within the timeout period. Our design avoids this danger by
synchronously checking each connection.

It is necessary that each workpool hosted on a node monitors the availabil-
ity of worker nodes. With nested or composed supervised workpools there is a
risk that the network will be saturated with connect requests to monitor node
availability. Our architecture avoids this by creating just one Haskell thread per
node that monitors availability of all other nodes, irrespective of the number of
workpools hosted on a node. Each supervisor thread communicates with these
monitoring threads to identify node failure. See the complete implementation
[23] for details.

4 High Level Fault Tolerant Abstractions

The HdpH paper [17] describes the implementation of algorithmic skeletons in
HdpH. This present work extends these by adding resilience to the execution of
two generic parallel algorithmic skeletons.

HdpH provides high level coordination abstractions: evaluation strategies and
algorithmic skeletons. The advantages of these skeletons are that they provide a
higher level of abstraction [25] that capture common parallel patterns, and that
the HdpH primitives for work distribution and operations on IVars are hidden
away from the programmer.

We show here how to use fault tolerant workpools to add resilience to algo-
rithmic skeletons. Figure 5 shows the type signatures of fault tolerant versions
of the following two generic algorithmic skeletons.

pushMap is a parallel skeleton to provide a parallel map operation, applying
a function closure to the input list.

pushDivideAndConquer is another parallel skeleton that allows a problem
to be decomposed into sub-problems until they are su�ciently small, and
then reassembled with a combining function.

IVars are globalised and closures are created from tasks in the skeleton code,
and supervisedWorkpoolEval is used at a lower level to distribute closures, and
to provide the guarantees described in Section 3.3. The tasks in the workpool
are eagerly scheduled into the threadpool of remote nodes.

The two algorithmic skeletons have di�erent scheduling strategies � pushMap
schedules tasks in a round-robin fashion; pushDivideAndConquer schedules tasks
randomly (but statically at the beginning, not on-demand).
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pushMap
:: [NodeId] -- available nodes
-> Closure (a -> b) -- function closure
-> [a] -- input list
-> IO [b] -- output list

pushDivideAndConquer
:: [NodeId] -- available nodes
-> Closure (Closure a -> Bool) -- trivial
-> Closure (Closure a -> IO (Closure b)) -- simplySolve
-> Closure (Closure a -> [Closure a]) -- decompose
-> Closure (Closure a -> [Closure b] -> Closure b) -- combine
-> Closure a -- problem
-> IO (Closure b) -- output

Fig. 5: Fault tolerant algorithmic parallel skeletons used in Appendix A and B
of [24]

5 Evaluation

This section demonstrates the use of the fault tolerant mechanisms, and specif-
ically the two fault tolerant algorithmic skeletons from Section 4. Implementa-
tions of two symbolic programs are presented: Summatory Liouville which is
task parallel; and Fibonacci which is a canonical divide-and-conquer problem.
The implementations of these can be found in the technical report for this paper
[24].

The equivalent non-fault tolerant pushMap and pushDivideAndConquer skele-
tons are used for comparing the supervised workpool overheads in the presence
and absence of faults, which are described in Section 5.4. These do not make use
of the supervised workpool, and therefore do not protect against node failure.

5.1 Data Parallel Benchmark

To demonstrate the pushMap data parallel skeleton (Figure 5), Summatory Liou-
ville [3] has been implemented in HdpH, adapted from existing Haskell code [27].
The Liouville function λ(n) is the completely multiplicative function de�ned by
λ(p) = −1 for each prime p. L(n) denotes the sum of the values of the Liouville
function λ(n) up to n, where L(n) :=

∑n
k=1 λ(k). The scale-up runtime results

measure Summatory Liouville L(n) for n = [108, 2 · 108, 3 · 108..109]. Each ex-
periment is run on 20 nodes with closures distributed in a round robin fashion,
and the chunk size per closure is 106. For example, calculating L(108) will gen-
erate 100 tasks, allocating 5 to each node. On each node, a partial Summatory
Liouville value is further divided and evaluated in parallel, utilising multicore
support in the Haskell runtime [18].

5.2 Control Parallel Benchmark using Nested Workpools

The pushDivideAndConquer skeleton (Figure 5) is demonstrated with the imple-
mentation of Fibonacci. This example illustrates the �exibility of the supervised
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workpool, which can be nested hierarchically in divide-and-conquer trees. At
the point when a closure is deemed too computationally expensive, the problem
is decomposed into sub-problems, turned into closures themselves, and pushed
to other nodes. In the case of Fibonacci, costly tasks are decomposed into 2
smaller tasks, though the pushDivideAndConquer skeleton permits any number
of decomposed tasks to be supervised.

The runtime results measure Fibonacci Fib(n) for n = [45..55], and the
sequential threshold for each n is 40. Unlike the pushMap skeleton, closures are
distributed to random nodes from the set of available nodes to achieve fairer
load balancing.

5.3 Benchmark Platform

The two applications were benchmarked on a Beowulf cluster. Each Beowulf node
comprises two Intel quad-core CPUs (Xeon E5504) at 2GHz, sharing 12GB of
RAM. Nodes are connected via Gigabit Ethernet and run Linux (CentOS 5.7
x86_64). HdpH version 0.3.2 was used and the benchmarks were built with GHC
7.2.1. Benchmarks were run on 20 cluster nodes; to limit variability we used only
6 cores per node. Reported runtime is median wall clock time over 20 executions,
and reported error is the range of runtimes.

5.4 Performance

No Failure The runtimes for Summatory Liouville are shown in Figure 6(a).
The chunk size is �xed, increasing the number of supervised closures as n is
increased in L(n). The overheads of the supervised workpool for Summatory
Liouville are shown in Figure 6(b). The runtime for Fibonacci are shown in
Figure 7.
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The supervision overheads for Summatory Liouville range between 2.5% at
L(108) and 7% at L(5 · 108). As the problem size grows to L(109), the number
of generated closures increases with the chunk size �xed at 106. Despite this
increase in supervised closures, near constant overheads of between 6.7 and 8.4
seconds are observed between L(5 · 108) and L(109).

Overheads are not measurable for Fibonacci, as they are lower than system
variability (owing probably to random work distribution).

The runtime for calculating L(5 · 108) is used to verify the scalability of
the HdpH implementation of Summatory Liouville. The median runtime on 20
nodes (each using 6 cores) is 95.69 seconds, and on 1 node using 6 cores is 1711.51
seconds, giving a speed up of 17.9 on 20 nodes.

Recovery From Failure To demonstrate the fault tolerance and to assess
the e�cacy of the supervised workpool, recovery times have been measured
when one node dies during the computation of Summatory Liouville. Nested
workpools used by pushDivideAndConquer also tolerate faults. Due to the size
of the divide-and-conquer graph for large problems, they are harder to analyse
in any meaningful way.

To measure the recovery time, a number of parameters are �xed. The com-
putation is L(3 · 108) with a chunk size of 106, which is initially deployed on 10
nodes, with one hosting the supervising task. The pushMap skeleton is used to
distribute closures in a round robin fashion, so that 30 closures are sent to each
node. An expected runtime utilising 10 nodes is calculated from 5 failure-free
executions. From this, approximate timings are calculated for injecting node fail-
ure. The Linux kill command is used to forcibly terminate one running Haskell
process prematurely.

The results in Figure 8 show the runtime of the Summatory Liouville calcu-
lation when node failure occurs at approximately [10%,20%..90%] of expected
execution time. 5 runtimes are observed at each timing point. Figure 8 also re-
ports the average number of closures that are reallocated relative to when node
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Fig. 8: Recovery time with 1 node failure

failure occurs. As described in Section 3.3, only non-evaluated closures are redis-
tributed. The expectation is that the longer the injected node failure is delayed,
the fewer closures will need reallocating elsewhere. Lastly, Figure 8 shows 5 run-
times using 10 nodes when no failures occur, and additionally 5 runtimes using
9 nodes, again with no failures.

The data shows that at least for the �rst 30% of the execution, no tasks are
complete on the node, which can be attributed to the time taken to distribute
300 closures and for each node to begin evaluation. Fully evaluated closure values
are seen at 40%, where only 16 (of 30) are reallocated. This continues to fall until
the 90% mark, when 0 closures are reallocated, indicating that all closures had
already been fully evaluated on the responsible node.

The motivation for observing failure-free runtimes using 9 and also 10 nodes
is to evaluate the overheads of recovery time when node failure occurs. Figure 8
shows that when a node dies early on (in the �rst 30% of estimated total run-
time), the performance of the remaining 9 nodes is comparable with that of a
failure-free run on 9 nodes. Moreover, node failure occurring near the end of a
run (e.g. at 90% of estimated runtime) does not impact runtime performance,
i.e. is similar to that of a 10 node cluster that experiences no failures at all.

6 Conclusions and Future Work

As COTS and HPC platforms grow in size, faults will become more frequent,
rather than failures being exceptional events as in existing architectures. Failures
may be caused by hardware malfunction, intermittent network transmission, or
software errors. Future dependability of such platforms should therefore rely on
a multitude of fault tolerant approaches at all levels of the computational stack.

In this paper, we have presented a language based approach to fault tolerant
distributed-memory parallel computation in Haskell: a fault tolerant workpool
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that hides task scheduling, failure detection and task replication from the pro-
grammer. On top of this, we have developed fault tolerant versions of two algo-
rithmic skeletons. They provide high level abstractions for fault tolerant parallel
computation on distributed-memory architectures. To the best of our knowledge
the supervised workpool is a novel construct.

The supervised workpool and fault tolerant parallel skeleton implementa-
tions exploit recent advances in distributed-memory Haskell implementations,
primarily HdpH [17] . The workpool and the skeletons guarantee the completion
of tasks even in the presence of multiple node failures, withstanding the failure
of all but the supervising node. The work is targeting fault tolerant symbolic
computation on 106 cores within the HPC-GAP project.

The supervised workpool has acceptable runtime overheads � between 2.5%
and 7% using a data parallel skeleton. Moreover when a node fails, the recovery
costs are negligible.

Future Work. The full HdpH language a�ords both explicit and implicit closure
placement. In contrast, the current supervised workpool implementation permits
only static explicit closure distribution. We are adapting the supervised workpool
approach to provide fault tolerance to the work stealing scheduler in HdpH.
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A Summatory Liouville source code using pushMap

farmSumLiouville :: Integer -> Int -> IO Integer
farmSumLiouville x chunkSize = do
nodes <- allNodes
sum <$> HdpH.Strategies.FT.pushMap -- fault tolerant

-- HdpH.Strategies.pushMap -- not fault tolerant
nodes
$(mkClosure [|sumLEvalChunk|])
chunked_list

where
chunked_list = zip lowers uppers
lowers = [1, toInteger (chunkSize + 1) .. x]
uppers = [toInteger chunkSize, toInteger (chunkSize*2) .. x]++[x]

sumLEvalChunk :: (Integer,Integer) -> Integer
sumLEvalChunk (lower,upper) =

let chunkSize = 1000
smp_chunks = chunk chunkSize [lower,lower+1..upper] :: [[Integer]]
tuples = map (head &&& last) smp_chunks

in sum $ parMap rpar ( \(lower,upper) -> sumLEvalChunk’ lower upper 0) tuples

sumLEvalChunk’ :: Integer -> Integer -> Integer -> Integer
sumLEvalChunk’ lower upper total
| lower > upper = total
| otherwise = let s = toInteger $ liouville lower

in sumLEvalChunk’ (lower+1) upper (total+s)

liouville :: Integer -> Int
liouville n
| n == 1 = 1
| length (primeFactors n) ‘mod‘ 2 == 0 = 1
| otherwise = -1

primeFactors :: Integer -> [Integer]
primeFactors = -- omitted
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B Fibonacci source code using pushDivideAndConquer

fib_dnc :: Int -> Int -> IO Integer
fib_dnc seqThreshold n = do

res <- skel (toClosure n)
return $ unClosure res
where
skel nClosured = do

nodes <- allNodes
HdpH.Strategies.FT.pushDivideAndConquer -- fault tolerant

-- HdpH.Strategies.pushDivideAndConquer -- not fault tolerant
nodes
$(mkClosure [| dnc_trivial_abs seqThreshold |])
$(mkClosure [| dnc_simplySolve |])
$(mkClosure [| dnc_decompose |])
$(mkClosure [| dnc_combineSolutions |])
nClosured

dnc_trivial_abs :: Int -> Closure Int -> Bool
dnc_trivial_abs (seqThreshold) =
\ clo_n -> unClosure clo_n <= max 1 seqThreshold

dnc_simplySolve =
\ clo_n -> return $ toClosure (force $ fib $ unClosure clo_n)

dnc_decompose =
\ clo_n -> let n = unClosure clo_n in [toClosure (n-1), toClosure (n-2)]

dnc_combineSolutions =
\ _ [clo_x, clo_y] -> toClosure (unClosure clo_x + unClosure clo_y)

fib :: Int -> Integer
fib n | n <= 1 = 1

| otherwise = fib (n-1) + fib (n-2)
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