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Abstract

In this paper we consider the analysis of call blocking at a single resource
with differing capacity requirements as well as differing arrival rates and hold-
ing times. We include in our analysis trunk reservation parameters which pro-
vide an important mechanism for tuning the relative call blockings to desired
levels. We base our work on an asymptotic regime where the resource is in
heavy traffic. We further derive, from our asymptotic analysis, methods for
the analysis of finite systems. Empirical results suggest that these methods
perform well for a wide class of examples.
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1 Introduction

Recent developments in communication networks have lead to much interest in sys-
tems where traffic of widely differing characteristics is integrated. In this paper we
address one of the probabilistic issues associated with these developments. Formally
we study a resource of integer capacity C offered a finite number of traffic streams
indexed in a set I. Calls of type ¢ € I arrive as a Poisson stream of rate v; and have
exponential holding times of mean p;'; each such call requires an integer e; units of

resource, and is accepted if and only if the subsequent free capacity of the resource
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is at least r; (r; integer); otherwise it is lost. All arrival streams and holding times
are independent. In order to ensure irreducibility of the stochastic process which
records the free capacity of the system at any time, we further assume that the
capacity requirements e;, ¢ € I, have greatest common divisor equal to 1. (There is
no loss of generality here: if their greatest common divisor is equal to d > 1, then
we may simply rescale the unit of resource by a factor of d. Any fractional part of
the rescaled total capacity cannot be used.)

The capacity requirements e;, ¢ € [, correspond to the important concept of
an effective bandwidth that has arisen from many studies of integrated networks
(Hui [10], Gibbens and Hunt [7], Kelly [17]). The effective bandwidth is an accurate
assessment of the capacity required by a traffic source at each resource of the network
in order to guarantee constraints on cell loss or delay.

The parameters r; are usually referred to as trunk reservation parameters and
provide an important and very robust mechanism—much used in applications—for
controlling the behaviour of the system (see, for example, Key [19]). They can be
used to effect an almost complete prioritization of the different traffic streams, while
still utilising the full capacity of the system. (Their effectiveness is illustrated in the
examples of Section 5.) It is well-known that, in the special case where r; = 0 for
all 2 € I, the equilibrium distribution of the number of calls of each type in progress
(and so the equilibrium blocking probability for each type of call) does not depend
on the assumption of exponential holding times (see Burman et al [3]). In the case
r; > 0, this is not in general true, and so this assumption is necessary for the results
of this paper. However, it is generally held to be reasonable in applications, at least
as a first approximation, even in the case where mean holding times for different
traffic streams vary widely.

We consider in detail an asymptotic regime where the resource is in heavy traffic.
The analysis takes as its starting point the ideas and results on separation of time
scales, discussed informally by Kelly [18], and made rigorous by Hunt [11] and
by Hunt and Kurtz [12]. (We report these results below, and give some further
discussion.) These very general results permit the current treatment of both the
dynamics and equilibrium behaviour associated with the model considered here.

We turther derive, from our asymptotic analysis, methods for the analysis of finite
systems. Empirical results suggest that these methods perform well for a wide class
of examples.

Various authors have considered forms of this model. Kaufman [14] considers

the model without trunk reservation and develops an elegant and efficient recur-



sion technique for determining the blocking probabilities. Kelly [16], Gersht and
Lee [6] and Tran-Gia and Hiibner [22] consider approximations to cope with trunk
reservation but do not give an asymptotic justification for their methods.

Although we study a single-resource (or, in the language of circuit-switched net-
works, a single link) network, we expect the methods of this paper to be generalizable
to multi-resource networks.

Let n(t) = (ni(t),7 € I), where the random variable n;(¢) denotes the number of
calls of type 7 in progress at time ¢t. Let m(t) = C — ¥ ;creni(t) denote the free
capacity at time t. We are interested in the behaviour through time of both the
processes n(-) and m(-), their equilibrium distributions, and any quasi-equilibrium
distributions they may possess. By a quasi-equilibrium distribution for a process we
here mean simply a distribution which behaves as an equilibrium distribution over
a sustained period of time.

We give some exact theory, but concentrate on obtaining approximate results
where C' and v = (4,1 € I) are large and there is heavy traffic, that is 3, e;v;/p; >
C, so that m(t) is in general small. In particular we obtain asymptotic results for the
limiting scheme due to Kelly [15] in which the capacity and arrival rates are allowed
to grow in proportion to each other. Thus, we consider a sequence of models indexed

by the capacity C', with v(C') replacing v, such that
v(C)=Ck and C — oo, (1)
for some constant vector k, together with the corresponding heavy traffic condition,

e (2)

i M

(Kelly’s original limiting scheme allows v(C')/C — &, but in the present context
there is no loss of generality with regard to applications in assuming relation (1)—
in practice we only deal with one member of the sequence!)

In the case where r; = 0 for all 7, that is where there is no trunk reservation, it

is well known that the equilibrium distribution #* of the process n(-) is given by
. (vi/ pi)™
7 (n) = GH Y

where Y, en; < C, n; > 0 for all ¢ € I, and G is the appropriate normalising
constant. The equilibrium distribution = (= (x(m),m > 0)) of the process m(-)
may be determined directly from this expression, or via the recursion

w(m)(C —m) = Z eil/—ijr(m +e), 0<m<C—1. (3)

i: m+e; <C Hi
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The recursion (3) (due originally to Kaufman [14], see also Dziong and Roberts [5]
and Zachary [23]) determines 7 up to a multiplicative constant. Kelly [15] shows
that under the limiting scheme defined by equations (1) and (2) the equilibrium

distribution of m(-) converges weakly to the geometric distribution = given by
m(m) = (1 —p)p",

where p is the unique positive root of

(as suggested by the recursion (3)).

Our interest therefore centres on the general case r; > 0. For the model in the
sequence of capacity C, let n®(-) and m“(-) replace n(-) and m(-) respectively, and
define z9(+) = n%(-)/C. Then z°(-) is a positive Markov process taking values in
the region X = {z : Y, e;x; < 1, x; > 0 for all ¢ € I}. The corresponding free
circuit process m®(+) is a function of this Markov process with transition rates given
by, at time ¢t and for all 7,

m® —e;, at rate Crilipcop te
m® — { m® + ei: at rate gmx{lc(t)z el (4)
The process m®(+) is not in general itself Markov, but the argument below shows
that for large C' it behaves as an approximate Markov process over short periods of
time.

Define the boundary set
B={zeX :> ez, =1} (5)

and also the set

L={zeX D eri— pz;) >0} (6)
For each x € BN L, let 7, be the equilibrium distribution of the Markov process on
Zy = {0,1,2,...,} with transition rates given by, for all 7,
o 4 T € at rate Kil{m>r4e} (7)
m + e;, at rate p;x;.

(The condition @ € BN L ensures that this process is positive recurrent—see Theo-

rem 2.1 below.) For each © € &’ and for each i € I, let

Ynsrite Te(m), ifz € BNL,
1 otherwise,

P(z)= { (8)
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and define also
vi(x) = kiPy(x) — ;. (9)

We give below an informal argument, which is a special case of that given by
Kelly [18], to show why we expect that, as C — oo, the dynamics of the process

z9(+) approach those of a deterministic process z(+) with dynamics given by

wilt) =20+ [ “or(a(u)) du. (10)

We then state the extent to which these results are made rigorous by the theory of
Hunt and Kurtz [12].

Fix z € X. Suppose that C is large, and that at some time ¢, z%(¢) is within
a distance O(C™!) (as C — oo) of z. Then, since z%(-) changes at a rate which
is O(1), it remains close to & over time periods which are o(1). If x € BNL, it follows
that, over such time periods in the neighbourhood of ¢, the process m®(-) behaves
approximately as a positive recurrent Markov process with equilibrium distribution
7, (by the limiting relation (1) and the result that the equilibrium distribution of
a Markov process is invariant under a scalar multiplication of its rates). Thus,
over such periods, calls of each type ¢ arrive and depart at average rates which are
approximately C'x; P;(z) and Cu;x; respectively, so that the rate of increase of z¢(¢)
is approximated by v;(z). This last result also holds in the case & ¢ B N L, since
here, over time periods as above, and for sufficiently large C', the average arrival
rate of calls of each type ¢ is simply C'k;. Thus we expect the limiting dynamics of
the process to be as given by equation (10).

These ideas, which involve a separation (in the limit) of the time scales of the
processes z°(+) and m®(-), are made rigorous by Theorem 3 and Lemma 4 of Hunt
and Kurtz [12]. These show that, under the limiting regime defined by equation (1),
and provided z°(0) = z(0), then the sequence of processes {rc()} is relatively
compact in Dp:[0, 00) and any convergent subsequence has a limit z(-) which satisfies
the relation (10).

We define a fized point of the dynamical system x(-) to be any point z such that
v;(z) =0 for all ¢ € I. Now suppose that the heavy traffic condition (2) holds. We
show in Section 3 that the process z(-) eventually enters and remains within a subset
of BN £ and that any fixed point lies within this set. We also show, in Section 2,
that the functions v;, ¢+ € I, are continuous on B N L. Thus, while the process
29(+) considered above is in the neighbourhood of any fixed point z, the process
m®(-) maintains approximately the distribution 7., and so 7, is an approximate

quasi-equilibrium distribution, in the sense defined earlier, of the process m®(-).
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Now consider the case where there exists a unique fixed point x, to which all
trajectories of the limiting system x(-) converge. The above informal arguments
suggest that, for sufficiently large C', 2%(¢) eventually remains within a neighbour-
hood of z, implying that the equilibrium distribution of the process z%(-) converges
weakly to x, and further that, under the heavy traffic condition (2), the equilibrium
distribution of the process m(-) converges weakly to the distribution 7. Proofs of
these assertions (in the more general setting considered by Hunt and Kurtz [12]) are
included in a forthcoming paper (Bean et al [2]). In independent work, Greenberg
et al [8] obtain similar results for the current model in the case where the capacity
requirements are all equal.

It follows that in order to study in detail the limiting dynamics and the equi-
librium behaviour of the process (), it is necessary to be able to determine the
distribution 7., * € BN L, and in particular the associated passing probabilities (or
call acceptance probabilities) P;(z), ¢ € I. In Section 2 we show (in Theorem 2.4)
how 7, may be determined explicitly by the solution of a finite system of equations.
We further show that the tail of this distribution is geometric, and identify the
geometric parameter.

Section 3 considers the dynamics of the process z(-) introduced above. In par-
ticular we prove the existence of at least one fixed point. In view of the above
comments, it is important to know when this fixed point is unique. We show that
this 1s always so in the special case where e¢; = 1 for all . We conjecture that in
most other cases of practical interest the fixed point will also be unique, but this
may be checked numerically in each instance—as in the examples of Section 5.

In Section 4 we show how to improve our asymptotic results to give more accurate
descriptions of the behaviour of realistically-sized systems, and in particular more
accurate estimates of call-acceptance (or alternatively of blocking) probabilities. Sec-
tion 5 considers some numerical examples to examine the accuracy, in a variety of
situations, of both the approximations derived from the asymptotic results and the
improved approximations derived in Section 4.

An alternative approach to the derivation of the relationship between the fixed
points of the dynamical system z(-) and the asymptotic equilibrium distributions of

the processes z¢(+) and m“(+) can be found in [1], together with further examples.



2 Analysis of the Asymptotic Free Capacity Dis-
tribution

In this section we consider further the Markov process introduced in the previous
section in connection with the limiting regime (1). This is the process m(-) on Z;
with transition rates given, for all ¢, by equation (7), where we now allow z € B.
We show that this process is positive recurrent when € B N L, and study the
corresponding equilibrium distribution 7,. Define é = max;¢s €; and § = max;es(e;+

TZ').

Theorem 2.1 The Markov process m(-) is positive recurrent, null recurrent, or

transient, according as y_; e;(k; — pix;) is greater than, equal to, or less than zero.

Proof: The process m(-) may be considered, in the obvious manner, as a Markov
chain; the transitions of which occur as a Poisson process of rate A = > ;(k; + pizi).
(This chain may be regarded as the uniformized jumping chain of the process.) Then
on the set {m : m > §} the chain behaves as a random walk with mean increment
A1 Y ei(pix; — ki), so that the result now follows easily by standard arguments for

random walks (see, for example, Durrett [4]). ]

Throughout the rest of this section we assume that x € BN L. The equilibrium
distribution 7, of the process m(-) then exists and is the unique solution = = 7, of

the system of global balance equations

W(m)( Z m-—l—mei) = Z m(m + ek + Z m(m — e)pizi, (11)

i m>e;+r; i m>r; i m>e;
for all m > 0, and

Z m(m) = 1. (12)

m>0
Note that, given (12), any one of the equations (11) may, as usual, be omitted (being
implied by the remaining equations in the system).
The solution of this system of equations is clearly related to the roots of the
polynomial f : C — C of degree 2¢, defined by

F(z) = 2 Yk 4 iwi) = 30 (575 4 2" ) (13)

The exact relationship is clarified in Theorem 2.4. In order to do this we first require
a careful characterization of the 2€ roots in the complex plane C of this polynomial.
This is given by Lemma 2.2. The proof of this lemma is somewhat technical and is

deferred to the Appendix.



Lemma 2.2 The polynomial f has exactly two positive real roots, one of which is
unity and the other, py say, satisfies p; € (0,1). Of the remaining roots, € — 1 have
modulus strictly less than p, and the remaining ¢ — 1 have modulus strictly greater

than unity.

Now let pa,..., p: denote those roots of the polynomial f with modulus less than
p1. Let pei1, ..., pae denote the remaining roots. For k = 2,..., ¢é, define 3(k) to be
the number of indices j < k such that p; = px. (In particular if ps, ..., p: are distinct
then 8(k) = 0 for all k.) Further, for each such k, define the function hy : Zy — C
by hi(m) = mP®p7 . In order to prove Theorem 2.4 we also require the following

lemma, the proof of which is again deferred to the Appendix.

Lemma 2.3 Let 11 be the set of finite nonzero measures © on Zy satisfying the

recurrence relations

7(m) Z(KJZ + pixi) = Z [7(m + e;)k; + 7(m — e;)puxi], m>eé. (14)

% 7

Then any = € 1l has a unique spectral representation

w(m) = ai(7)p{" + > ar(m)hi(m), m >0, (15)
k=2
where a(7) is a strictly positive real number, and ar(x) € C for k = 2,...,€.

Conversely, if © is a finite nonzero measure on Zy having a representation of the
form (15) with a1(7),...,ae(x) as above, then = € II.

We are now in a position to state and prove the main result of this section.

Theorem 2.4 Consider the system of equations in # = (x(m), m € Z; ), with each
n(m) € [0,1], and a = (a1,...,az) with a; > 0, and as,...,a: € C, defined by the
global balance equations (11) form =0,1,...,5—2, the normalization equation (12),

and the equations
m(m) = a1pl" + > axhi(m), m>5—é. (16)
k=2

Then these equations have a unique solution (w,a) and © = 7. In particular . has

a geometric tail with parameter py.

Proof: By Lemma 2.3, with the shift #'(m) = n(m+¢é—3), a nonzero finite measure

7 satisfies the equations (16), for some a as given, if and only if it satisfies the global
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balance equations (11) for m > 3. Since any one of the global balance equations (for
all m > 0) is implied by the remainder, the requirement that = satisfy the system
of equations in the statement of the theorem is equivalent to the requirement that
7 satisfy the equations (11) for all m > 0 together with the equation (12), and then
7 = 7. The uniqueness of a follows by Lemma 2.3 again. Finally, since |pg| < p

for k=2,...,€é, 7, has a geometric tail with parameter p;. [

The system of equations in Theorem 2.4 may be solved as follows. Consider the
global balance equations (11) for m < §—2 (which involve 7(0),...,7(§+é—2)) and
the equations (16) for §—¢é < m < §+é—2. The equations (16) may also be summed
over all m > § — € and the result substituted into the normalization equation (12).
This gives a set of § + 2¢é — 1 linear equations which determine #(0),...,7(5+¢é—2)
and ay,...,ae.

Note also that the distribution =, is (pointwise) continuous in x € BN L. To see
this, observe that the roots pp, 1 < k < é, of the polynomial f may be taken to be
continuous functions of x. Then, in the case where ¥ = xq is such that these roots
are distinct, the § 4+ 2é — 1 equations considered above have a continuous solution
which implies that 7, is continuous in = at xg. In the case where zq is such that f
has repeated roots, the usual elementary modifications are required.

It follows that, for each ¢ € I, the functions P, and v;, defined by equations (8)
and (9) respectively, are continuous when restricted to the set BN L (though they

are not of course continuous on X )

3 Limiting Dynamics

In this section we consider the behaviour of the limiting process z(-), defined in

Section 1, and assuming the heavy traffic condition (2). Recall that the dynamics

of x(-) are given by equation (10). We investigate the transient behaviour of the

process and show also that it always possesses at least one fixed point. We consider

further the special case in which e; = 1 for all ¢« € I, where we prove uniqueness of

the fixed point. (In other cases this may readily be investigated numerically.)
Define the sets

R={x e X : x; < kifp; for all i}, H=BNR,

(where B is as defined by equation (5)). Note that R is a subset of the set £
defined by equation (6), and hence that H is a subset of BN L. Note also that the
condition (2) implies that there is some constant 6 > 0 such that, for all z € X,

9



Siei(ki/p — ;) > 6 and so
ki — piz; > pi6/(e;|I]), for some i € I, for all z € X, (17)

Thus in particular the closure H of H is also a subset of BN L.

Figure 1 illustrates the sets X', £, B and R in an example in which there are two
call types (|| = 2), type 1 calls have the parameters e; = 1, k1 = 0.5, yy =1, =0
and type 2 calls have the parameters e; = 2, k3 = 0.6, gy = 2, ro = 0. The shaded
region is £ and the region R is the subset of £ defined by 21 < 0.5, 3 < 0.3.

In the usual terminology of dynamical systems we say that a set 4 C A is
attracting if, for all x(0), there exists a finite ¢ such that z(¢) € A. We say that it is
invariant if, whenever z(0) € A, then z(t) € A for all ¢ > 0. Since the process z(+)
has time-homogeneous dynamics, it follows that, if A is an attracting invariant set,

then, for all 2(0), the process z(-) eventually enters and then remains within A.
Theorem 3.1 The sets H and H are attracting and invariant.
Proof: Define the sets

Re={zeX :2; <kiJui+¢ forall i} and H.=R.NB

where € > 0 is chosen sufficiently small that R, C £. (That this is possible follows
from the relation (17).) Note that H C H.. For each i € I, on the set {z € X :
x; > Ki/pi + €}, we have v;(x) < —p;e. Thus the set R, is attracting and invariant.
For all z € R.\ B, Y, evi(x) = ¥, €;(k; — pix;), which, since R, is closed and
contained in £, is bounded below by a positive constant. Therefore, using also the
continuity of the process x(-), the set H, is attracting and invariant. Finally, for
all 7, we have that F; is continuous and strictly less than 1 on H. and, since H, is
closed, it follows that P; is bounded away from 1 on this set. Hence the sets H and

‘H are attracting and invariant. [ ]

We now consider fixed points of the process z(-). The result below follows from
Theorem 3.1, but we give an alternative simple proof which does not depend on

consideration of the dynamics of the process.
Theorem 3.2 Any fixed point must lie on the bounded hyperplane H.

Proof: If : € X'\ (BN L), then P;(z) =1 for all ¢ € I, and so

doevi(w)/pi =3 e (kifpi — wi) 2 ) eikifpi — 1> 0,

7
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by the heavy traffic condition (2). Thus any fixed point belongs to the set BN L.
Also, since P;(x) < 1 for all z € BN L, it follows that any fixed point belongs to the
set R. [ |

Theorem 3.3 There exists at least one fizred point.

Proof: By Theorem 3.1, if z(0) € H then z(t) € H for all ¢ > 0. Define the
mapping 0 : B, x H — H by,

Define the sequence of sets
A, = {y EH:y= 0(2_”,'3/)},

for n = 0,1,.... Brouwer’s fixed point theorem (Heuser [9, Lemma 106.2]) implies
that the set A, is non-empty for all n > 0, as H is a compact and convex set and
the functions v; are continuous on H. Note also that, for all n > 1, A, C A,_4,
by the time invariance of the dynamics of x(-). Therefore, the intersection of all

finite collections is non-empty. The finite intersection principle (Johnsonbaugh and

Pfaffenberger [13, Ex 42.5]) shows that
ﬂ ATL # Q)a
n=0

since H is a compact set and the A, are closed. Hence, there exists a y € H such
that y = 6(27",y) for all n > 0. Since the function z(-) is continuous it follows that
there exists at least one fixed point y € H, which by Theorem 3.2 is necessarily in

H. [ |

Consideration of Theorem 3.1 shows that it is usually a simple matter to find fixed
points of the limiting process by following trajectories of the process z(-), starting
from any point in the bounded hyperplane H. When there are only two call types
it is also very simple to find the fixed points using a bi-section search method along
the line defined by H.

Figure 1 shows some trajectories for the example considered earlier, together
with the single fixed point for this example, which is marked by an asterix at
(0.46995, 0.26503).

In general we are unable to make statements about the stability or uniqueness of
fixed points. However, in the important special case where e; = 1 for all 7 we can

s5ay Imore.
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Theorem 3.4 Lete; =1 for allt € I. Then there is a unique fived point. Further

in the case |I| = 2 all trajectories of the process x(-) converge to this fixed point.

Proof: Suppose that y and z are fixed points (by Theorem 3.2 necessarily in H)
and, without loss of generality, that >, y;y; > >, pizi. Since the Markov process
m(-) is skip free, and hence reversible, it follows easily that Pi(y) > P;(z) and so
y; > zi, for all ¢ € I. Since y, z € B, we therefore have y = z.

In the case || = 2, the region H is one-dimensional and so the continuity of the
functions v; on H ensure that all trajectories of the process z(-) converge to the

unique fixed point. [

4 Approximations for Finite Systems

In this section we consider the determination of practical approximations to the
passing probabilities associated with the model introduced in Section 1. We again
assume the heavy traffic condition, and further that the capacity C is reasonably
large. In order to use the asymptotic theory of the preceding sections to justify and
interpret these approximations, we assume the model to be embedded in a sequence
of models satisfying the conditions (1) and (2). To emphasize our concern with a
particular member of this sequence we shall drop the notational dependence on C'.

Recall that the free capacity process m(-) is a function of the Markov process

n(-) with transition rates, for all ¢ € I and at time ¢, given by,

mo e bt a
Now suppose that the limiting process z(+) introduced in Section 1 has a unique fixed
point z. Then we expect that, for all sufficiently large ¢, m(¢)/C will remain close
to 0 and n(t)/C will remain close to . Therefore, we may approximately model
the process m(-) as a Markov process on Z; with transition rates given by (18) but

with n(t) replaced by a constant n = (n,,¢ € I), which in particular satisfies
Zei(l/i — /Llﬁz) >0 (19)

(analogously to the requirement that € £). For given n, the equilibrium distribu-

tion 7 of this process may be exactly determined as in Section 2. (The condition

Y icr €it; = 1, although natural in the context of that section, is not at all necessary

to the analysis there.) We also require that, for all ¢, n; is the expected number of
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calls of type ¢ in the system under the equilibrium distribution 75, hence

viP(n) = pin;, foralli e[, (20)

where

Finally, we require that

Y e+ m=C, (21)
where
C
m = Z m7z(m)
m=0

is the expected free capacity under the equilibrium distribution 7.

If the term m in equation (21) were replaced by 0, then the equations (19), (20)
and (21) would imply that n/C was equal to the fixed point = of the limit process.
The term m thus represents a correction reflecting the fact that, even in heavy
traffic, the equilibrium proportion of unused capacity in the system is non-zero, and
merely tends to zero under the limiting regime.

We expect that, at least for sufficiently large C, the equations (19), (20) and (21)
will have a unique solution n. We further expect, under the limiting regime where
C — oo, that m/C — 0, Pin) — Pi(z) (where P; is as defined by equation (8)),
and n/C — z. The distribution 7z may be taken as approximating the equilib-
rium distribution of the process m(-), and, for each i € I, P;(n) may be taken as
approximating the passing probability associated with the call type :.

In any case where the limiting process z(-) has more than one fixed point, we
similarly expect that, for sufficiently large C, the equations (19), (20) and (21)
will have multiple solutions n converging, as C' — oo, to these fixed points. The
corresponding distributions 7; will then be quasi-equilibrium distributions in the
sense of Section 1.

We refer to the above approximation scheme, which replaces each ‘death rate’
pini(t) in equation (18) by p;n;, as the constant death rate approzimation (CDRA).

The process of solving equations (19), (20) and (21) is very similar to that of
finding the fixed points of the limiting process. However, because of the presence of
the strictly positive term m, the passing probabilities are lower than those associated
with the limiting process.

It is natural to attempt to improve the above approximation by replacing each

death rate y;n;(t) in equation (18) by w;7;(m) where n;(m) is a function of m (rather
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than simply a constant) and where we require the obvious condition,
Z en;(m)+m=C, forallm >0, (22)
to be satisfied. The simplest such approximation is given by taking
ni(m) = k(m)n;, forall i€ I, (23)

for some function k on Z; which, given n, is determined by equation (22). (This
approximation is less than ideal and may certainly be improved, but appears to work
well in practice.) We here require each n; to be the equilibrium expected value of
n;(+) under the resulting equilibrium distribution 7 of the process m(-), determined

by the modified transition rates (18). More precisely we require,
1/2152(774) = u;n;, foralliel, (24)

where

Pr)= Y #a
m>ei+ri

We refer to this approximation, defined by equations (22), (23) and (24), as
the variable death rate approximation (VDRA). When the limit process z(-) has a
unique fixed point, we expect this approximation to yield a unique solution 7, that
7 will then approximate the equilibrium distribution of the free capacity process
m(-), and that, for each ¢ € I, ]32(77@) will then approximate the corresponding
passing probability. In the case where x(-) has several fixed points, we expect the
approximation to yield multiple solutions corresponding to the quasi-equilibrium
distributions of the processes n(-) and m(-).

Solving for the approximate equilibrium distribution 75 of the process m(-) is
not trivial, as this process is not necessarily skip free and has a large state space.
However, Theorem 2.4 indicates that the asymptotic equilibrium distribution of the
process m(-) has a geometric tail. Therefore, by approximating the tail of the dis-
tribution 7 as geometric, we can reduce the complexity of finding this distribution.
Choose a threshold M; for m < M, #z(m) is found by solving the global balance
equations and for m > M we assume that 7;(m) has a geometric distribution. The-
orem 2.4 suggests that the parameter of this distribution may reasonably be taken
as the unique positive real root less than unity of the polynomial

flp) =" |2 o(vi + mﬁz’(M))] =3 [P 4 T (M) (25)

7 7

A similar approach is followed in Tijms and Van de Coevering [21].
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Note that the use of the geometric tail and the threshold value M is just an
artifice required by finite computing power and is not an essential element of the
VDRA. In practice we are usually able to choose M so large that the effect of this

additional approximation is negligible.

5 Numerical Results

In this section we report some of our numerical results. Throughout our examples
we consider two types of offered traffic, write s = r; — r, and hold at least one of
ry or r9 equal to zero. In all figures where simulations are used we also plot the
relevant 99% confidence intervals. Figure 2 shows the case of a link in heavy traffic
with parameters p; = 1, puo = 2, ¢ = 1, e = 2, k1 = 0.5, ko = 0.6 and s = 0,
where, as usual, K = v/C. (All parameter values are summarised in Table 1). The
limiting dynamics for this example are those discussed in Section 3. We show the
exact equilibrium call blocking probability for each traffic type as the link capacity
C increases (a logarithmic scale is used). Since s = 0 this is readily computed as
described in Section 1. Additionally, we show the asymptotic equilibrium blocking
probabilities and the exact results can be seen to converge to their asymptotic values.
We also show the results of our approximate methods. The CDRA is seen to give
good accuracy only when C' is large, whereas the more refined procedures of the
VDRA give highly accurate results over the full range of capacities considered.

In Figure 3, we again consider a case where s = 0 and consequently where exact
results are readily computed, but reduce the level of offered load, subject still to (2)
holding. The results here are similar to those of the preceding example, except that
the CDRA has poor accuracy for a greater range of capacities. In Figure 4 we look
at the heavy load case of the example of Figure 2 but take s = 2. We therefore
show simulations instead of the exact results. Notice that now the relative levels of
the blocking of the two traffic types have been interchanged. This reflects the fact
that acceptance of calls belonging to the first traffic stream is now restricted by the
trunk reservation 1 = 2. (The effect of further increasing this trunk reservation
parameter would be to reduce towards zero the blocking probability for calls of
type 2, at the expense of a further increase in the blocking probability for calls of
type 1.) The behaviour of the two approximations is very similar to that of the
example of Figure 2.

In Figures 5, 6 and 7 we look at three examples where C' is held fixed and s is

allowed to vary, in order to show clearly the effect of varying the trunk reservation
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Figure H el ‘ IR ‘ K1 ‘ €2 ‘ Lo ‘ K2 ‘ C ‘ s H
1,2 111052 2 0.6 | <10° 0
3 111052 2 10.501 | <10° 0
4 111052 2 0.6 | <10° 2
5 111052 2 0.6 | 1000 | [—20,20]
6 111052 2 | 0.501 | 1000 | [—20,20]
7 1| 11]02]30|1/30]0.001 | 10000 |[—20,50]

Table 1: Parameter values used for the examples.

parameters. Figures 5 and 6 show the results for the same cases as in Figures 2
and 3 respectively except that the capacity C' is held fixed at 1000 and s is allowed
to vary in the range —20 to +20. We see that in the heavy load case of Figure 5
both the CDRA and VDRA procedures are accurate over the full range of values
of s. However, when the load is reduced, as shown in Figure 6, only the VDRA is
accurate over the full range of values of s.

Finally, in Figure 7 we consider an example where the two traffic streams have
very different characteristics, given by 11 = 2000, 1 = 1, e; = 1, and by vy = 10,
pz = 1/30 and e; = 30. Thus calls of the second type have both much greater
capacity requirements and much longer holding times, corresponding to the very
varied traffic mix which may be found in integrated networks. We also take C' =
10000, so that the link is in heavy traffic. Figure 7 shows that our approximation
procedures continue to provide accurate estimates for the call blocking probabilities.

In summary, we have observed that the CDRA procedure is accurate for a wide
range of trunk reservation parameters when the load is high and the link capacity
is large. The VDRA procedure has been found to give accurate results in all the
cases considered, even when the load is reduced and link capacities are small. The
approximate methods have also been found to be appropriate even when the traffic
streams have quite widely differing parameter values, which is expected to be the
case in future integrated communication networks.

The CDRA procedure has an appealing simplicity, which was justified in Section 4
under the assumptions of reasonably large capacity C' and heavy traffic, and where
we argued for its asymptotic correctness. (In the case where r; = 0 for all 7 € [, it
follows from, for example, Lemma 4.5 of Zachary [23], that under the conditions (1)
and (2), the error in the blocking probabilities as determined by the CDRA is o(C®)
for all @ > —2; we conjecture that a similar result holds in the more general case

r; > 0.) However, the assumption of a constant ‘death rate’ is only appropriate
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under the above conditions, and is not at all justified in other circumstances. By
contrast, the basic approximation underlying the VDRA, namely the relation (23),
still appears reasonable (in the absence of a full /-dimensional analysis) even when
the heavy traffic condition does not hold, and for networks of moderate to large
size (say C' > 50), provided only that the trunk reservation parameters are small
in relation to the capacity of the system. Our above numerical results are therefore

not unexpected, and in general the VDRA procedure is to be preferred.

Appendix

Proof of Lemma 2.2: Trivially f(1) = 0. Define the function ¢ : (0,00) — R by
g(y) = y=¢f(y). Then g is strictly concave and satisfies g(1) = 0, ¢’(1) < 0, since
x € L. Further g(y) — —oo as y — 0 or y — oo. Hence the equation g(y) = 0, and
so also the equation f(y) = 0, has exactly one further strictly positive real root pi,
and further p; < 1.

If z € C\ Ry (Ry the set of nonnegative real numbers) satisfies |z| = p; or
|z| = 1 then, since the greatest common divisor of the e;, 7 € I, is 1, it follows
that Re(g(z)) > 0. Hence z cannot be a root of the polynomial f. Now define
polynomials f; : C — C and f;: C — C by

filz) = 2¢ Z(m + pixi), falz) = Z (zé"'ei K; + Zé_ei,uixi) )

Note that f = f; — fa, and that, for all z € C, | fi(2)| = fi(|z]) and |f2(2)| < f2(]2])-
For any real a € (p1,1), define yv(a) = {z € C: |z| = a}. Then

|f1(2)] = |f2(2)] = f(a) > 0 for all z € v(a),

by the above results for f;, f and the concavity of the function ¢. It now follows

that if b € Ry is chosen such that 0 < b < 2f(a),

[fi(2) = fal2) = 02| <[ fi(2) = fa(2)] for all z € 7(a).

(This inequality is geometrically clear, and may formally be established, in squared
form, by recalling the definition of f;(z), expressing z° and fy(z) in terms of real
and imaginary parts, and elementary manipulations.) Thus, by Rouché’s Theorem

(Rudin [20, Theorem 10.36, p218]) f has exactly é roots with modulus less than a.
Since this is true for all real @ € (py, 1) the result follows. [

Proof of Lemma 2.3: Since, by definition, any = € Il satisfies the recurrence

relations (14), it has the usual spectral representation in terms of the roots of the
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polynomial f. Since |pg| > 1 for k = €+ 1,...,2¢, the finiteness of the measure 7
implies that this representation reduces to the form (15). Further, since

ai(x) = lim p™n(m), (26)

m—00

it follows that a;(7) > 0.

We now show that ai(7) > 0 for all # € Il. Define £ = {m € Z; : m < é}.
Observe that there exists a unique © € II with any given (non-negative) values of
7w(m), m € E, and that #(m) > 0 for all m > é. (This follows from the result
that, if (g¢;;) is the matrix of transition rates associated with an ergodic Markov
process on a discrete state space S, and A is a finite subset of S, then there exists a
unique finite measure 7 on S satisfying the equations } ;s 7:¢;; = 7; )_;c5 ¢;: for all
J € S\ A and having prescribed values 7; > 0 for all j € A. This result is proved
by considering the obvious modified transition matrix on the modified state space
given by replacing A by a single state.) In particular, for each k € E, let 7, € Il be
defined by mx(k) = 1, 7x(m) = 0 for m € £\ {k}. Then any = € II has a unique

representation 7 = Y, cp ey, and

ay(m) =) rar(m). (27)
kel
Let # be defined by #(m) = pJ* for all m € Zy. Then # € Il and # = Y45 pims.
Since a1(7) = 1, it follows from (27) that aq(7y) > 0 for at least one k € F.

Now consider again any = € II. If #(m) > 0 for all m € E, it follows that, in the
above representation of =, & > 0 for all £ € E and so, from the above result and
(27), that a;(x) > 0. Otherwise, the measure ' defined by 7'(m) = 7(m + é) for all
m > 0 belongs to Il and takes strictly positive values everywhere. Thus aq(7’) > 0
and so by (26) it follows again that aq(7) > 0.

The final statement of the lemma follows trivially by the general theory of recur-

rence relations. ]
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Figure 2: Comparison of techniques as C increases.
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