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Recent developments in communication networks have led to much interest in systems
where traffic of widely differing characteristics is integrated together. In earlier work
the authors develop an analysis of single resource loss systems under the assumption of
heavy traffic. In this paper we discuss the analysis with special emphasis on its practical
implementation for solving real world examples that arise in the study of multiservice
networks. The assumption of heavy traffic also holds in this paper, but there is good reason
to expect that results are also accurate when the resource is near to critical loading.

1. Introduction

Recent developments in communication networks have led to much interest in systems
where traffic of widely differing characteristics is integrated together. In Bean et al. [1] we
develop an analysis of single resource loss systems under the assumption of heavy traffic.
In this paper we discuss the analysis with special emphasis on its practical implementa-
tion for solving real world examples that arise in the study of multiservice networks. The
extension of this approach to networks is possible by means of the reduced load approx-
imation (see Whitt [11]). The assumption of heavy traffic also holds in this paper, but
there is good reason to expect results that are also accurate when the resource is near to
critical loading.

Formally we study a resource of integer capacity (' offered a finite number of traffic
streams indexed in a set J. Calls of type y € J arrive as a Poisson stream of rate v;
and have exponential holding times of mean ,uj_l; each such call requires integer capacity
e;, and is accepted if and only if the resulting free capacity of the resource is at least rj;
otherwise the call is lost. The parameters r; are referred to as trunk reservation param-
eters and provide an important mechanism for controlling the behaviour of the system.
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All arrival streams and holding times are independent. In order to ensure irreducibility
of all the stochastic processes involved, we assume, without loss of generality, that the
capacities e;, j € J, have greatest common divisor equal to 1.

Various authors have considered forms of this model. Kaufman [6] considers the model
without trunk reservation and develops an elegant and efficient recursion technique for
exactly determining the blocking probabilities (see also Dziong and Roberts [2] and
Zachary [12] for generalizations to networks). Tran-Gia and Hiibner [10] develop a simple
approximate technique based on the Kaufman recursion for the model with trunk reser-
vation. Gersht and Lee [3] present an approximate scheme, also based on the Kaufman
recursion, to model the different call holding times of different traffic types and include
a fixed point calculation to determine the average departure rate of a unit of bandwidth.
Kelly [8] also addresses the model with trunk reservation but uses the Erlang fixed point
approximation [7] with the additional step of calculating the average departure rate of a
unit of bandwidth. However, no error calculation or asymptotic justification is presented
for any of these approximate methods.

The capacity requirements e;, j € J, of calls offered to the resource correspond to the
important concept of effective bandwidths that has arisen from many studies of multiser-
vice networks [4,5,9]. The effective bandwidth is an accurate assessment of the capacity
required by a traffic source at each resource of the network in order to guarantee con-
straints on cell loss or delay.

Of particular interest for loss systems is the determination of the blocking probability,
that is, the equilibrium call rejection probability, associated with each call type. For the
model considered in this paper it is possible in principle to determine blocking probabilities
exactly, since they are functions of the equilibrium distribution of a Markov process.
However the state space for this process is typically so large as to make this determination
impossible in practice. In Section 2 we show how, by studying the stochastic process
which describes merely the free capacity of the system at any time, good approximations
to the blocking probabilities may be obtained. These approximations are asymptotically
exact under the limiting scheme described there. In Section 3 we consider some numerical
aspects of the determination of these approximations. In Section 4 we give some numerical
examples.

2. Analysis of the Model

Let N(t) = (N;(t), j € J) where N;(t) is the number of calls of type j in progress
at time ¢. Then N(-) is a (vector) Markov process with state space § = {n € Z'_[_” :
>jesen; < C} (where Zy is the set of non-negative integers). Let 7* = (7*(n), n € §)
denote its equilibrium distribution.

For each time ¢, define also M(1) = C — Y.c;e;N;(t). Then M(t) is the free capac-
ity at time ¢ and the process M(-) takes values in the state space M = {0,1,...,C}.
The equilibrium distribution 7 = (7(m), m € M) of this process is given by 7(m) =
Ynesim) (1), where S(m) = {n € §: ¥ ;c;e;n; +m = C'}. Note that a knowledge of
the one-dimensional distribution 7 is sufficient for the determination of blocking probabil-
ities. We now show how 7 may be determined, at least to a good approximation, without
the very much more difficult evaluation of the higher-dimensional distribution 7*.
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Thus 0;(m) is the expected value of N;(#) under the equilibrium distribution 7=, condi-
tioned on the event N(t) € S(m). Define also 8 = (0;(m), m € M, j € J). Then (8, 7)
satisfies the system of equations (2)—(5) in (8,7), where 8 = (,(m), m € M, j € J),
7= (m(m), m € M), 0 >0 and x >0, given by
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where, for each j, the function g; is defined by

g9i(0,m)=v; >, w(m)—p; Y w(m)b;(m). (6)
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To see these results, observe first that the equations (2) follow easily, for each m, by
summing the global balance equations for the equilibrium distribution #* of the Markov
process IN(-) over the states m € S(m) and using the definition (1). The equation (3)
is trivially satisfied by # = 7. That @ = @ satisfies the equations (4) follows immedi-
ately from (1), or from the interpretation of #;(m) as an expected value. Finally, the
equations (5) (with (8,7) = (8,7)) may formally be derived from the global balance
equations for 7*, or from the observation that, in equilibrium, the expected acceptance
rate equals the expected departure rate for each call type j.

Note that the equations (2) and (3) may be regarded as the equations determining the
unique equilibrium distribution 7 of a Markov process on M with transition rates given,
for each j € J, by
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(where I denotes the indicator function). Thus, as usual, any one of the equations (2) may
be omitted (being implied by the remainder). Similarly, if (8, ) satisfies the equations (2),
then, by multiplying each of these equations by the corresponding value of m and summing
over all m € M, it follows without too much difficulty that .. ;e;g;(0,7) = 0. Thus
any one of the equations (5

In general the equations
use them to determine (8, 7) approximately by making appropriate assumptions, for each

may also be omitted from the above system.
2)—(5) are insufficient to determine (8, 7). We may however

S

J, about the dependence of 8;(m) on m.
To motivate our approximation scheme we first consider some asymptotic theory. Bean et
al. [1] show that, when C is large, and under the heavy traffic condition
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the process N(-)/C evolves approximately as a deterministic dynamical system (),
and that the process M(-)/C eventually remains close to 0. The fixed points of this
dynamical system are in one-to-one correspondence with the solutions of the system of
equations (2), (3) and (5) modified by replacing M throughout by Z, and, for each j € J,
by replacing 6;(m) by a positive constant 6; (independent of m), where we additionally
require that (in place of the equations (4))

Z 6]‘(9]‘ =C. (9)
jed

For each solution (@,7) (where 8 is here interpreted as (0;, 7 € J)) of this modified
system of equations, the corresponding fixed point of the dynamical system is given by
0/C.

Now suppose that the dynamical system @(-) possesses a unique fixed point & to which
all of its trajectories converge (a condition satisfied in all the examples we have studied).
Bean et al. [1] show that the component 7 of the corresponding unique solution (8, x) of
the above modified system of equations then approximates the equilibrium distribution
7 of the process M(-). The intuitive explanation for this is that, since in equilibrium
N (-)/C remains close to @ and M(-)/C remains close to 0, for each j the constant 6,
becomes a reasonable approximation to #;(m). (Further, under these conditions, the
process M(-) behaves approximately as a Markov process with transition rates given by
the set of equations (7) with 8, replacing 6;(m).) Under the limiting scheme of Kelly [7],
in which the arrival rates v; and the capacity € are allowed to grow in proportion, and
with the heavy traffic condition (8) continuing to hold, the solution 7 of the modified
system of equations remains constant and is the limit (under weak convergence) of the
exact equilibrium distribution 7.

If the dynamical system «(-) does possess multiple fixed points, then the component =
of each of the corresponding solutions of the above modified system of equations represents
an approximate quasi-equilibrium distribution of the process M(-), that is, a distribution
which behaves as an equilibrium distribution over a sustained period of time. However,
we have no evidence to suggest that such multiple fixed points can occur.

While the above approximation to # becomes exact under the limiting scheme described,
it is nevertheless too crude for most practical applications. We therefore seek to improve



it by retaining the state space M and, for each j, approximating #;(m) as a linear function
of m. Although this linear approximation is less than ideal from a theoretical viewpoint,
it nevertheless appears to work well in practice. We also expect that it will continue to
work reasonably well even when the heavy traffic condition (8) is not satisfied, particularly
if the resource is instead at or near to critical loading. Recalling that 6;(m) must also be
always positive, we thus replace the equations (4) by

0;(m)=a;(C—m), j€J meM (10)

where

a; >0, foreachj€J, and > eja; =1 (11)
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The equilibrium distribution 7 is then approximated by the component 7 of the solution
(a,7) (where @ = (a;, j € J)) of the system of equations (2), (3), (5), (10) and (11),
provided that this solution is unique. Note that, after eliminating 8 and the redundant
equations, the above system of equations consists of |M]| + |.J| equations in M|+ |J|
unknowns. Multiple solutions, were they to occur, would again correspond to quasi-
equilibrium distributions of the process M(-).

3. Practical Discussion

In the previous section we describe a model for approximating 7 by treating #;(m) as
linear in m. In this section we consider the numerical determination of this approximation
through the solution of the system of equations (2), (3), (5), (10) and (11). This problem
may be regarded as that of finding the component a of the solution (@, r): for any given
a in the (|.J| — 1)-dimensional region defined by the conditions (11), the equations (10)
determine a value of 8 and then the equations (2) and (3) determine a distribution ;
we must therefore choose a such that (8, 7) satisfies the equations (5) (where again any
one member of this set may be omitted). In the special case where |.J| = 2 a bi-section
method can be used, but in general a modified version of the Newton-Raphson routine in
which derivatives need not be supplied is highly effective.

A further consideration arises in the solution of the equations (2) and (3) (for given
0) at each iteration of any numerical procedure. For moderate values of C' these may be
solved by matrix inversion (omitting any one of the equations (2)). For large C this is
impractical. In this case we may make a further appeal to the asymptotic theory of Bean
et al. [1] which shows that, provided 6;(m)/C varies slowly with m (as is the case here),
the tail of the distribution 7= determined by the equations (2) and (3) is approximately
geometric with a parameter p which can be directly determined in the manner described
below. We may therefore choose a threshold value mqg € M and assume that

T —T110

7(m) = 7 (mo)p ,  for all m > my. (12)

The parameter p should be taken as the unique real root between 0 and 1 of the polynomial
f:C — C of degree 2é (where é = max;ey€;) given by

F(2) = 2537 (v + w30;0m0)) — 3 (279 + 2579 1;0;(mo)) . (13)
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The value of mg should be chosen so that > 7(m) is small. If mg and p are thus

m>mo
determined, the set of equations (2) need only be considered for m = 0,1,...,mo — 1.
Substitution of the relation (12) into these equations and equation (3) yields mg + 1
linear equations in 7 (0),7(1),...,7(mg), so determining the entire distribution =. An

alternative approach to the problem caused by large C' would be to assume that m(m) =0
for all m > mg. However, to achieve a similar degree of accuracy would require a much
greater value of mo as 3,5, 7(m) would then need to be negligible.

4. Examples

In this section we use the algorithm of the previous section to calculate blocking prob-
abilities for the call types given in Table 1 and the choice of system parameters given
in Table 2, where the arrival rate of calls is in units of call per second rounded to two
decimal places. We consider four choices of call characteristics, described by the effective
bandwidth and mean call holding time, which might, for example, be associated with the
applications shown.

Table 1
Parameter values used to describe each call
Application Call Type Effective Bandwidth (Mbps) Holding Time (s)
Digitized Voice I 0.04 180
Interactive Video Retrieval II 0.50 1200
File Transfer 1 2.00 60
Distribution Video v 2.00 1800
Table 2
System parameter values
Figure  Type 1 Type 2 Capacity (Mbps)
Call Type  Arrival Rate  Call Type  Arrival Rate
1 IT 0.24 v 0.13 622
2 I1I 2.68 v 0.08 622
3 I 32.38 IT 0.70 622

For each of the examples defined in Table 2, we present the analytic results and compare
them to simulations of the system, for which we also display the relevant 99% confidence
intervals. In each example we consider a single resource and two types of offered traffic,
and write s = r; — ro while holding at least one of ry or 7y equal to zero. We study how
well our model approximates the two blocking probabilities as s varies. (The choice of an
optimal value of s will of course depend on the cost structure adopted, and perhaps other
criteria.)



Figure 1 shows an example where the algorithm gives highly accurate estimates of the
blocking probabilities for both types of call over a wide range of values for the trunk
reservation parameters. In this example the link is critically loaded in that
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Figure 1. Analytical and simulation results with varying trunk reservation

This figure shows the typical behaviour of the blocking probabilities at such a link.
The relationship between the blocking probabilities of the call types is governed by the
relative values of e; + 1y and ey +ry. So, for example, when ey +r; = ey + ry the blocking
probabilities are equal for both call types. The blocking probability for the calls of type 1
is almost zero when the trunk reservation parameters are such that s is large and negative
and as s increases, the blocking probability decreases for calls of type 2 and increases for
calls of type 1. Note that when there is no trunk reservation, that is s = 0, the calls with
the higher effective bandwidth have a higher blocking probability than those of the other
call type.

In Figure 2 the link is again critically loaded and has two call types of identical effective
bandwidth but very different holding times. We again find that the algorithm provides
accurate estimates for the blocking probabilities.

Finally, in Figure 3, we consider a more extreme case where both the effective band-
widths and holding times differ considerably between call types. The link satisfies the
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Figure 2. Analytical and simulation results with varying trunk reservation

heavy traffic condition (8), in fact

SS9 0 x 1405, (15)
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corresponding to 5% overload. In this case the results are somewhat less accurate despite
capturing all the qualitative features.

Our results show that the algorithm described in this paper can be used in a wide
range of practical examples to give very accurate estimates for the blocking probabilities
in multiservice networks. Further, the asymptotic theory of the preceding sections shows
that any inaccuracies decrease as the system capacity increases.

To improve these results, for example where call types vary widely or where the load
is light, would require further investigation into the form of 6;(m) (see equations (10)

and (11)).
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