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Recent developments in communication networks have led to much interest in systems
where tra�c of widely di
ering characteristics is integrated together� In earlier work
the authors develop an analysis of single resource loss systems under the assumption of
heavy tra�c� In this paper we discuss the analysis with special emphasis on its practical
implementation for solving real world examples that arise in the study of multiservice
networks� The assumption of heavy tra�c also holds in this paper� but there is good reason
to expect that results are also accurate when the resource is near to critical loading�

�� Introduction

Recent developments in communication networks have led to much interest in systems
where tra�c of widely di
ering characteristics is integrated together� In Bean et al� ��� we
develop an analysis of single resource loss systems under the assumption of heavy tra�c�
In this paper we discuss the analysis with special emphasis on its practical implementa�
tion for solving real world examples that arise in the study of multiservice networks� The
extension of this approach to networks is possible by means of the reduced load approx�
imation 
see Whitt ������ The assumption of heavy tra�c also holds in this paper� but
there is good reason to expect results that are also accurate when the resource is near to
critical loading�
Formally we study a resource of integer capacity C o
ered a �nite number of tra�c

streams indexed in a set J � Calls of type j � J arrive as a Poisson stream of rate �j
and have exponential holding times of mean ���j � each such call requires integer capacity
ej� and is accepted if and only if the resulting free capacity of the resource is at least rj�
otherwise the call is lost� The parameters rj are referred to as trunk reservation param�

eters and provide an important mechanism for controlling the behaviour of the system�
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All arrival streams and holding times are independent� In order to ensure irreducibility
of all the stochastic processes involved� we assume� without loss of generality� that the
capacities ej� j � J � have greatest common divisor equal to ��
Various authors have considered forms of this model� Kaufman ��� considers the model

without trunk reservation and develops an elegant and e�cient recursion technique for
exactly determining the blocking probabilities 
see also Dziong and Roberts ��� and
Zachary ���� for generalizations to networks�� Tran�Gia and H�ubner ���� develop a simple
approximate technique based on the Kaufman recursion for the model with trunk reser�
vation� Gersht and Lee ��� present an approximate scheme� also based on the Kaufman
recursion� to model the di
erent call holding times of di
erent tra�c types and include
a �xed point calculation to determine the average departure rate of a unit of bandwidth�
Kelly ��� also addresses the model with trunk reservation but uses the Erlang �xed point
approximation ��� with the additional step of calculating the average departure rate of a
unit of bandwidth� However� no error calculation or asymptotic justi�cation is presented
for any of these approximate methods�
The capacity requirements ej� j � J � of calls o
ered to the resource correspond to the

important concept of e�ective bandwidths that has arisen from many studies of multiser�
vice networks �	������ The e
ective bandwidth is an accurate assessment of the capacity
required by a tra�c source at each resource of the network in order to guarantee con�
straints on cell loss or delay�
Of particular interest for loss systems is the determination of the blocking probability�

that is� the equilibrium call rejection probability� associated with each call type� For the
model considered in this paper it is possible in principle to determine blocking probabilities
exactly� since they are functions of the equilibrium distribution of a Markov process�
However the state space for this process is typically so large as to make this determination
impossible in practice� In Section � we show how� by studying the stochastic process
which describes merely the free capacity of the system at any time� good approximations
to the blocking probabilities may be obtained� These approximations are asymptotically
exact under the limiting scheme described there� In Section � we consider some numerical
aspects of the determination of these approximations� In Section 	 we give some numerical
examples�

�� Analysis of the Model

Let N 
t� � 
Nj
t�� j � J� where Nj
t� is the number of calls of type j in progress

at time t� Then N 
�� is a 
vector� Markov process with state space S � fn � Z
jJj
� �P

j�J ejnj � Cg 
where Z� is the set of non�negative integers�� Let �� � 
��
n�� n � S�
denote its equilibrium distribution�
For each time t� de�ne also M
t� � C �

P
j�J ejNj
t�� Then M
t� is the free capac�

ity at time t and the process M
�� takes values in the state space M � f�� �� � � � � Cg�
The equilibrium distribution �� � 
��
m�� m � M� of this process is given by ��
m� �P
n�S�m� �

�
n�� where S
m� � fn � S �
P

j�J ejnj �m � Cg� Note that a knowledge of
the one�dimensional distribution �� is su�cient for the determination of blocking probabil�
ities� We now show how �� may be determined� at least to a good approximation� without
the very much more di�cult evaluation of the higher�dimensional distribution ���
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De�ne

��j
m� �

X
n�S�m�

��
n�nj

X
n�S�m�

��
n�
� m � M� j � J� 
��

Thus ��j
m� is the expected value of Nj
t� under the equilibrium distribution ��� condi�
tioned on the event N
t� � S
m�� De�ne also �� � 
��j
m�� m � M� j � J�� Then 
��� ���
satis�es the system of equations 
���
�� in 
�� ��� where � � 
�j
m�� m � M� j � J��
� � 
�
m�� m � M�� � � � and � � �� given by

�
m�

�
� X
j�rj�ej�m

�j �
X

j�m�ej�M

�j�j
m�

�
� �

X
j�rj�m�

m�ej�M

�
m� ej��j �
X

j�ej�m

�
m� ej��j�j
m� ej�� m � M� 
��

X
m�M

�
m� � �� 
��

X
j�J

ej�j
m� �m � C� m � M 
	�

and

gj
�� �� � �� j � J� 
��

where� for each j� the function gj is de�ned by

gj
�� �� � �j
X

m�ej�rj

�
m�� �j

X
m�M

�
m��j
m�� 
��

To see these results� observe �rst that the equations 
�� follow easily� for each m� by
summing the global balance equations for the equilibrium distribution �� of the Markov
process N 
�� over the states n � S
m� and using the de�nition 
��� The equation 
��
is trivially satis�ed by � � ��� That � � �� satis�es the equations 
	� follows immedi�
ately from 
��� or from the interpretation of ��j
m� as an expected value� Finally� the
equations 
�� 
with 
�� �� � 
��� ���� may formally be derived from the global balance
equations for ��� or from the observation that� in equilibrium� the expected acceptance
rate equals the expected departure rate for each call type j�
Note that the equations 
�� and 
�� may be regarded as the equations determining the

unique equilibrium distribution � of a Markov process on M with transition rates given�
for each j � J � by

m�

�
m� ej� at rate �jI
m � rj � ej��
m� ej� at rate �j�j
m�I
m� ej � M�


��



	


where I denotes the indicator function�� Thus� as usual� any one of the equations 
�� may
be omitted 
being implied by the remainder�� Similarly� if 
�� �� satis�es the equations 
���
then� by multiplying each of these equations by the corresponding value ofm and summing
over all m � M� it follows without too much di�culty that

P
j�J ejgj
�� �� � �� Thus

any one of the equations 
�� may also be omitted from the above system�
In general the equations 
���
�� are insu�cient to determine 
��� ���� We may however

use them to determine 
��� ��� approximately by making appropriate assumptions� for each
j� about the dependence of ��j
m� on m�
To motivate our approximation schemewe �rst consider some asymptotic theory� Bean et

al� ��� show that� when C is large� and under the heavy tra�c condition

X
j�J

ej
�j
�j

� C� 
��

the process N 
���C evolves approximately as a deterministic dynamical system x
���
and that the process M
���C eventually remains close to �� The �xed points of this
dynamical system are in one�to�one correspondence with the solutions of the system of
equations 
��� 
�� and 
�� modi�ed by replacingM throughout byZ� and� for each j � J �
by replacing �j
m� by a positive constant �j 
independent of m�� where we additionally
require that 
in place of the equations 
	��X
j�J

ej�j � C� 
��

For each solution 
�� �� 
where � is here interpreted as 
�j� j � J�� of this modi�ed
system of equations� the corresponding �xed point of the dynamical system is given by
��C�
Now suppose that the dynamical system x
�� possesses a unique �xed point �x to which

all of its trajectories converge 
a condition satis�ed in all the examples we have studied��
Bean et al� ��� show that the component � of the corresponding unique solution 
�� �� of
the above modi�ed system of equations then approximates the equilibrium distribution
�� of the process M
��� The intuitive explanation for this is that� since in equilibrium
N 
���C remains close to �x and M
���C remains close to �� for each j the constant �j
becomes a reasonable approximation to ��j
m�� 
Further� under these conditions� the
process M
�� behaves approximately as a Markov process with transition rates given by
the set of equations 
�� with �j replacing �j
m��� Under the limiting scheme of Kelly ����
in which the arrival rates �j and the capacity C are allowed to grow in proportion� and
with the heavy tra�c condition 
�� continuing to hold� the solution � of the modi�ed
system of equations remains constant and is the limit 
under weak convergence� of the
exact equilibrium distribution ���
If the dynamical system x
�� does possess multiple �xed points� then the component �

of each of the corresponding solutions of the above modi�ed system of equations represents
an approximate quasi�equilibrium distribution of the process M
��� that is� a distribution
which behaves as an equilibrium distribution over a sustained period of time� However�
we have no evidence to suggest that such multiple �xed points can occur�
While the above approximation to �� becomes exact under the limiting scheme described�

it is nevertheless too crude for most practical applications� We therefore seek to improve
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it by retaining the state spaceM and� for each j� approximating ��j
m� as a linear function
of m� Although this linear approximation is less than ideal from a theoretical viewpoint�
it nevertheless appears to work well in practice� We also expect that it will continue to
work reasonably well even when the heavy tra�c condition 
�� is not satis�ed� particularly
if the resource is instead at or near to critical loading� Recalling that ��j
m� must also be
always positive� we thus replace the equations 
	� by

�j
m� � aj
C �m�� j � J� m � M 
���

where

aj � �� for each j � J� and
X
j�J

ejaj � �� 
���

The equilibrium distribution �� is then approximated by the component � of the solution

a� �� 
where a � 
aj� j � J�� of the system of equations 
��� 
��� 
��� 
��� and 
����
provided that this solution is unique� Note that� after eliminating � and the redundant
equations� the above system of equations consists of jMj � jJ j equations in jMj � jJ j
unknowns� Multiple solutions� were they to occur� would again correspond to quasi�
equilibrium distributions of the process M
���

�� Practical Discussion

In the previous section we describe a model for approximating �� by treating ��j
m� as
linear inm� In this section we consider the numerical determination of this approximation
through the solution of the system of equations 
��� 
��� 
��� 
��� and 
���� This problem
may be regarded as that of �nding the component a of the solution 
a� ��� for any given
a in the 
jJ j � ���dimensional region de�ned by the conditions 
���� the equations 
���
determine a value of � and then the equations 
�� and 
�� determine a distribution ��
we must therefore choose a such that 
�� �� satis�es the equations 
�� 
where again any
one member of this set may be omitted�� In the special case where jJ j � � a bi�section
method can be used� but in general a modi�ed version of the Newton�Raphson routine in
which derivatives need not be supplied is highly e
ective�
A further consideration arises in the solution of the equations 
�� and 
�� 
for given

�� at each iteration of any numerical procedure� For moderate values of C these may be
solved by matrix inversion 
omitting any one of the equations 
���� For large C this is
impractical� In this case we may make a further appeal to the asymptotic theory of Bean
et al� ��� which shows that� provided �j
m��C varies slowly with m 
as is the case here��
the tail of the distribution � determined by the equations 
�� and 
�� is approximately
geometric with a parameter p which can be directly determined in the manner described
below� We may therefore choose a threshold value m� � M and assume that

�
m� � �
m��p
m�m� � for all m � m�� 
���

The parameter p should be taken as the unique real root between � and � of the polynomial
f � C � C of degree ��e 
where �e � maxj�J ej� given by

f
z� � z�e
X
j�J


�j � �j�j
m����
X
j�J

�
z�e�ej�j � z�e�ej�j�j
m��

�
� 
���
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The value of m� should be chosen so that
P

m�m�
�
m� is small� If m� and p are thus

determined� the set of equations 
�� need only be considered for m � �� �� � � � �m� � ��
Substitution of the relation 
��� into these equations and equation 
�� yields m� � �
linear equations in �
��� �
��� � � � � �
m��� so determining the entire distribution �� An
alternative approach to the problem caused by large C would be to assume that �
m� � �
for all m � m�� However� to achieve a similar degree of accuracy would require a much
greater value of m� as

P
m�m�

�
m� would then need to be negligible�

�� Examples

In this section we use the algorithm of the previous section to calculate blocking prob�
abilities for the call types given in Table � and the choice of system parameters given
in Table �� where the arrival rate of calls is in units of call per second rounded to two
decimal places� We consider four choices of call characteristics� described by the e
ective
bandwidth and mean call holding time� which might� for example� be associated with the
applications shown�

Table �
Parameter values used to describe each call
Application Call Type E
ective Bandwidth 
Mbps� Holding Time 
s�
Digitized Voice I ���	 ���
Interactive Video Retrieval II ���� ����
File Transfer III ���� ��
Distribution Video IV ���� ����

Table �
System parameter values

Figure Type � Type � Capacity 
Mbps�
Call Type Arrival Rate Call Type Arrival Rate

� II ���	 IV ���� ���
� III ���� IV ���� ���
� I ����� II ���� ���

For each of the examples de�ned in Table �� we present the analytic results and compare
them to simulations of the system� for which we also display the relevant ��� con�dence
intervals� In each example we consider a single resource and two types of o
ered tra�c�
and write s � r� � r� while holding at least one of r� or r� equal to zero� We study how
well our model approximates the two blocking probabilities as s varies� 
The choice of an
optimal value of s will of course depend on the cost structure adopted� and perhaps other
criteria��
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Figure � shows an example where the algorithm gives highly accurate estimates of the
blocking probabilities for both types of call over a wide range of values for the trunk
reservation parameters� In this example the link is critically loaded in thatX
j�J

ej�j
�j

� C� 
�	�

Trunk Reservation� s � r� � r� 
Mbps�
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Figure �� Analytical and simulation results with varying trunk reservation

This �gure shows the typical behaviour of the blocking probabilities at such a link�
The relationship between the blocking probabilities of the call types is governed by the
relative values of e�� r� and e�� r�� So� for example� when e�� r� � e�� r� the blocking
probabilities are equal for both call types� The blocking probability for the calls of type �
is almost zero when the trunk reservation parameters are such that s is large and negative
and as s increases� the blocking probability decreases for calls of type � and increases for
calls of type �� Note that when there is no trunk reservation� that is s � �� the calls with
the higher e
ective bandwidth have a higher blocking probability than those of the other
call type�
In Figure � the link is again critically loaded and has two call types of identical e
ective

bandwidth but very di
erent holding times� We again �nd that the algorithm provides
accurate estimates for the blocking probabilities�
Finally� in Figure �� we consider a more extreme case where both the e
ective band�

widths and holding times di
er considerably between call types� The link satis�es the
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Figure �� Analytical and simulation results with varying trunk reservation

heavy tra�c condition 
��� in fact

X
j�J

ej�j
�j

� C � ����� 
���

corresponding to �� overload� In this case the results are somewhat less accurate despite
capturing all the qualitative features�
Our results show that the algorithm described in this paper can be used in a wide

range of practical examples to give very accurate estimates for the blocking probabilities
in multiservice networks� Further� the asymptotic theory of the preceding sections shows
that any inaccuracies decrease as the system capacity increases�
To improve these results� for example where call types vary widely or where the load

is light� would require further investigation into the form of �j
m� 
see equations 
���
and 
�����
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